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It is then necessary to make a compromise between the frequency
resolution, which can be characterized for instance by the noise band-
width, and the uncertainty in the determination of the amplitude,
which is influenced by the number of values in the computed average
for each spectral line and the comrelation between the values. Formulas
(18) and (19) in Harris’ paper can be applied and the following expres-
sion is obtained:
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where

aAf noise bandwidth (Hz);

ENBW normalized noise bandwidth, bins;

AA relative amplitude uncertainty for each spectral line, o-value;
oL overlap, 0.5 or 0.75;

oC overlap correction, i.e., increase in variance due to overlap;

T total length of input data to be analyzed, seconds.

The overlap correction can be computed from [1, eq. (19)]. If sec-
ond order terms are disregarded, one obtains:

0C(0.50) ~ 1+ 2C2(0.50) ‘ (7))
0C(0.75) =~ 1 + 2C%(0.75) + 2C%(0.50) 3)

where €(0.50) and C(0.75) are the overlap correlations for 50 percent
and 75 percent overlap.

Equation (1) gives a figure of merit for each choice of overlap and
window for the application discussed. Table 1 compares some of the
windows from this point of view.

As is to be expected, more overlap will always give better results,
but 75 percent overlap secms to be sufficient in all cases investigated;
for some windows even S0 percent could be used to save computer
time. It is interesting to note that there is practically no difference
between the different windows concerning possible amplitude and fre-
quency resolution.  The recommendation is, therefore, to use one of
the windows with low-sidelobe levels. Nothing is gained by choosing a
simpler window.

Rz’p!y’ by Fredric J. Harris®

The comments made by Blomqvist on scalloping loss representing an
easily correctable processing task (by zero filling and performing larger
transforms) is indecd correct and in fact is performed in many signal
processing tasks. A qualifier here is that the increased size transform be
performed in the memory space of a given machine, and the increased
size workload is manageable in the processor’s time frame. The com-
ment that the figure of merit, Af(AA)2, is essentially a constant for
different windows is an interesting property of windows but should
not be used as the basis for discarding equivalent noise bandwidth as a
criterion for window selection. In fact, I have shown [3] a similar re-
sult, that the signal processing gain obtained by averaging overlapped
transforms just matches the signal-to-noise ratio penalty incurred by
using a given window in the first place. But remember, ENBW is a
sensitive measure of main lobe width [slightly greater than the 3-dB
width [1]], and as such reflects the ability of the windowed transform
to resolve two nearby-similar strength line components. Sidelobe
levels, on the other hand, reflect the ability of the windowed transform
to resolve two nearby-very disimilar strength line components. We note
that the resolution of a deep notch (as opposed to a strong resonance)
in a power spectrum would require simultaneously a narrow main lobe
(i.e., small ENBW) and very low-sidelobe levels. Thus the window selec-
tion criterion should be to select the window with the narrowest main
lobe width for a given sidelobe level. The windows which meet this
criterion are the Dolph-Chebyschev, the Kaiser-Bessel and the Black-
man-Harris.  Of course, if the spectrum being processed exhibits an
extremely deep notch, the constant sidelobe level of the Dolph-Cheby-
shev will prevent it from performing as well as the other two.
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On a Class of Nonlinear Systems with Explicit Solutions
HEBERTT SIRA-RAMIREZ

Abstract—A new class of nonlinear systems with explicit solutions is
introduced. The importance of this new class of systems is pointed in
terms of their significance in the reachable set computation problem for
linear systems with polyhedral constraints on the initial state and pre-
scribed control signals.

L. INTRODUCTION
This letter introduces a new class of systems described by nonlinear
ordinary vector differential equations with explicit solutions in terms of
the initial conditions and the matrices defining the system. This work
represents a generalization of a class of systems that naturally appears
on the reachable set computation problem for linear systems with set-
constrained initial states and prescribed controls 1], [2].

1L DEFINITIONS AND MAIN RESULTS

Definition: We say that a function f(x,u) is locally Lipschitzian
whenever f satisfies the following conditions: 1) f is continuous with
respect to x and u, 2) The derivatives afi/a"i exist and are bounded
over any convex, bounded region of the state space, and 3) u(?) is
bounded over any finite interval [¢4, T].

Notice that the above conditions are sufficient conditions for the
function f to be Lipschitzian in the ordinary sense 3], {4].

Definition: A scalar function h(x,u) is said to be m-homogeneous
with respect to x whenever h(ax, ) = «"h(x, u) for any real number «
(m is an integer).

Consider the nonlinear system:

l%;:(:) = A1) (0 + h(x(), u (D)) x(D) oy

with
x(to) = xg

where h(x,u) is a scalar function m-homogeneous with respect to x.
The function 4 is assumed to have a bounded gradient with respect to x
in any convex bounded region of the state space. The control function
u(?) is supposed to be piecewise continuous and bounded on the interval
[to, T) of finite length. A(r) is an n X n matrix whose entries are con-
tinuous functions of time defined on the interval [to, T']. The initial
state xq is a known vector.

The following is a theorem which establishes the uniqueness of solu-
tions of system (1).

Theorem 1
Under the above hypothesis, system (1) has a unique solution given
by :

t ' -1/m
x(t) = (l -m f h(®(a, to) xo, u(a))do) @(t, tg) Xo 2)
1,

where ®(t, to) is the fundamental matrix associated with A (¢).

Proof: Uniqueness of solutions is easily established after realizing
that the function f(x,#) =A(t)x +h(x,u)x is locally Lipschitzian.
The proof that (2) is actually the solution of (1) is done by taking the
time derivative of x(f) in (2). For this let

t
A
q(t) = (1 - mJ- h(®(a, ty) xg, u(o))da). 3)
tﬂ
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Then, the time derivative of x(¢) is given by

UL mb(a(2, o) xg, W) B2, 1) %o

d
—x(t) =

1
dt m @

+ ()40 @(t, t0) xo-

Simplifying and using the m-homogeneous character of h(x,u) we
obtain

d = -
27 X0 =20 e, 10)x0 ha ey M, to)x0, u(t)

+ A a0 ™M™ a(r, to) xo.

Substitution of (2} in the preceding expression yields back the differ-
ential equation (1). The proposed solution (2) trivially satisfies the
initial conditions. The result is thus established.

The preceding theorem constitutes an interesting result due to the
nonstringent conditions imposed on the nonlinear part of the differen-
tial equation. Any finite escape time problems that could arise for
certain values of m are easily circumvented by the explicit form of the
solution and some “‘monitoring’ on q(f). The solution is thus charac-
terized by (2) in the real line, excluding some arbitrarily small neighbor-
hoods around the finite escape times.

Example: Suppose we have a linear system of the form x = A(H) x +
B(t)u(t) where u(t) is a given piecewise continuous bounded control
function, Let the symbols ¢,) stand for inner product of the shown
vectors. If the initial state of the system is unknown but bounded by a
polyhedron of the form {x € R": (x,mjo) < 1;i=1,2,--+- ,N2n+ 1}
(N 2 n +1 is a necessary condition for boundedness) then it is easy to
show that at Aime ¢, the state x(f) will be bounded by a_polyhedron
characterized (by {xeR N <;i=1,2,.
is given by the unique solution of

d
En,(t) = -A'(t) n;() - (ni(8), B u(t)) n;(0) 4)
with
‘n[(to) = Njo ’ for alli.
A straightforward application of Theorem 1 yields for 5;(¢):
t -1
n;(t) = .(1 +f < 1n50, ®(tg, 0) B(a) u(o) > do) @' (g, ) njos
to
i=1,2,-+-,N

The preceding result follows easily from well-known properties of
fundamental matrices of adjoint systems. °

An interplay among vector and matrix differential systems frequently
occurs. For this reason and because of their importance in related opti-
mization problems, we extend the previous theorem to systems of the
form

:—tza) =AQ IO + 2N A'@) + HE®, ) Z@) )

with
E([o) = Eo.

The function A is scalar m-homogeneous with respect to Z. Under the
appropriate hypothesis of continuity and boundedness of the matrix
gradient of h (see [S]), it is easy to show that the following theorem
holds true:
Theorem 2

System (5) has a unique solution given by

' t -1/m
2= (1 = mf h(®(o, tg) Zo®'(a, t9), Q(o))do>
ty .
<, 19) Zo®'(t, £o)

Proof: This theorem is an immediate extension of Theorem 1 to the
matrix case. 0

N} where n,(t) .
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I11. CoNCLUSIONS

This paper has introduced a new class of systems described by non-
linear vector (and also matrix) differential equations with explicit solu-
tions. Uniqueness and form of solutions were established under rather
relaxed conditions regarding the nonlinearity of the system. The class
was shown to have importance in the study of set-theoretic issues re-
garding the evolution of the initial state uncertainty. The vector results
were shown to be extended easily to the matrix case.

Further research is needed in specific areas such as stability, con-
trollability, and optimization problems associated with this class of
nonlinear systems. The advantage offered by their explicit solution can
be exploited to obtain some results in the above mentioned areas.
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Simulation of a Discrete PLL with Variable Parameters
LUIS F. ROCHA

Abstract—The discrete phase lock loop (DPLL) proposed by G. S.
Gill and S. C. Gupta [1] is simulated with a programmable calculator
(TI-58). Many interesting properties of its behavior are easily shown
such as the pulling-up time, the effects of varying the coefficients of
the filter, and the effect of phase and frequency steps on the output.

If the constant K of the filter is initially made high, and its value
decreases with time, it is possible to obtain a DPLL with large pull-in
range and which is very insensitive to input noise.

INTRODUCTION
The discrete phase lock loop (DPLL) [1]-{3] has recently received
a good deal of attention due to its simplicity and easy implementation.
The system is based on a variable period clock (see Fig. 1) controlled
by a sampler through an A/D converter and digital filter. The sampling
period T(j) is changed every cycle according to:

T(j}=T-c(j-1) ¢V

where T is a constant, the free running period of the clock,and ¢(j - 1)
is the output of the digital filter.
For a second-order filter the difference equation is given by

ck)=Kie(®)+ K 3 etk -1) @)

i=1

where e(k) is the sampled input at instant k, and K| and K, are the
filter parameters.

In order to simulate this system with an input of onc (or more) sinu-
soids plus white noise using a programmable calculator (T1-58), we have
to define also the time elapsed:

t=t(0)+ ) T() 3)
j=0

where T(j) are the delay sampling periods and #(0) is the initial time.
The program first finds the input value at instant T(0) for a sinusoid

of amplitude one and frequency w), plus a second sinusoid of ampli-

tude 0.5 and frequency wj, plus a noise value with deviation o. Then it
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