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Variable structure control of non-linear systems

HEBERTT SIRA-RAMIREZ?

This article presents a differential geometric approach for the design of variable
structure controllers (VSC) leading to sliding regimes (Emelyanov 1967) in non-
linear smooth dynamical systems described in R". New properties, inherited from the
geometry of the sliding manifold, are obtained in the controlled system when sliding
conditions prevail. A sliding motion is obtained thanks to opportune switchings
among the available structures in the feedback loop. This discontinuous control
action is aimed at guaranteeing manifold reachability and invariance.

1. Introduction

More than fifteen years ago the control community witnessed the birth of a
sustained interest in the applications of differential geometry concepts to the
formulation and solution of a variety of long-standing non-linear control problems.
Works by Brockett (1976), Sussman and Jurdjevic (1972), Hermann and Krener
(1970), and Isidori et al. (1981), are responsible for a wealth of theoretical and
practical implications that have nutured the understanding of control theorists about
the delicate issues associated with the design of non-linear control systems. The
amount of available research and results is impossible to survey in an article of this
length. The reader is referred to the excellent surveys by Andreev (1982), Isidori (1982)
and a recent book by Isidori (1985), for more detailed information.

The theory of variable structure systems (VSS) and their associated sliding mode
behaviour (Emelyanov 1967) has also undergone extensive and detailed studies in the
last twenty five years. Scientists from the Soviet Union and, more recently, the United
States have contributed with a wide embracing range of applications that ranges from
aerospace design problems (Utkin 1968) to gas turbine control (Young et al. 1982),
robot manipulators (Slotine and Sastry 1983) and hydropower generation (Ershler et
al. 1974). Survey articles (Utkin 1977, 1983), and several books (Itkis 1976, Utkin
1978, 1981), contain lucid expositions on the state of the art and the potentials for the
future of this simple and yet powerful design methodology.

A surface or manifold in the state space represents static relationships among the
different state variables describing the behaviour of the system. If these relations are
enforced on the dynamic description of the system, the resulting reduced-order
dynamics may contain highly desirable features. The idea is then to specify a feedback
control action, of variable-structure nature, which guarantees the reachability of the
prescribed surface and, once the surface conditions are met, proceeds to maintain the
systems motions constrained to this surface. The task is usually accomplished by
opportune drastic changes in the structure of the feedback controller which induce
velocity vector fields invariably directed towards the ‘sliding surface’ in its im-
mediately vicinity.
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In the linear systems case, the surface is generally a hyperplane designed to bring
about asymptotic stability of the controlled dynamics. The non-linear system context
is probably richer in so far as invariance of the sliding manifold is by itself a design
task.

In this article we examine the problem of desigining VSC leading to sliding
regimes in non-linear stationary smooth plants. A differential geometric approach is
presented for the formation and characterization of the equivalent control and the
ideal sliding dynamics representing the invariant motions of the system on the sliding
manifold. We propose local necessary and sufficient conditions for the surface
reachability problem in terms of sign conditions on the directional derivatives of the
surface coordinate with respect to the resulting vector field of the controlled system.
The relation of these conditions to the geometry of the surface and to the equivalent
control are both transparent and appealing from this viewpoint.

In § 2, we formulate and solve the problem of designing a sliding regime on a
smooth manifold which represents a desirable behaviour condition for the reduced-
order system. In this section the interpretation of the equivalent control and
conditions for the ideal sliding regime are obtained through a regularization
procedure of the system equations.

Section 3 is devoted to some illustrative examples of a simple but important
nature. The last section contains conclusions and some suggestions for further
research in the area of non-linear variable structure controller (VSC) design.

2. Problem formulation and main results
2.1. Notation, definitions and main assumptions
Consider the non-linear dynamic system:

@ B+ et (o) = %o @1
where x is a local coordinate system on a smooth n-dimensional manifold M which we
usually take as an open set in R". The vectors f and g are local representations of
smooth vector fields in M.

In our assertions, a property will be termed ‘local’ whenever its validity is
circumscribed in an open neighbourhood N of x,,.

We assume that, locally, g(x) is a non-zero vector whose span, denoted by Ag(x),
defines a smooth one-dimensional distribution on T, M.

The control function u: M — R is a real valued discontinuous function of the form:

{—u*(x) for s(x) >0
u(x) =

(2.2)
—u~(x) fors(x)<0

where s: M — R is a smooth function for which the set S = {x € M :s(x) = 0} defines a
smooth n — 1 dimensional manifold (hypersurface or submanifold) in M. S is called
the ‘sliding manifold’.

The distribution represented by T.S is, locally, a smooth n—1 dimensional
distribution of 7, M and coincides with Ker ds. We denote this distribution as Ag(x)
and refer to it as the ‘sliding distribution’.

We assume that among the control input field g(x) and the vector normal to the
sliding surface, 0s/dx, the following transversality condition holds true locally:

F
2 o(x) #0
0x
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If this condition is satisfied, the input function enjoys a definite influence on the
dynamic values of the coordinate surface s.

Proposition 1

8
E)S;g(x)¢0 if and only if A(x)NA&(x) =0

Proof

To avoid the trivial case, the vectors above are assumed to be non-zero. Let
(0s/0x)g(x) =0, then 0s/0x e span Ai(x) and since Js/dx € span Aj(x) then both
distributions have a non-zero intersection. On the other hand, suppose the condition
holds: then span {Ag(x) + Ag(x)} is rank n. Since the dimensions of both distributions
add to n, it follows that their orthogonal complements are linearly independent. [0

The specification of a smooth feedback control function which makes § into an
invariant manifold is known as the ‘equivalent control problem’ (Utkin 1977). The
equivalent control function describes the motion of £ on the manifold S in an average
sense. This motion is known as the ‘ideal sliding dynamics’. The conditions for sliding
manifold invariance are seen to be:

5=0; Ly, ps=0

Proposition 2

The equivalent control exists and it is unique if and only if the transversality
condition is satisfied.

Proof
The proof is seen immediately from the fact that:

ds 0s Js
P &'f(x) + é}g(x)u

and the fact that the invariance of S demands for satisfaction the conditions:

ds
s=0; Lf“’“s:E:O O
When the feedback control action (2.2) is capable of driving and maintaining the
state of the system on the manifold S, we say that a ‘sliding regime’ is created by the

VSC.

2.2. Problem formulation

It is desired to specify a smooth n — 1 dimensional sliding manifold S and a VSC of
the form (2.2) so that the integral curves of X (locally) approach S and remain
constrained to this surface thanks to the active switchings of the feedback controller.
The average invariant motions in S are deemed desirable in the following optional
senses.

(1) An asymptotically stable motion is obtained on the manifold which converges
towards a pre-specified equilibrium point located in S.

(2) A sustained oscillatory motion of the desirable characteristics is obtained as a
result of satisfying the manifold conditions.



1676 H. Sira-Ramirez

Notice that the motions on § are totally determined by the geometry of the
manifold. Therefore, new features which are not present in any of the closed-loop
available structures may emerge in the controlled system as characteristics borrowed
from the shape and nature of the sliding surface.

We shall start our developments by assuming that a sliding manifold S has been
given which reflects one of the above stated idealized desirable behaviours for the
reduced-order system. It will become clear at some point that the ideal sliding
dynamics is the outcome of a feedback control design problem on the reduced system.
The feedback control function will be interpreted as a static relationship among the
original full system state variables which in turn explicitly defines the required sliding
manifold. However, these issues become transparent only if the system is placed in
regular form.

Definition 1
We define X to be in regular form (Luk’yanov and Utkin 1981), whenever a local
coordinate system exists in which (2.1) can be expressed as:

d
_d;xl =f1(x1’ xn)
(2.3)

d
Exn = f;l(xl’ xn) + gn(xls x,,)u

with x, an n — 1 dimensional vector containing all but the last coordinate function of
the vector x, while x,, is the last scalar coordinate function component of x.

A system of the form (2.1) can always be written in regular form after a suitable
diffeomorphic state coordinate transformation, or, equivalently, after a coordinate
adaptation procedure (Isidori 1985). This is true from the fact that the one-
dimensional distribution Ag(x) is always involutive. Our assumption about its
nonzero character, in a local sense, guarantees the constancy of its one-dimensional
span. The Frobenius theorem (Isidori 1985) establishes, under these assumptions,
complete integrability of Ag(x). From here it is easy to see that regularity follows
simply from the definition of integrability.

Notice that from the constant dimensionality assumption on Ag(x) it follows that
gn(%y,x,)#0in N.

We assume the n— 1 dimensional manifold S in M can be expressed as

S={xeM:s=x,+m(x,)=0} 2.9)

In the above class of sliding manifolds, the transversality condition of Proposition
1 is trivially equivalent to the non-vanishing of the input vector field component

gn(xl ’ X,,).

2.3. Ideal sliding dynamics and the equivalent control

In order to be able to relate the effects of the control input functions on the
reachability of S, as well as to be able to have an assessment of the ‘equivalent control’
and its associated ideal sliding dynamics, we replace the x, coordinate function by the
‘surface’ coordinate function s and let x, = s — m(x,). We then obtain:
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d
EEXI =f1(x1,s)
; (2.9)
ZS '—“j:l(xl ’ S) + gn(xl ’ s)u
where
Fr(xy,8) = f1(x,, s — m(x,)) )
) d
Fu060s9) = £, 5= m(x,)) + 2=y (x5 m(x,))
5 ! . (2.6)
= fuk1 s = mlx)) + 27 (X1, 5= mixy))
1
g,,(xl,s)-—-g,,(xl,s—m(xl)) J
We let:

] o

Geometrically, this new change of coordinates amounts to considering Ag(x) and
Ag(x) as projection subspaces of the tangent space T, M. Thus, the velocity vector field
defining s is the sum of the projections of the involved vector fields onto A;(x) along
Ag(x). On the other hand, f,(x,,s—m(x,)) is the projection on Ag(x) of the
component f,(x,, x,) of the drift field along Ag(x) (Fig. 1 illustrates the geometry of
this decomposition).

Gl X, Ju=Gylxy,5-mix Ju

a/dx,

s=constant
s=x, +m(xy)=constant

Figure 1. Geometry of ideal sliding motion.
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Clearly, the sliding manifold S will be locally invariant if and only if the following
conditions are satisfied:

(1) s=0 >
(2) Ly, p5=0 il

Ideal sliding motion corresponds to having null components of the directional
derivative of the surface coordinate s with respect to the velocity vector field defining
the integral curves of the system. The integral curves are therefore locally constrained
to the sliding manifold. The equivalent control role is to annihilate the components of
f along directions not corresponding with Ag(x), ie.

ds, f — gugo> =0
from where

s>
%7 s,

where use has been made of the negative-feedback convention adopted in (2.2) by
letting u = —ugqp(x,) in (2.7). Using (2.6) and the fact that

om

0s
{ds, hy = ah = x,

for any h, we obtain

0
[fn(xl, = m(x,)) + 3 A0, —m(xl))]

Ugg(X;) = -

£a(%;, —mx,) 29

The existence and uniqueness of the equivalent control is a crucial factor in the
determination of the necessary gains to achieve a sliding motion. The case where the
input vector field component g,(x,, —m(x,)) = 0 is known as a ‘singular case’. Under
this condition, the sliding motions can be lost by excursions of the velocity vector
fields along directions transverse to the sliding distribution. In some special cases,
however, a sliding regime may still exist, i.e. when the drift vector field happens to be
contained by the sliding distribution in the singularity region or at the isolated
singular point (see Sira-Ramirez 1986 and Example 2).

Condition (2) of (2.7) is also seen to be equivalent to:

f+gueKerds=Ag (2.9)

The ideal sliding dynamics and the equivalent control are then completely
specified by requiring that, locally, the velocity vector field defining the integral curves
of the system belong to the tangent subspace of the sliding manifold in M.

The reduced-order ideal sliding dynamics is governed by

2 xi=ax1, 0= fy(x,, —mi(x,)) (210

which may be viewed as

d
Ex1=f1(x1’v); v=—m(x,) (2.11)
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Since, according to (2.4), the function m(x,) completely defines the sliding manifold §,
it is seen that the sliding manifold specification problem for a required ideal sliding
motion is equivalent to the specification of an appropriate smooth feedback control
~law of the form v = —m(x,) on the reduced-order equations (2.1 1).

Several approaches have been proposed in the literature of variable structure
systems in connection with the problem of specification of a desirable sliding surface
where the sliding motions are to take place. Among these, the most important are:
optimal control, parametric optimization, and pole placement in the linear case (see
Utkin and Young 1978, for details on the available techniques in the linear system
case).

In the non-linear system case, several options are available as design objectives. If
stabilization of the system is the main objective, then a Lyapunov approach may be
adopted. In this case, a positive function V(x,) is to be proposed such that

% V(x,) = g;(VTfl(xl, v) <0 for some v= —m(x,)
the literature on this topic is extensive and well known.

A second possibility is to obtain an invariance property of the sliding manifold
without necessarily imposing an asymptotically stable behaviour on the system. In
particular, a robust stable limit cycle may be highly desirable in some cases. The
variable-structure approach allows for this possibility, as the examples in § 3 show. In
the stabilization case, the ideal asymptotically-stable dynamics define the sliding
manifold; in the limit-cycle case, the sliding surface specification (circle, sphere, etc.)
determines the corresponding dynamics.

2.4. Local reachability conditions

Once the ideal sliding dynamics and the existence of the equivalent control have
been established, the design process is usually turned into the issue of specifying the
VSC gains that guarantee sliding manifold reachability. Locally, this task is accom-
plished if and only if the resulting velocity vector field of the controlled system is made
to point towards the manifold in its immediate vicinity. In other words, the directional
derivative of the scalar function representing the surface with respect to the velocity
vector field f + gu must have different signs on each side of the surface. In the limit,
these conditions must hold and we have the following proposition.

Proposition 4
The necessary and sufficient condition for a sliding regime to exist is that
lim Ly, ;s<0 and lim Ly, ,s>0 (2.12)
s—0t s=0-
The proof of this fact is obvious from the geometric considerations already furnished
above.

The meaning of the above conditions is geometrically clear, i.e. if the trajectories
approach S from negative values of s the control function has to produce a positive
rate of approach to the surface in order to hit it. If, on the contrary, the trajectories
approach S by positive values of s, the control function should make s decrease and
therefore produce a negative rate of growth to s. If these two conditions are locally
enforced, the sliding manifold is reached from any point in its immediate vicinity.



1680 H. Sira-Ramirez

Notice that

Os .
Ly s = 5= fi(%0, 8) + fu(x1, 9) + £al%s, )
1

=ngﬁxvs—mﬁdrhﬁﬂus—muoy+&uhs—mugw
Using conditions (2.12) we immediately obtain
g:'fl("v (X)) + fy(Xs, — (X)) — g%y, —m(X )" (,) <O
o
§;”1-f1<x1, —m(x,) + %y, —m(x,))

ga(Xy, —m(x;))

Similarly, from the second condition of (2.12):

u®(x;) > = ugq(X,) (2.13)

0
%fl(xl, —m(X0) + fo(Xy, —m(X,)) — gu(Xy, —m(Xy))u" (X,) >0

ie.

d
a—nlfl(xl, —m(x,)) + f,(%q, —m(x,))

Xy

u (x,)< = Ugq(X,) (2.14)

gn(Xy, —m(x,))

The variable structure feedback gains are responsible for the transversality
condition that makes the trajectory reach the surface. The stipulation is highly
dependent upon the value of the equivalent control and takes its value as a reference
level in order to produce a convenient ‘tilting’ of the ideal sliding vector field produced
by ugq such that surface reachability is guaranteed from any ‘side’ of the sliding
manifold.

3. Examples
Example 1. Sliding motions on a circle
Consider the system in R?:
Xp= =X —x;(x{+x3—u); X, =x, —x;(x}+x3—u)

For u=r?=constant, the system exhibits an asymptotically stable limit cycle
represented by a circle of radius r centred at the origin of coordinates. We show that a
VSC makes this limit cycle reachable in a finite time.

The vector fields f(x), g(x) and the distribution Ag(x) are given by

d
S (o1 x3) = (=% = xy (e + x5 - + (5 = xa o+ 33) 5 -
Xy X2
d 0 0
g= "‘a—){; + X, ) Ag(x) = span {xl x, + x5 }

A transformation to regular form is accomplished by describing the system in
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polar coordinates: p = (x3 + x2)'/2; 8 = tan™*(x,/x, ). Then

d d 2
2?9—1 and Zp——p(p — u)

" describe the system. The transformed vector fields are now

R
f=ggtP 5 &= —r5;

Let s = p — r be the surface coordinate equation with r > 0. A sliding surface candidate
is obtained when s=0, represented in this case by a circle of radius r. Then,
Ag =span {0/00}. The transversality condition is clearly satisfied.
In terms of ‘sliding and surface coordinates’ we have
4oy =9

0=1=
dt r

d
it —(s+nl(s+7r*—u]

The ideal sliding conditions require that s = 0 and 8/80 — r[r* — u] 8/dp € span {8/06}
which is only possible if r* —u =0, i.e. ugq =r?, and the ideal sliding dynamics take
place on p =r. It follows from the reachability conditions that the controller

{oz>r2 fors<0
U=

B<r? fors>0

achieves sliding motions on s=0. In the original coordinates, the control law is
exactly the same except that the value of s above must be substituted by (x2 +
x3 — r)*/2, which is not in the standard form we adopted in (2.4). Since the trajectories
reach the sliding manifold transversally, the limit cycle is substituted by a sliding
circle, which is reachable in a finite time (see Figs. 2(a), (b) and (c)).

Example 2: Harmonic Van der Pol Oscillator
Consider the structure-controlled Van der Pol equation

%1 =Xy X3 =2Lwo(1 — puxi)x,u— wfx,

When u = + 1, a stable limit cycle (unstable origin) exists surrounding the origin of

coordinates. With u= — 1, an unstable limit cycle (stable origin) is obtained. This
limit cycle is the mirror image on the x, axis of the preceding limit cycle (see Figs. 3
and 4).

In this case we have:
0

2
f=x2“ Bl 49 xl—‘
x4 " ax,

0
g=2we(1— fo)xza—xz

The distribution Ag(x) is given by the span {(1 — ux?})x,(8/0x,)}. We take as the
sliding surface a circle of radius r in the normalized coordinates (x,, x, ) {an ellipse
in the unnormalized coordinates (x,, x,)). The tangent space to the sliding manifold,
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()

Figure 2. Finite time reachability of limit cycle via variable structure control.

Figure 3. Van der Pol’s stable limit cycle. Figure 4. Van der Pol’s unstable limit cycle.
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or sliding distribution, is Ag(x) = span {x,(6/6x,) — wx,(8/0x,)}. Since in this case
Jfe Ag(x), the equivalent control must anihilate the components of the input field
along Ag(x). It follows immediately that ugq = 0. The ideal sliding is governed by

d
i we(r? —x3)Y?* for x,>0
d
it —wo(r* —x3)'?* for x,<0
whose solution is x; = r cos (wyt), which, joined to x, = —rw, sin (wyt), renders the

equation of a circle of radius r in the normalized coordinates. Note that although
g(x) =0 on x, =0, the sliding condition is not violated at this point thanks to the fact
that f(x) is a tangent to the circle at these points. The variable structure gains which
locally guarantee reachability are given by the conditions:

lim L, ,,s=2lwe(l —puxi)x,u* <0

s—0*

lim L, ,,s=2lwe(1— px})x,u” >0

s—0-
The above conditions imply that the switching logic is simply: u = — 1 for s > 0, and
u= +1 for s <0. It is also clear from above that the sign of the term (1 — ux?) must
remain unchanged for the reachability conditions to hold true. This in turn implies
that the sliding circle must satisfy the constraint: |x,| < 1/\/_ , L.e. the radius of the
sliding circle is constrained to r < l/ﬁ.

Figure 5 shows that a sinusoidal response is obtained by switching among two

Van der Pol systems. The sliding motion is robust inside the region covered by the
‘reverse time’ Van der Pol oscillator limit cycle.

Figure 5. Sliding harmonic motions for a VSC controlled Van der Pol oscillator.

Example 3. sliding modes on the torus
Consider the system of equations

dxl dx2 dx dx
5 2 3 5 4 2
u— —3 x 5 —— w x 5 — ux 5 — uw x
dt 2 dt 1 dt 4 dt 273

in R* With u=constant, this system evolves on the direct product manifold
represented by two two-dimensional circles in R*. The motion is thus representable as
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confined to a torus in R3, This surface in turn can be diffeomorphically represented in
the plane R? by specifying two angular coordinates 8, (longitude) and 6, (latitude)
modulo 2x. If additionally, a ‘pasting’ of points in the square: 0 < 6, < 21;0< 8, <2z
is exercised by identifying the points (8,, 0) and (8,, 2m) as well as the pair of points
(0, 8,) and (27, 8,), the motions can then be analysed on this ‘mapping’ of the torus.
The differential equations involved are now simply

;ld—tel =wy; %62 = uw,
where 0, is the angle measured from x, towards x, in the plane x,, x, and similarly 6,
is measured from x, towards x; in the plane x;, x,. When u = + 1 we have ‘inwards
forward winding’ and with u = — 1 we obtain ‘outwards forward winding’ of the torus
surface in R3. Also, w,/w, > 1 provides us with ‘fast winding’ while w,/w, <1
represents ‘slow winding’. Let us assume the former case in our example.

In this case f=w,(3/00,), g=w,(/08,); A,=span {6/06,}. Let s=0,. The
condition s =0 describes the zero-latitude greater circle of the torus. The tangent
space to this submanifold is Ag = span {6/06}, then, 8, = w,; § = uw,. The ideal sliding
requires w, (6/00,) + uw,(0/00,) € span {0/00, }, i.e. uw, = 0; ugg = 0. Thus the VSC:

+1 for6,<0
-1 for 6,>0

produces a sliding motion on 8, =0, as desired (see Fig. 6(a)).

0/082

‘—’a/ael

4/386>

Ad

2 T
"Nuz-

o 2r
(b) Sliding motion along a winding line of the torus.

|

Figure 6. Sliding motions on the torus.
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A sliding motion can also be created around a closed or otherwise dense winding
line of the torus. In this case 6, =K, for 0 <K <1 (deceleration of winding
frequency). Then, s=0, — K6, and 8, = w,; §= — Kw, + uw,,

0 0 0
A = —_— _ = —_—
s = span {691 + K@BZ} and A, =span {602}

The ideal sliding conditions require f + gu € Ag. The ideal sliding takes place under
the condition:

0 0 0 0 0
wy ('591' + Ké@2> +(—KW1 + qu)arez'E span {8—9-1‘ + Kazeg}

It follows that w,u = Kw,; then ugq = K(w, /w,) < 1, thus obtaining a deceleration of
the winding motion, which is now described by: 8, = w,; 8, = Kw,. Reachability is
then accomplished by the VSC:

+1 for6,—-K@#, <0
u=
—1 forf,—K8,>0

The sliding motion for this part of the example is shown in Fig. 6(b).
The following proposition is an easy consequence of well-known results about
differential equations describing winding lines of the torus (see Arnold 1985).

Proposition 3

If K is a rational number, then the sliding motion occurs in a closed winding line
(i.e. open subsets of the torus are not reachable). Otherwise, the sliding submanifold is
dense in the torus and, ideally, every point of the torus is made reachable through the
proposed VSC.

Example 4: sliding motions on the sphere
Consider the system of differential equations:

dy 1[E-un=9) d _1[2+n+ui)
&°T2 1442 0 A2 14847

representing the equatorial stereographic description of a dynamic system evolving on
the sphere. With u = — 1, the north pole of the sphere is a saddle point for the unstable
trajectories that emerge and die at the south pole (see Fig. 7). For u= + 1, the south
pole of the sphere is a stable equilibrium point of the spiral trajectories arising from
the unstable north pole. This is illustrated in Fig. 8.

It is easy to show that there exists a meridian line (obtained as the intersection of
the sphere with a plane containing both poles) on which an asymptotically stable
sliding motion can be created. This motion leads all trajectories to the north pole,
which now acts as a global attractor (see Fig. 9). In stereographic coordinates, this
meridian line is represented as S = {(&, ) :s =1+ K& =0; 1 < K < oo}. In this case we
have
ds  1[s+2{+u(s—2Ks+2K?*¢] 1 M(142M)s —2M*n + u(Ms — 2n)

dt 2 1484 G6-KO 2 oM[l4ni+Mi(s—n?]
where MK = 1.




1686 H. Sira-Ramirez

u=-1

?? \
)

Figure 7. Trajectories on the sphere for u= —1.

\—/

Figure 8. Trajectories on the sphere for u= +1.

u=sign(sm)

Figure 9. Sliding motions along a meridian line on the sphere.
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From above, it follows that the equivalent control is simply

1
UeQ =~ E7

- and the equivalent dynamics is given by either
d E= 1 [K2:2K_,1] £
dt” 21+(1+K?)&
or
d 1 [K2-2K—-1]
_"=—_=7277 7272"7
dt 2K*+(1+K?*)
which, in either case, represents an asymptotically stable system for any value of

K e(—041, 2-4142), i.e. our design may use any value of K (1, 24142).
The swtiching logic is synthesized as

+1 forsn>0
u=
-1 forsp<0
Above, we obtained the sliding regime in a rather direct fashion. We may however
proceed to state the analytic aspects of this problem, following the developments of
the paper. These are summarized below.

We propose a state coordinate transformation of the form z, = T (¢, n);
z, = T,(&, ). The system is in regular form whenever

o1, oT,

hiad O 1,0

o (E=2m+ - n "

The solution to this partial differential equation is given by
zy =n” exp (&/n)

If we further let
zy =2 exp (&/n)

The inverse transformation is easily seen to be

E=z2exp [—$(22/2)'2); n=/z; exp [~ 3(z/2,) "]
The differential equation for z, and z, is then obtained as
d =25t Azz) P ep[—(2/2)"]

a7 T T 1 (2 4 2) exp [~ (21/22) ]
d Z2 23 (212"
a7 T Tz + o) exp[ —(z'z/zl)‘“](l - Z) T TH 0 ¥ 2) exp [ (zafz) 2T
The sliding meridian, in the new coordinates, is represented by the equation

S

K

The system has now been reduced to regular form, and one may proceed as in the
previous examples.
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4. Conclusions and suggestions for further research

In this article, we have explored the possibilities of addressing the problem of
inducing sliding regimes in non-linear systems governed by variable structure
feedback controllers using notions from differential geometry. It was shown that all
the notions and concepts dealt with in the design of variable structure controllers can
naturally be placed in terms of differential geometric objects. As a result, the design
issue is provided with the advantages of an intuitive understanding of the main steps
by which sliding regimes are created in variable structure systems. The approach is
general enough to be directly applied to the case of non-linear smooth systems that
are linear in the control and evolve naturally on differentiable manifolds embedded in
R".

The interpretation, in geometric terms, of the key ingredients to be considered in
the design problem, namely specification of the sliding submanifold in terms of
desirable invariant behaviour, the notion of equivalent control and finally, the local
reachability conditions for the existence of a sliding regime, result in a convenient,
simple and sufficiently general methodology for the attack of this class of problem.
The equivalent control is seen to play an essential role in the specification of the
variable structure feedback gains. This idealized feedback control provides a reference
level on which to assess the necessary feedback variable structure gains level leading
to a control action that achieves sliding manifold reachability.

Sliding motions in non-linear systems possess a much richer variety of possibilities
for inducing desirable motions than their linear counterparts do. For instance, in non-
linear systems, asymptotic stability of the controlled system is just one of the options:
limit cycles of a preassigned nature, usually impossible in linear structures, may be
highly desirable in certain applications (biped locomotion being a typical example).
One of the advantages of using the VSS approach in non-linear plants is also the
possibility of obtaining a speeding up of the time response towards a limit cycle
without destroying the nature of the sustained oscillatory response. In general, radical
new properties of the controlled system can be obtained which are absent from any of
the intervening structures.

A number of interesting applications may come out as a result of using VSS theory
on non-linear dynamic systems. Aerospace applications of control theory usually deal
with systems naturally described on differentiable manifolds (tumbling satellites, etc).
The VSS approach has been of interest for the stabilization of linearized power
systems plants. The possibility of working directly on the non-linear descriptions and
inducing stabilizing non-linear sliding regimes is totally open for research and
contributions.

Finally, the design of asymptotic observers for non-linear systems with variable
structure gains deserves attention, specifically in connection with the surface co-
ordinate estimation. This problem is of paramount importance in the design of the
logic portion of the VSC regulator.
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