Harmonic Response of Variable-Structure-Controlled
Van der Pol Oscillators

HEBERTT SIRA-RAMIREZ.

Abstract — A variable-structure-controlled (VSC) Van der Pol oscillator
is shown to produce an ideal average response of perfect harmonic nature
when its motions are made to slide on a circle defined in the interior of its
limit cycle. The sinusoidal responses are robust with respect to parameter
perturbations and external disturbances.

I. INTRODUCTION

The variable-structure control of dynamic systems undergoing
sliding motions on nonlinear manifolds offers a richer variety of
design alternatives than those possible with linear hyperplanes.
These possibilities are based on the fact that a larger class of
static relationships can be synthesized, among, the state variables,
when nonlinear surface values are used in the switching logic
controlling the system. The dynamic behavior of the controlled
system is totally determined by the nature of the nonlinear
surface, making the controlled system robust with respect to
external disturbances and parameter perturbations.

Sliding surface reachability and invariance are essential in-
gredients of the sliding motion design for variable-structure sys-
tems (VSS’s). These tasks are accomplished by opportune switch-
ings among feedback laws, which guarantee state trajectories
invariably directed towards the sliding surface. In the sliding
regime, one of the outstanding characteristics of the controlled
motion is that radically new properties are obtained compared
with those of the individual structures responsible for its creation.

The reader is referred to several books (Utkin [1], Utkin [2],
Itkis [3]) and survey articles (Utkin [4], Utkin [5]) for a complete
account of the theory and its many practical applications.

Using the theory of variable-structure control [1], the possibil-
ity of creating harmonic limit cycles in controlled Van der Pol
oscillators is explored. An ideally sinusoidal response is obtained
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whose amplitude can be varied at will within a certain robustness
range where the oscillations are immune to the effects of parame-
ter variations and external perturbations. From two feedback
structures yielding nonsinusoidal oscillatory responses, a nearly
perfect harmonic behavior is obtained (modulo small chattering
dependent upon the switchings velocity).

Undoubtedly, there are simpler ways of creating sinusoidal
oscillators. However, the point stressed in this article is the
possibility of building a nearly perfect, robust, sinusoidal oscilla-
tor out of a Van der Pol system which naturally exhibits a
nonsinusoidal periodic response in its limit cycle.

II.  VSC VAN DER POL OSCILLATORS

A Van der Pol oscillator represents a simple class of variable
damped systems. In the region of negative damping, generally
occurring when the signalg are small, the damping increases the
energy level of the: response, thus steadily increasing its ampli-
tude. Conversely, as the signals’ amplitudes grow larger, the
damping becomes positive, thus decreasing the energy of the
output signal. As a consequence of this, the motion reaches a
stable, or globally attractive, limit cycle.

In the past, a good deal of attention was devoted to shaping
the response of this oscillator so as to obtain a quasi-sinusoidal
response. ‘The proposed schemes were complex and, in many
instances, without the benefits of robustness and fast switchings
made possible by modern solid-state electronics.

When the time variable ¢ is replaced by — ¢ in the differential
equations describing the Van der Pol oscillator, the “reverse time
Van der Po! oscillator” is obtained. This system exhibits a
globally repulsive limit cycle.

Consider the controlled Van der Pol oscillator represented by
the system of differential equations
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For u=+1, this system is known to possess an unstable origin
and a stable limit cycle bounding a circle of radius r =1 /ﬁ (sec
Fig. 1). A reversal of the state trajectories direction, followed by a
180° rotation of the R? plane, yields the limit cycle correspond-
ing to u = —1. The effect of this control on the state equations is
equivalent to still having u = +1 and replacing ¢ by — ¢ and x,
by —x, in (1). A stable origin and unstable limit cycle are
obtained for this value of the input (see Fig. 2).
Consider the switching “surface” (line)
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which represents a circle of radius r in the normalized coordi-
nates (x,, x, /w).

Define 3 /dx, and 8/9x, as the unit vectors in the directions
of the global coordinates x;, x,, respectively. These vectors span
the tangent space of R? at each point and constitute a coordinate
frame. Also, let f and g represent the vector fields defining the
integral curves of the Van der Pol oscillator written in control
affine form: % = f + gu:
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Fig. 1. Van der Pol’s stable limit cycle.

Fig. 2. Van der Pol's unstable limit cycle.

In this notation, the distribution, or tangent subspace, to the
circle S is characterized by

E , 0
A, = span xza—xl—w xlg;z— )]

while a normal (gradient or differential) to the switching surface
is given by

d a
- wlt,— + x;=— .
N=wlx, 3%, X3 o, (5)

Under ideal sliding, the following invariance conditions are
satisfied:

1) s=0
2) %=0 ()]

i.e., in an average sense, the system trajectories satisfy the equa-
tion of the circle § and they do not abandon S after reaching it.
The average, ideal value of the smooth fecdback control that
maintains the state confined to the switching surface § is known
as the equivalent control [1], denoted here by ug,.

Condition 2 in (6) is clearly seen to be equivalent to

B s 0 ™
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where ds denotes the gradient of the surface. This vector, clearly,
coincides with N. The kernel of the gradient is the tangent
subspace to S. Equation (7) leads then to

/+ gugy € Kerds. 8

In other words, under ideal sliding conditions, the controlled
vector field f + gu £0 is to belong to the subspace tangent to t'he
surface (also known as the sliding distribution [6]). The equiv-
alent control is then secn to annihilate all components of the
controlled vector field which do not belong to this tangent
subspace.

From (3) and (4), it follows that the drift vector field f is in
the span of the tangent subspace to S and therefore (N, f) = 0.
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By condition (8), the equivalent control must set the components
of g to zero. We then have

®

Substitution of the equivalent control in the original systexh

equations (1) results in the ideal sliding dynamics, governed by
dx,
dr
dx,
o wix, (10)

which are the equations of a harmonic oscillator producing

perfect sinusoidal responses.

The variable-structure controller is specified as

w= {4 1
(¥ ()

This controller is to locally drive the state trajectories towards the
surface S. Once the surface is reached, the variable-structure
controller must sustain a sliding motion on the manifold by
means of active, persisting switchings, based on the surface
coordinate sign, among the limit values (or structures) of the
feedback control law.

Necessary and sufficient conditions for local existence of slid-
ing motions on the surface S demand that the resulting con-
trolled vector fields of (1) and (11) point towards S in its
immediate vicinity. For this, the following sign conditions have to+
be satisfied by the projections of the controlled fields onto the
vector N, normal to the surface:

lim (N.f+gu')<0; lm (N,f+gu")>0. (12)
f End 5=

ugo=0.

=X,

fors>0
for s < 0.

Since (N, f) =0, it follows from (12), (3), and (5) that
2w(1-px})xiut <0
2¢w(1-px})x3u=>0. (13)

Notice that inside the band x? <1/, the factor (1 —px}?) is
always positive for any value of s. The variable-structure con-
troller u* = —1; u~ = +1 guarantees the existence of the sliding
motion in the region determined by the intersection of this band
and the area covered by the interior of the “reverse time, rotated”
limit cycle of Fig. 2. Outside this limit cycle, reachability of the
sliding circle cannot be guaranteed. The magnitude restriction on
the radius r of the circle given by r <1/y/u, as specified in (2),
represents a measure of robustness for the sinusoidal response of
the system, and an upper bound for the achievable wave ampli-
tudes generated by the scheme.

It is also clear that on the limit points of the band, where
x, = 0, the sliding condition (13) cannot be guaranteed. However,
it is a fortunate fact that, precisely at these points, the drift vector
field f (tangent to the circle at each point) is the only acting field
defining the integral curve direction. The sliding motion exists
everywhere in the circle except at these two isolated points where
the trajectories happen to be tangent to it.

Notice that upon sliding surface synthesis by means of ap-
propriate hardware, the variable-structure scheme requires only
one bit of information in order to decide control switching,
namely, sliding surface sign (rather than its actual value). Main-
taining the state trajectories on the sliding surface requires only
an accurate sign detector and a fast relay.

Fig. 3 shows the phase trajectories of the variable-structure-
controlled system, while Fig. 4(a) and (b) depicts some typical
time responses. These graphs were obtained using w=1; p=1;
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Fig. 4. Time response of variable-structure-controlled Van der Pol oscillator.

¢ =0.5. The Matrix, package was used for the computer simula-
tions.
1II. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH -

The theory of variable-structure systems was used to generate
sinusoidal oscillations on a nonlinear system described by the
Van der Pol differential equations. Such response is obtained by
using a circle, in the phase space, as a sliding surface. Robust
sliding conditions are obtained almost everywhere on the sliding
circle. The use of nonlinear sliding surfaces offers a richer variety
of reduced order motions. For instance, limit cycles, which are
impossible to obtain using linear sliding surfaces, constitute just
one of the possibilities when using nonlinear switching manifolds.
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Some elementary notions of differential geometry were shown to
be intuitively useful in the determination of essential features
regarding the sliding-mode design process (see Sira-Ramirez [6]).

The variable-structure-control approach for control systems
design is gaining more and more popularity thanks to the wide
area of possible applications (power systems control, acrospace
design problems, robot and manipulator control, switch-mode
power conversion, etc.). The inherent robustness and simplicity
involved in its underlying “overshoot and correct” philosophy
make it an attractive control scheme demanding little on-line
information.

Coupled Van der Pol oscillators were recently used for coordi-
nated biped locomotion schemes in Katoh and Mori {7]). The
system describing this motion also enjoys sliding regimes on a
toruslike manifold in R*. This fact suggests the use of VSC for
the induction of robust, stable, biped locomotion.
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