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A Geometric Approach to the Feedback

Control of Switch Mode DC-to-DC
Power Supplies
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Abstract —Using the theory of variable structure systems, a geometric
approach is presented for the analysis and design of control schemes in
bitinear dc-to-dc switch-mode power supplies. A time scale separation
property, which naturally describes desirable transient behavior of the
power converter, is used to identify the slow manifold of the average
system in which a stable sliding mode trajectory can be locally sustained.

I. INTRODUCTION

HIS work is motivated by the need to explore nonlin-

ear design strategies for switch mode dc-to-dc power
supplies (SMPS), here also addressed as converters, in the
context of modern control theory. The design of regulation
schemes for SMPS has been traditionally based on the
pulsewidth modulation (PWM) technique [1]-[4]. This
technique is typically based on the use of small signal
models to which linear design strategies could be directly
applied [5]. Recently, the variable structure systems (VSS)
theory and its associated sliding regime behavior [6] has
been proposed as a design alternative for the feedback
regulation of these circuits {7]-[11].

The conceptual results in this paper are derived under
the assumption of infinitely fast switching frequency, and
form a basis for a design scheme in which no approxima-
tions are necessary while the nonlinear aspects of the
problem are fully dealt with and their intrinsic difficuities
are effectively circumvented. Moreover, future studies, of
more realistic nature, can benefit from the idealized results
for performance evaluation and the design guidelines pro-
posed here. It is important to remark, however, that the
method of the equivalent control, which is extensively
exploited here, and its associated ideal sliding mode de-
scription constitute well-founded results of VSS theory [6],
{12], while the necessary technology by which a realistic

'

Manuscript received ‘November 24, 1986; revised June 5, 1987 and
April 11, 1988. This work was supported in part by the National Science
Foundation under Grant ECS 83-52221, in part by the Joint Services
Electronic Program under Contract N00014-84-C-0149, and in part by
the Consejo de Investigaciones Cientificas, Humanisticas y Technoligicas
(CDCHT) of the Universidad de Los Andes, Merida, Venezuela, under
Research Grant I-280-87. This paper was recommended by Associate
Editor J. S. Thorp.

H. J. Sira-Ramirez is with the Departamento Sistemas de Control,
Universidad de Los Andes, Merida, Venezuela.

M. llic is with the Coordinated Sciences Laboratory, University of
Illinois, Urbana, IL 61801.

IEEE Log Number 8822601.

approximation to such idealized behavior can be effec-
tively accomplished, is rapidly becoming available. For
instance, modern controllable electronic switches have
reached switching frequencies of up to 1 MHz. -

It was shown rigorously in [11] that the average behavior
of the nonlinear PWM controlled systems is obtained from
the system model just by replacing the discrete control
input (switch position function) by a smooth analytic
function of the state, known as the duty ratio. The ideal
sliding dynamics of the VSS approach is similarly obtained
by replacing the discrete control input by a smooth func-
tion known as the equivalent control [6). Local integral
manifolds of the average PWM controlled system qualify
as local sliding surfaces on which the equivalent control
totally coincides with the duty ratio. The relationships
between both approaches and the use of sliding modes
result in a conceptually simpler, and more systematic,
technique for the analysis and design of feedback loops for

SMPS control (see also [20]). Moreover, this equivalence

has a definite bearing in the drastic .reduction of the
necessary hardware used in the PWM control option.
These advantages validate a purely VSS approach for the
design of feedback control strategies in dc-to-dc supplies.

Besides the conceptual and practical advantages of a
VSS approach over the PWM control alternative, we pro-
pose a design scheme for the converter itself which de-
mands component values resulting in a two-time scale
separation property of the average response. The ideal
sliding converter response exhibits then a slow manifold,
which is locally contained on an affine variety. This affine
variety locally qualifies as a stable sliding surface. The
transient behavior of the average sliding motion no longer -
exhibits undesirable oscillatory response while the sliding
regime design is considerably simplified. Moreover, a limit
cycle type of behavior observed and unexplained in exact
linearization design schemes [9] is avoided by clearly iden-
tifying the region of sliding mode existence associated with
the proposed manifold (a feature blurred by the non-global
nature of the exact linearization approach).

Section II deals with general results on sliding regimes
in bilinear systems while Section III is devoted to a de-
tailed analysis of the sliding regime problem in .three
popular dc-to-dc supplies: buck, boost, and buck-boost
converters [13]. The detailed developments correspond to
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the boost converter and a summary of basic elements and
the design of sliding regimes in the buck and buck-boost
converter are also presented. Section IV contains some
conclusions and suggestions for further research in this
area.

II. BACKGROUND AND GENERAL RESULTS
2.1. Sliding Regimes in Bilinear Systems
Consider a class of bilinear systems defined on R™as
. i=Ax+uBx (2.1)
with 4, Bn X n matrices with constant real coefficients.
The scalar control function u is assumed to take values on
the discrete set U= {0,1}.
The sliding mode control [6] of (2.1) assumes that the
_ discontinuous control law
u=0.5[1+sgns(x)], (2.2)
and induces a discontinuous (chattering) motion in the
state trajectories, known as sliding mode, constrained to
the immediate vicinity of the smooth manifold (switching
surface) specified by
§={x€R" s(x)=0). (2.3)
. Necessary and sufficient conditions for the existence of
a sliding motion on § [6] are satisfied whenever the
switching logic (2.2) and the controlled motion of (2.1) are
such that
: i ds 0 : ds )
m —<0; —>
s—+0 dt s —>m—-0 dt
i.e., the rate of change of the sliding manifold coordinate s
is such that the controlled motions invariably converge
towards s in its immediate vicinity. If such a property
takes place everywhere along S, the sliding motion is said
to be global, otherwise, it will be termed local. All our
results will be of local nature, i.e., assumed to be valid on
an open neighborhood of R” which has a nonempty inter-
section with S. :

(2.4)

The strict inequalities in (2.4) avoid singular sliding'

motions (extensively treated in [6]). The form of conditions
(2.4) imply that the vector fields corresponding to the
extreme control values 0, 1, i.e., Ax and (4 + B)x are not
tangential to § in the region of interest. The following
lemma is an immediate consequence of (2.4) and the
nonsingularity of the assumed sliding mode on S.
Lemma 1. If a local nonsingular sliding motion exists
on § then, necessarily,
as1”
[8x] Bx<0 (2.5)
locally on S. '
Proof: Obvious. O
The condition (2.5) represents a local transversality con-
dition [14] of the controlled vector field Bx with respect to
the manifold S. ‘
Remark: Notice that if a sliding regime existed locally
on § with the reversed . switching logic: u = 0.5
(1 —sign s(x)) then the transversality condition (2.5) would
adopt the opposite inequality sign. In this case a redefini-

.
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tion of S as {x€R™ s5/(x)=—s(x)=0)} would result
again in a switching logic of the form (2.2) and the new
transversality condition would exhibit the same inequality
sign as in (2.5). Therefore, there is no loss of generality in
assuming that the existing sliding mode on § is created by
the switching logic (2.2) with condition (2.5) satisfied.
The smooth control function for which (2.1) adopts S as
a local integral manifold is known as the equivalent control
[6] and it is denoted by ugo(x). The equivalent control is
then defined from the following manifold invariance con-
ditions:
as 1T
s=0; §= [3)(] (A+upy(x)B)x=0. (2.6)

It follows from (2.6) that the equivalent control is given

by
as 17
["é—x] Ax
a1t
[3}(] Bx
The response of the system to the equivalent control,
starting from an initial state located on the sliding region

of the manifold S, is addressed to as the ideal sliding
dynamics [15). Such a motion is governed by the nonlinear

system .

%= (A+ug(x)B)x, s(x)=0. (2.8)
~ The ideal sliding dynamics is thus obtained from (2.1)
just by replacing the discrete control input u by the
smooth feedback control function upq(x). Notice that
since (2.8) evolves on S, the condition s(x)=0 in (2.6)
.means that there is an interdependency among the state
variables of the ideal sliding system and therefore, one of
the equations in (2.8) is actually redundant.

Theorem 2. For a sliding motion to locally exist on S it
is necessary and sufficient that the corresponding equiv-
alent control satisfies

0 <upo(x) <1. (2.9

Proof: This result is a particular case of that found in
Utkin [6, p. 81] in which the extreme control values are
simply 0 and 1. m]

The region (or regions) R specified by conditions (2.9),
where, necessarily, the transversality condition (2.5) is
satisfied, determine the portion, or portions, of S where
local sliding motions occur. The expressions for such an
existence region are readily obtained from (2.7) and (2.9)
as

upq(x) =— 2.7)

R=R,NR NS (2.10)
with
. as T
Ro={xER": [Ex] Ax>0}
as "
R1={_xeR": [-a-x] (A+B)x<0}. (2.11)

It could be seen that R, N R, contains the region where
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(2.5) is satisfied, i.e., the region where the transversality
condition is valid. This condition is, incidentally, a neces-
sary condition for the existence of a sliding motion [20].
For the particular case in which S is given by an affine
variety of the form

S={xeR" s(x)=c"x+d=0} (2.12)

the region where a sliding motion locally exists is de-
termined from (2.11) by simply replacing the gradient
vector [ds/dx] by the column vector c.

- 1II. SLIDING MODE CONTROL OF SLOW MANIFOLDS
or DC-1o-DC SwitcH MODE POWER SUPPLIES

Circuits on which switchings are performed to achieve
electrical energy transfers among storage elements or, more
commonly, to achieve steady-state regulation of the output
variables constitute a special class of variable structure
feedback systems. The control action is represented by a
drastic change in the network topology as a result of the
operation of a switch (transistor, diode, etc.). The com-
manded state trajectory typically chatters towards a stable
equilibrium. The feedback portion of the controlled circuit
has been traditionally designed using pulse-width-modula-
tion control strategies [5], [13], and only recently, a vari-
able structure control approach has been explored (see
[7]1-[10]. In [11] an equivalence among the PWM control
approach and the VSS method has been rigorously estab-
lished for general nonlinear analytic systems using elemen-
tary differential geometric concepts. ‘ '

In this section, feedback control design of three popular
dc-to-dc switch mode power supplies is treated using the
.theory of variable structure systems and their associated
. sliding motions. The main departure from existing studies
lies in the use, as sliding manifolds, of affine varieties
containing the slow manifold of the ideal sliding dynamics
[16]. This idea has been used in a robotic controller design

in [17] and it was generalized in [18] as an advantageous .

VSS design scheme for several areas of nonlinear control
systems design. The slow manifolds are shown to be natu-
rally associated with desirable transient characteristics of
the converter response and arise from a time scale sep-
aration property among the relative value of, respectively,
the natural frequency and the time constant of the LC
“input” filter and RC “output” filter of the converter [13].

The proposed slow manifold constitutes a local integral
manifold for the ideal sliding dynamics obtained from the
-assumption of a constant equivalent control. This assump-
tion corresponds to the traditional design feature of main-
taining a constant duty ratio in PWM control options [11].
The region of existence of a sliding mode turns out to be
global only for the case of the buck converter, but just a
local one for the remaining cases.

3.1. Sliding Motions on Affine Varieties Containing the
Slow Manifold of the Boost Converter

Consider the boost converter shown in Fig. 1. Let the
state variables be defined as: x, = IVL, x, =v/C, and the
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. Fig. 1. Boost converter.

parameters b= E /YL, wy,=1/YLC and w;=1/RC. Then,
the following bilinear system models the dynamical behav-
ior of the circuit

X = —wpx, + uwpx, + b
(3.1)

where u represents the switch position function taking
values on the discrete set U= {0,1}.

The ideal sliding dynamics of (3.1) on a sliding surface
whose corresponding equivalent control turns out to be a
constant p is described by the linear dynamical system
obtained from (3.1) by replacing the discrete varible u by
the constant quantity u,

Xy = WXy — WX, = UWpX,

3= —(1-p)wyx,+b
(3.2)

The essential features of the transient and steady-state
behavior of the average response of (3.1) to a certain' VS
feedback scheme, which results in a constant equivalent
control, are totally specified by (3.2). In turn, the char-
acteristic equation of (3.2), given by

%= (1= p)wox, — wyx,.

Prwp+(1—p)wi=0

(3.3)

specifies, by means of the damping coefficient d =
wy/[2(1— p)wy], the nature of the transient behavior of
(3.2). The quantity (1—p)w, is the natural frequency
associated with the ideal sliding dynamics. Thus the damp-
ing coefficient is proportional to the ratio of the time
constant of the RC “output” network w; and the natural
oscillations frequency of the LC “input” filter -w,. When
d >1, the system is overdamped and generally exhibits a
time scale separation property among its associated modes
obtained as solutions of (3.3). Thé average transient re-
sponse of the converter is nonoscillatory and rapidly
reaches a slow (equilibrium) manifold where the motions
asymptotically converge towards a stable equilibrium point.
We deem this behavior as desirable not only from the
“start up” viewpoint but also from the self-regulatory
aspects of the circuit behavior to sudden perturbations. An
indication of the validity of this assumption can be seen in .
[8] where the slow dynamics is fully neglected when deriv-
ing the sliding surface. This is based on an additional
“current control mode” supposed to maintain the current
through the inductor constant. We claim that if the con-
verter design is properly done, a time scale separation
property between the dynamics of the inductor current and
the capacitor voltage is inherent. The value of the damping
coefficient d is the criteria which allows an oscillation free
response of the converter, while maintaining a low ripple
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in the inductor current. Typically, the damping coefficient
should be chosen between 1.5 and 5 for an overdamped
average response.

Next, the equilibrium point of (3.2) and the slow eigen-
space, associated with the small eigenvalue p,(p) obtained
from (3.3), are used to compute an explicit expression for
the affine variety containing the slow manifold of the
average response of (3.2). This computation is a conse-
quence of the fact that for linear time-invariant systems (as
it is the case of (3.2)), this affine variety can be obtained
by rigid, parallel, translation of the slow eigenspace until
containment of the equilibrium point (see [16, p. 22]). This
affine variety will be proposed as a sliding surface for the
variable structure feedback control of the converter circuit.
The equilibrium points are given by

) bw, b
xl,.\'s (1—#)2%2’ x2,s: (1_#)w0

while the slow eigenline slope is simply: —[p,(p)/
(1- p)wy]. Notice that from the steady state value of x,
the dc-gain, defined as the ratio of the steady-state output
. voltage V,,=yC Xy ., and the input voltage E, is given

simply by 1/(1— p). This qualifies the “step up” character
of the boost converter. : '

In terms of the surface coordinate value s, the sliding
surface is then given by: :

pa(n) N
Q-m)w™"

—— e +—“’"?2(f) |=0}. (3.4)

(1-p)w, (1-p)'w

The proposed sliding surface is, in this case, only a local
integral manifold of the average system, ie., the sliding
mode exists only locally (although in an unbounded por-
tion of the R? plane) due to the nonglobality of the region
detérmined by (2.10)-(2.11). Fig. 2 depicts the region of
existence of a sliding motion associated with S,,.

The variable structure control law is of the form:

B { Zi: (33)

f
with #* and u~ yet to be specified. Using the definition
of s given by (3.4) and the system description (3.1) for
some u as in (3.5), after some algebraic manipulations, the
surface coordinate is found to evolve according to.

= 2.
S“—{xeR ts=x,t+

fors>0
for s <0

ds (1~p)wf
@~ "[”" w1+pz<n)“"‘)]‘
Wo po{)bw,

) (1-p)wg + b}(ﬂ —u). (3.6)

“The manifold invariance conditions (2.6) yield the defin-
ing relation for the equivalent control:

o ‘ po(p)bw,
wit pa(p) | (1~ p)’wd

+b](#‘“so) =0 (3.7)
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L

Fig. 2. Region of existence of sliding motion (boost converter).

which holds true on an open set S, whenever ugqo =g, ie.,
locally on the proposed sliding manifold the ideal sliding
-dynamics is indeed represented by the average system
(3.2). The existence conditions (2.4), in correspondence
with the control law (3.5) yield the following pair of
inequalities:

_ ¥ | pa(w)bw —ut)<0
w1+pz(n)[(1—n)2w¢?+b](u <0

Wo

W wex zz(ﬂ)war
W1+P2(I‘) ol

+bl(p—u")>0. (3.8
o ]w )>0. (38)
It then follows from expressions (3.8) and the fact that
0 <p <1, that in the variable structure control law (3.5)
u* and u~ should be given by 1 and 0, respectively, i.e.,
the control law: '

u=0.5(1+signs(x)) 3.9)
guarantees the existence of a local sliding motion on S,
whenever

b
L GILL NN S

(1-n)'wg G10

wyx, +

The expression obtained for the value of x; beyond which
condition (3.10) is satisfied, coincides precisely with the
one obtained from the existence conditions (2.10)-(2.11),
i.e., (3.10) determines the region of existence of a sliding
regime on the manifold S,. It can be verified, using (3.3)
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and (3.4), that (3.10) represents the region where the
transversality condition (2.5) is valid.

The ideal sliding dynamics on S, is obtained by en-
forcing the manifold invariance conditions on the system
dynamics. Using the manifold expression (3.4) and the
average dynamics (3.2), the dynamics associated with the
state variable representing the inductor current is governed
by g

: i (3.11)
»xl pa(B)|x (l_ﬂ)szz .
which represents a linear stable motion towards the
steady-state equilibrium value of the state variable x;
representing the input inductor current. The dynamic be-
havior of this variable, on the sliding manifold, is governed
by the value of the slow eigenvalue p,(p) which in turn is
determined from our choice of the circuit component
values according to (3.3). On the other hand, the dynamic
behavior corresponding to the state variable x, on the
sliding manifold is similarly obtained as

b
5‘2’_‘1’2(#)[)‘2“ m]

which again represents the asymptotically stable motion
towards the equilibrium value of the state variable x,
representing the capacitor voltage. The ideal sliding dy-
namics is thus represented by either (3.11) or (3.12) and
(3.4). Notice that the component value b, representing the
external voltage source, determines the equilibrium point
of the ideal sliding dynamics, while p,(x) does not depend
upon the value of b, but rather the component values
wy, w; and the value of p which are chosen to obtain a
desirable damping coefficient d in the ideat sliding dy-
namics. These facts conform the basis for a design proce-
dure of the current dynamics itself, so as to obtain desira-
ble regulatory features by means of a VSC approach which
utilizes a purposefully designed slow manifold of the ideal
sliding dynamics.

(3.12)

3.2. Summary of Design Procedure

1) Choose a desired voltage amplification factor 1/
(1 - p) (dc-gain) by proper choice of p.

2) Choose the values of E so that a desired steady state
value of the output capacitor voltage is obtained as E/
1~ p).

3) Choose component -values R,C, L such that the
damping coefficient d of the linear system (3.2) is greater
than unity (typically, between 1.5 and 5).

4) Compute the slow eigenvalue p,(p) as the smaller
solution (in absolute value) of (3.3). This value determines
the exponential stability of the ideal sliding response.
Repeat step 3) if an undesired value of p,(p) is obtained.

5) By using (3.4), synthesize the sliding surface by
specifying the affine variety of the slow manifold of the
ideal sliding dynamics. ‘

6) Adopt as a switching strategy the VSC law given by
3.9).

\
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Fig. 3. Boost converter responses to u = 0.

real - time
E-02 \ \
2\
0 _
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Fig. 4. Boost converter responses to u =1.

real- time
4

i W

)

0 2 a 6 . 8
E-02

Fig. 5. Sliding mode response of the boost converter on slow manifold
(p=0.5).

Example 1 ‘

We require a dc-gain factor of 2 (g =0.5) for a boost
converter with input source of 20 V, i.e., 40 V of steady-
state output voltage on a load resistor of R=100 Q.
Choosing a damping coefficient of d=2 for the ideal

_sliding linear dynamics, the converter parameters satisfy

wy = 2w,. Thus, for an output capacitor of C = 0.1 pF the
input inductor is L = 4 mH (w,; =103, w, = 5x10%). Steady
state output load current is 0.4 A, while the average input
(inductor) current is 0.8 A. Figs. 3-5 depict, respectively,
the state trajectories for u=0, =1 and the variable
structure controlled response of such a boost converter.

3.3. Design of Sliding Modes in the Buck and Buck — Boost
Converters

The reader may verify the validity of the following

_summary of formulas used for the specification of stable

sliding motions in converters of the buck and buck-boost
type. In the next paragraphs we specify equilibrium points,
damping coefficients associated with the linear ideal slid-
ing dynamics corresponding to constant equivalent control
¢ (equivalent to constant duty ratios in the PWM option
or constant dc-gain) linear varieties, containing the slow
manifolds of each converter, which can be used as sliding
surfaces, and regions of existence to a sliding motion on
such varieties. In each case the control law is the same as
in (3.9). :

Buck Converter (Fig. 6) _ )

Define: x,=IVL, x,=WC, w,=1/VLC, w,=1yRC,
b=E/L :
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(]

Fig. 6. Buck converter.

a) State equation model:
X, = —wyx, +ub
Xy = WX, — WX, (3.13)
b) Ideal sliding dynamics with constant equivalent con-
trol p: the redundant model is obtained from (3.1) by
simply replacing u by p, d=w, /2w,. -
c) Equilibrium point of ideal sliding dynamics:

‘wb b

xl,ssz_woz i) x2,ss=;o‘ (3'14)
d) DC-gain:
’ G(n) =p (3.15)

ie.,, the buck converter
“chopper” [1], [2].
e) Eigenline slope:

“steps down” and acts as a

.2

- (3.16)

(in this case the eigenvalues p; and p, are independent

of p).
- f) Sliding surface:
w .
P2 21 ] - 0}'
Wo .
3.17)

g) Region of existence on §,: The transversality condi-
tion holds globally along S, while R, and R, in (2.11) are
bounded by parallel lines in R? The existence conditions
hold globally along S, (see Fig. 7).

h) Ideal sliding dynamics described by either of (3.18)
and (3.17)

b
s, = {xER2: s=x2+££x1—-£-[l+
Yo Wo

X = py| X —
1 2 1 W02

nb
X,=p, [xz-— ——] (3.18)
Wo
Example 2
Fig. 8 and 9 show, respectively, simulated responses and
the sliding regime for the state trajectories of a typical,
commercially available, buck converter obtained with a dc
gain p=0.5, and parameter values L=150 pH, C=
72 nF, R=10 Q. The input voltage is chosen as E =
400 V, so that the steady-state value of the output capaci-
tor voltage is 200 V. With these parameters the damping
coefficient d of the ideal sliding dynamics is 2.28. Steady
state output current is 20 A, and average input current
20 A.
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X2

Fig. 7. Region of existence of sliding motion (Buck converter).

regl - time

E-02 L)
8 4 <
s , \u’ i
4 0 P uz0.
2
NPt i

[o] 2 49 6
E-0I
Fig. 8. Buck converter responses to u =0 and u =1.

real- time
2

£-02 [ | ‘ S

; [

-l
Fig. 9. Sliding mode response of the Buck converter on the slow mani-

fold (= 0.5).
[, 7)o
1
= ’ A*
E = L [=~" <R

Fig. 10. Buck-boost converter.

Buck - Boost Converter (see Fig. 10) » .
Define: x,=IVL, x,=VyC, w,=1/VLC, w,=1/RC,
b=E/VL.
a) State equation model:
X, =+ wyx; — uwyx, + ub
(3.19)

b) Ideal sliding dynamics with constant equivalent con-
trol u: the redundant model is obtained from (3.13) by
simply replacing u by p. d =w, /21— p)w,.

Xy = — WyXy — WXyt uwyx,.
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¢) Equilibrium point of ideal sliding dynamics:

frbw, —pb
X158 = s Xg T — 3.20
P @—p)eg T (-m)w (3-20
d) DC-gain:
G(p)=—p/(1-p) (3:21)

i.e., the buck-boost “steps down,” in absolute value, for p
in the interval (0,0.5) and “steps up” for g in the interval
0.5, 1).

¢) Eigenline slope: The same as in the boost case.

f) Sliding surface: .

: Pa(p)x;
S, ={(xeR%: S=x,— .
* { ? (1-p)w
b w.

IR 1p2(f)2 —0}. (3.22)

(1_“)"'0 (1"#) o
g) Region of existence of a sliding regime on S,

(p)bpw

wlxl+M)f—zl+b}>o. (3.23)
(1~ p) w

h) Ideal sliding dynamiics is described by either of (3.24)
and (3.22) '

. buw,
% = Pz(u)[xl - m]
)22=p2(u)[x2‘+ “—] (3.29)
(1 - ﬂ) Wo
IV. CoNCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

In this paper we propose the use of slow manifolds
associated with dc-to-dc switch-mode power supplies as
sliding surfaces for the variable structure feedback control
of such circuits. If the component values of the circuit are
chosén so that a time scale separation property is exhibited
by the average ideal sliding dynamics model, a satisfactory,
i.e., non-oscillatory, transient behavior is obtained for the
circuit response in an average (ideal) sense. In such a
design, computation of affine varieties containing the slow
manifolds is greatly facilitated, specially when the equiv-
alent control, corresponding to such an ideal sliding mode,
is a constant. This feature corresponds, entirely, to the
usual desire to maintain a constant duty ratio in the
_traditional pulsewidth modulated control approach [5]. In
the latter, this is achieved by increasing the complexity of
the feedback loop. On the contrary, it is shown that a local
stable sliding motion can be efficiently designed on these
linear varieties with a variable structure control law that

"demands little in terms of feedback hardware. Notice that .

only sign values of s need be evaluated for a switching
decision. This entitles one bit of information upon synthe-
sis of the surface coordinate value s, a task only requiring
operational amplifiers and resistors. PWM feedback op-
tions require, aside from the same elements, synthesis of a
sawtooth generator of very precise features [1}], [2], [19].
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The geometry associated with the sliding mode control is
easy to understand and could be particularly exploited in
circuits which are designed to exhibit a time scale sep-
aration property. It can be generally shown that sliding
modes are locally exhibited on integral manifolds of aver-
age models of pulse-width-modulation schemes. (See [7]
for the linear case and [11] for the general nonlinear
analytic case. Reference [4] also contains interesting equiv-
alences of a different nature.) Thus VSS theory provides
the designer with an alternative, systematic, method of
geometric nature for the specification of regulation loops
in dc-to-dc power converters, which is equivalent to the
traditional PWM design technique in terms of average
behavior. .

In recently proposed design schemes [9], based on feed-
back linearization, the interplay between physics and the
geometry associated with the circuit béhavior is lost.
Feedback linearization techniques, on the other hand, tend
to hide, in the new coordinates, the local nature of the

“sliding modes, while making the feedback loop more com-

plex due to nonlinear state coordinate transformation. The
choice of linear varieties in the transformed coordinates
usually leads to undesirable oscillations in which sliding
mode existence conditions may be locally violated.

_An interesting field of further applications of the theory
df variable structure systems is the field of resonant dc-to-
dc converters [1]. Some preliminary results have been
reported in [10] for circuits evolving on spheres. The
analysis and design methods proposed here can also be
extended to the popular Ciik converter [13] and more
realistic SMPS models which include parasitic resistances
and capacitances.
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