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Algebraic condition for observability of non-linear analytic systems

HEBERTT SIRA-RAMIREZt

The observability of non-linear analytic systems can be assessed by means of
Kalman'’s rank condition, when the system is represented in terms of the evolution
equations of an associated infinite family of tensor powers of the state vector.
Carleman’s exact linearization provides the necessary link to transform differential-
geometric observability conditions into Kalman’s algebraic rank condition.

1. Introduction

Kalman’s pioneering work on the algebraic nature of concepts such as controlla-
bility and observability (Kalman 1960) of linear systems, has given rise to the proposal
of a number of extensions of these concepts to include different classes of systems
(finite group sequential systems, infinite-dimensional systems, non-linear systems,
etc.). Wonham’s geometric approach (Wonham 1979) has placed these concepts in a
co-ordinate-free framework from which the conceptual solution of long-standing
problems in control theory can be properly found. Generalization of the geometric
approach, to include the class of non-linear analytic systems, has required extensive
use of differential geometry (Brockett 1976, Isidori 1985). Along with this generaliz-
ation, suitable definitions of controllability and observability have been developed by
Hermann and Krenner (1977), Sussmann and Jurdjevic (1972) and Krener and
Respondek (1985). The reader is referred to the survey given by Andreev (1982) for a
thorough account of the historical and technical details of the differential geometric
approach to non-linear systems control theory.

In this note, a Carleman linearization approach is taken as the exact represen-
tation of a single-output non-linear analytic system. The observability condition,
developed from differential-geometric notions (Krener and Respondek 1985), is then
transformed into an algebraic test involving the Kalman rank condition on a pair of
time-invariant infinite-dimensional operators. The operators describe, respectively,
the evolution of the infinite family of tensor powers associated with the state vector
(Brockett 1976, Sira-Ramirez 1984) and the projection of the family onto the scalar
output space. Kalman's observability condition is rederived when the results are
applied to linear time-invariant systems. The observability condition for linear
systems with polynomial and non-linear analytic output maps, exhibits a decompo-
sition into linear subsystem observability conditions.

Section 2 contains definitions and background resuits on families of tensor powers
for vectors and matrices while § 3 presents the main technical result and some
illustrative examples. The last section presents the conclusions and suggestions for
further research.

Received 1 May 1987.
+ Departamento Sistemas de Control, Escuela Ingenieria de Sistemas, Universidad de Los
Andes, Mérida. Venesucela.



2148 H. Sira-Ramirez

2. Notation, definitions and basic background results

In this section some definitions regarding tensor powers of vectors, matrices and
their infinitesimal versions are presented (Brockett 1973, Sira-Ramirez 1984).

Let x be an n-vector with components x,, X,, ..., X, then the vector x”! denotes the

N(n, p)-dimensional vector
n+p—1
N(n, p) = ( )
n

of homogeneous p-forms in the components of x. By convention we set x9=1. The
m

elements of the vector x!”) are of the form [] x?* with 3_p, = p, p; > 0. This ‘power’ of
i=1

the vector x is usually addressed as the pth tensor power of x.

If y= Ax then yi”! = AP)x!?) is verified. The matrix A"” is called the pth tensor
power of the matrix 4. The infinitesimal version of 4!”!is denoted by A4, and defined
as the constant matrix satisfying

%x[p] — A[p]x["]
whenever
d
Eix = Ax

1
Let X:= |: :|,then for any integer p, xP:=[1 xT ()T ... (x")T]T defines
x

n—py\ | . .
the -dimensional vector known as the pth family of tensor powers of x. If
p
p= o then x!*! denotes the infinite family of tensor powers of x. Extension of these

definitions to matrices is straightforward and results in

AP =diag[1 4 A2 ... AP]
and
A= =diag[1 A AP ... AW ]
Similarly
Apy=diag[0 4 Ay ... Ayl
and
Ay =diag[0 A Ay ... Ay -]

Consider the non-linear analytic system
d
2 x=f(2) (2.1

A Taylor expansion for f is guaranteed to converge in some neighbourhood of the
initial state x,:= 0, thus allowing the representation of f(x) as

e 1 6“+ L .
=10+ Y f(X) XY XF Xy

p=1iy+iz+ . +in=p P'ax” axl" =0

=[Fk, Fl .. F .Ji=I (2.2)
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with Fo, = f(0), henceforth assumed to be also zero. The matrix Fy, has dimensions
n x N(n, k) and is given by

1 6i'+"'+i"f(x)
Fi = —— 23
® i =k |k OXY L OX) =0 (23)
Lemma 1
The evolution of x!*1is governed by
d
Eim = Axt™! 2.4)
with A an infinite-dimensional matrix operator having the following structure:
[0 0 o .. o |
0 FY, F& .. Fy
0 0 F& .. F3
0 o0 0 ... Fy
A= ) ) (2.5)
0 0 0 .. Fy'
0 0 0 .. Fy

where F{, is an N(n, j) x N(n, i) matrix (i >j) obtained by means of linear operations
on F/Y,. The matrices F§;, =0 for i <.

Proof

With minor notational variations, and a thorough exposition of the finite
approximation properties of the scheme, the result can be found in the work by
Loparo and Blankenship (1978). Also, the results given by Krener (1974) directly
generate (2.5) when no control inputs are considered. |

Let h(x) be a scalar analytic function of x representing the system output as

y=h(x) (2.6)
A Taylor series expansion of h(x) results in
v=[ho, hyy ha .. hy I =cxl] (2.7

where

1 8i‘+"'+i"h(x)_] (2 8)
x=0 .

h = e
® il+.-z+;+.~"=k[k! axit ... Ox;n
It will be assumed henceforth that h, = h(0) = 0.

Remark 1
Even though (2.4) and (2.7) constitute a linear system of differential equations of
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the form:

d

— (= A 5 =

y ti & y=c

the vector ¢ can only be considered formally as a state due to its inherent redundancy.
Also, the initial values for ¢ cannot be chosen freely because of the non-linear
interdependence among its infinite components. The set of possible values for ¢ are
constrained to an algebraic variety embedded in the underlying infinite-dimensional
euclidean space of &. The direct use of Kalman’s rank condition on the matrix
[c cA cA® ... cA" ']must berigorously justified by means other than the usual
derivation (Kailath 1980). A crucial argument of the standard observability-condition
derivation requires that ¢ be considered as a free vector, which is not true in this case.
For this reason, the local differential-geometric definition of observability (Krener and
Respondek 1985) will be used to obtain such a justification.

For reference purposes the following standard definitions are introduced (Isidori
1985). Let h be an analytic function. The differential of # is the row vector

dh::[ﬁh— e 3’2] g (29)

0x4 672 ox, T ox

Let f be an analytic vector field. The Lie derivative of h with respect to f is given by
the analytic scalar function

oh Oh oh ch
L = — S e S = =3 .
phim g Sk gt g o= (b [y = oo (2.10)
“The Lie derivative of the gradient of h with respect to f is defined as

L(dh) =d(L,h) (2.11)

Let w(x) be an m-dimensional analytic vector field. The jacobian of w is an analytic
matrix with each row vector being the differential of the corresponding component of
w(x), i.e.

wy Owy W
ox, Ox, T éx,
dw(x)=| : : (212)
ow,, 0w, OWp
ox, 0xy, T ox,

Let ¢ be a constant row vector and cw(x) = {cT, w(x)) a scalar analytic function. The
differential of the function in terms of the jacobian of w is simply

d(ew(x)) = ¢ dw(x) (2.13)

With the obvious extension of the jacobian to infinite-dimensional vector fields, such
as those represented by x!®), the following proposition holds true.

Proposition
rank dx!®=n (2.14)
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Proof
From the definition of x{*! and using (2.12), it is easy to see that the second ‘block’
component of the jacobian is the identity matrix in R". O

The following lemma is a well-known result about the rank of a matrix product
(Kailath 1980).

Lemma 2
Let A be an n x p matrix and B a p x n matrix p > n. Then

rank (AB) < min [rank A, rank B]
If B is rank n then, rank (AB) = rank A. The result holds even if p = oc.

Remark 2
Lemma 2 allows us to say that with rank B = n, then rank (4B) = n if and only if
rank 4 =n.

3. Main result

In this section the consequence of the observability property, in a non-linear
system of the form (2.1) and (2.6) is explored in terms of the infinite-dimensional
representation (2.4) and (2.7).

Definition (Krener and Respondek 1985)
The system

d

—x=f(x), xeR"

dt (3.1)
y=h(x), yeR

is observable at x, if there exists a neighbourhood U of x, such that the set of n row

vectors

(L7 (dh), j=1,2,...n) (3.2)

is a linearly independent set.

Theorem
The non-linear analytic system ( f, h) is observable if and only if the matrix

c
cA
C=] cA4? (3.3)

cAn—l

has rank n.
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Proof
It will be proved by induction that

L (dh) = c AP ds'™) (34)

From (2.11) we have dh = d(cX'*!) = ¢ d5'*), then
ch ch ch dh
L, (dh) —deh—d<Ef> _d<5;f> _d<5;x> _d<E>
= ﬂ = i'[x] — slxl]
_d<dr>_d<cdtx )—d(ch )

=cA dxt*]
thus (3.4) is valid for j= 1. Assume (3.4) is true for j = k. It then follows that

LAYV (dh) = Ly(cA* d5'™) = L, [d(cA*2=1)] = dL,[e A*71]

J 8 [ d* o [d .
=dlL, (;1?‘.);) = d[g;(ﬁ)’)f] = dl:a(ab") x:|
dk+1 T
= d[(ﬁn y) = dc A TN = ettt drl)

which proves that (3.4) is true for all j =0, 1, ..., n — 1. Rewriting (3.4) in matrix form

dh ¢
L,dh cA
L2dh | = | ca? | dxt® = C dst (3.5)
12"t dh cAn !
Since dx!*! has rank n, it follows from Lemma 2 in § 2 that the matrix in the left-hand
side of (3.5) has rank # if and only if C has rank n. 1
Example 1

Consider the linear system x=Fx, y=hx, then in this case, c¢=
[0 R O" ... 0" ..Jand

A=diag{0 F Fy ... Fyy ..]
The matrix C is given by
c 0 h 0
cA 0 hF O
C=|cA> | =|0 hF* 0 .. » (3.6)
cA™ 1 0 hF! 0

Then C has tank n if and only if the set of vectors {hF/:j=0,1,2,...,n— 1} are
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linearly independent. This rederives the well known Kalman observability condition
for linear time-invariant systems (Kalman 1960).

Example 2

Consider the class of linear time-invariant systems with non-linear analytic output
maps. In this case the infinite row vector ¢, defining the scalar output, can be
partitioned in correspondence with the dimensions of the successive tensor power
components of x[*), ie.

y=Tho hu, hay - hy ..J5% 3.7)

while A is as in the previous example. In this case C is given by

hy hey, h,
0 hyF ... hy,F

c=| (1.) <p)' 7l (3.8)
0 hy,F"™' L hy, Fit

Using standard facts about the rank of partitioned matrices, it is concluded that for
the system x = Fx and y=h(x) to be observable, it is sufficient that the finite-
dimensional pair (hg), Fj;) generates a rank n observability matrix for some
i=1,2,3,.... In particular, if for some i the pair (h,, Fj;)) is observable, then the
system (h, F) is also observable. The converse is not necessarily true. For this class of
systems a finite expansion of the output map in a Taylor series may suffice to establish
observability.

As a corollary to the previous example, linear systems with polynomial output
maps

14 .
y=lhoy hay oy 0T 07 J&1= 3 kgl

are observable if for some i=1,2,...,p the pair (h,, 4,) generates a rank n
observability matrix.

Example 3

For the non-linear system x = f(x) with a linear output map y = cx a sufficient
condition for observability is readily obtained after computation of the matrix C (**
denotes a non-zero matrix)

0 ¢ 0 0
0 aam cFh,

C=|0 [Fy,2 * * . . (3.9)

C[F(ll)]'ﬁ1 * *

It follows that for the non-linear system to be observable it is sufficient that the
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linearized system {(c, F};)) is observable. Notice that even if the linearized system is
non-observable, the matrix C may still have rank n, hence the sufficiency of the
condition.

Example 4

The result of Example 3 can be applied to well-known non-linear systems such as
robot manipulators with multiple links and linear scalar output maps (such as joint
position, joint velocity or linear combinations of such variables). The closed-loop
system of differential equations, in terms of the vector of joints positions x, is of the
form x = f(x, X). A state-space representation is obtained by letting x;, = x:x, = x

Xy =Xy, Xy =f(x1,X3), y=cix;+e%; (3.10)

The system is observable if the linearized pair

0 ! 3.11
(Cl’CZ)’ F(lll) F(zll) ( 0 )

of of
F(lll)z EX;:F(le)z EC_Z—

is observable, with

4. Conclusions and suggestions for further research

In this paper, an algebraic condition has been derived for the observability of non-
linear analytic systems of a general form. The algebraic condition is a rank condition
of Kalman’s type on a pair of infinite-dimensional maps. One of the maps describes
the dynamic evolution of the infinite family of tensor powers generated by the state
vector; the second map represents the projection of this family onto the output space.
Carleman’s linearization constitutes the key procedure to establish a link among the
differential-geometric definition of observability and the algebraic rank condition of
non-linear systems observability. This connection reveals the conceptual simplicity
and generality of Kalman’s cornerstone contribution.

The generalization here explored can be used in computer calculations for the
assessment of non-linear systems observability. Whether this condition is easier to
implement in software subroutines than its differential-geometric counterpart (Krener
and Respondek 1985) remains to be demonstrated.

We point out that similar results can be obtained using the cartesian tensor
formalism. In this case, Kalman's condition remains valid in a space of tensor
operators acting on the tensor space of infinite copies of the Lebesgue space £ 2 The
work of Banks (1986), Banks and Ashtiani (1985), and Banks and Yew (1985) contains
sufficient information for this task.

Interesting connections might arise for the class of exactly output-linearizable
non-linear systems— via diffeomorphic state co-ordinate transformation and output
injections (Krener and Respondek 1985)— and the Carleman exact linearization
approach. A crucial task in this problem is to establish the role of the Kronecker
observability indices in the context of Carleman’s exact linearization.
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