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Variable-Structure Control of Spacecraft Attitude Maneuvers

Thomas A. W. Dwyer 1II* and Hebertt Sira-Ramirezt
University of Hlinois, Urbana-Champaign, Hlinois

A variable-structure control approach is presented for multiaxial spacecraft attitude maneuvers. Nonlinear sliding
surfaces are proposed that result in asymptotically stable, ideal lincar decoupled sliding motions of Cayley-Rodrigues
attitude parameters, as well as of angular velocities. The resulting control laws are interpreted as more easily
implemented and more robust versions of those previously obtalned by feedback linearization.

L. Introduction

ULTIAXIAL large-angle spacecraft attitude maneu-
vers generally pose nonlinear dynamic control problems,
which defy on-line solution with limited onboard compu-
tational capabilitics. A number of approaches have been
proposed for the adequate treatment of such problems. Lin-
earization around nominal points or else a sequence of single-
axis maneuvers, as in Breakwell' and Hefner et al.? eliminate
the nonlinear nature of the problem, but at the expense of slow
response and underutilization of actuators. Nonlinear optimal
control theory has also been applied to this class of problems,
such as by Junkins and Turner.> An immediate advantage of
that approach is the possibility of considering muitiaxial rota-
tions without resorting to a single-axis decomposition strategy.
The computational burden is, however, significantly increased,
and off-line two-point boundary-value problems (TPBVP)
have to be solved for each required maneuver. Other works,
such as by Vadali and Junkins,* address the same problem by
using the method of particular solutions of the intrinsic TP-
BVP. Other direct solution methods involve a combination of
optimal control theory and polynomial fecdback control ap-
proximation such as by Dwyer® and by Carrington and
Junkins.® Recently, exact fecdback linearization, as in Hunt et
al.” has found application to spacecraft attitude maneuvers,
such as by Dwyer*'® and by Dwyer and Batten.® In that
approach, nonlinear slewing problems are solved by formulat-
ing maneuvers based on an equivalent Brunovsky canonical
version of the system, obtained through nonlinear transforma-
tion of coordinates and nonlinear feedback. The effect of elas-
tic deformations can also be taken into account, as shown by
Dwyer!' and by Monaco and Storneli,'? requiring, however,

elastic deformation feedback for torque profile correction.
In the recent paper by Vadali,'® the use of variable-structure
control (VSC) for large-angle rotational maneuvers has been
proposed, especially when pulsed-width, pulsed-frequency

modulation thrusters are available (as discussed by Wie and

Barba'4). An elegant optimal control approach for the sliding
surface synthesis problem was formulated by Vadali,'? through
minimization of mean-square quaternion error and mean-
square angular velocity, to yield a solution for the sliding sur-
face in closed form. The sliding surface relating attitude
quaternion and angular velocity was shown to be linear for
each axis. That approach permits a simple controller design
that is also robust with respect to disturbances. However, the
stability caaracteristics of the ideal sliding kinematics could not
be independently prescribed for each orientation parameter,
although asymptotic stability for all axes was achieved, with a
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common preselected exponential rate of decay for a function of
the Euler attitude parameters.

Motivated by the work of Vadali,'* in this paper a more
general VSC scheme is proposed, based on nonlinear sliding
manifolds,'*!? defined either in the spacecraft kinematic or
dynamic variables. Sliding regimes are found that result in a
controlled reduced system on which the relaxation time of each
attitude or rate coordinate can be independently chosen. As
with Vadali,'® the resulting control laws require only an esti-
mate of the computed torques, as well as a switching logic
entirely determined by the desired kinematics, which are now
frecly chosen. In contrast, earlier work® ' relied on the exact
computation of the required torque profiles, with attendant
complexity and model sensitivity both alleviated by the now
proposed “‘overshoot and switch” scheme. Inasmuch as the
effects of elastic distortion on lin¢-of-sight motion can be
accommodated by increasing VSC gains, only rigid motion will
be modeled here.

In Sec. Il of this paper, nonlinear equations of motion are
discussed for the control of a spacecraft undergoing multiaxial
rotational maneuvers. Following Wang,'® Cayley-Rodrigues
attitude parameters are used instead of Euler angles or quater-
nions, for rationality, nonredundancy, and nonsingularity.
Following Utkin," sliding surfaces and control effort estimates
are then obtained in Sec. 111, either for the attitude or the rate
variables. The use of interpolation?® to avoid chattering is also
proposed here for thé synthesis of the actual commanded
torque generation, i.e., saturating torque actuators can be as-
sumed rather than ideal torque switchings. This is done at the
expense of acceptance of designer-selected attitude error mar-
gins. Section IV contains applications to reorientation and Sec.
V to detumbling maneuvers. Section VI contains the conclu-
sions and discussion.

II. Equations of Motion
Kinematics and Dynamics
Given a preselected inertial reference frame, a spacecraft
equipped with pairs of opposing thrusters, or else with reaction
whecls with axes aligned along the principal axes of inertia, is
governed by the following idealized equations of motion in the
body axes:

d
d—15=7(5)w1=%[’+§ér+§><]w (1
d
5@ =h) xw+p )]

with its terms defined as follows: w denotes the angular velocity
vector, resolved along the principal axes; £ is the Gibbs vector
of Cayley-Rodrigues attitude parameters defined as follows:

§ =etan(¢/2) 3)

denoting the result of a virtual rotation by ¢ rad about a vir-
tual unit axis vector e ( Euler axis), with the same components
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e,, €, e, along either the preselected inertial reference axes or
the body axes, so that e”e = 1; u symbolizes either externally
applied thruster torques 1%, i.e., u = t° or the negative of the
torques t’=col(t}, 15, t3) driving the reaction wheels, ie.,
= —1’; I'is the 3 x 3 identity matrix; J stands either for the
system’s inertia matrix /° i.e., J = /%, or that inertia with the
diagonal matrix I’ of axial wheel moments subtracted, ie.,
J=1°-1"; and h is the system’s angular momentum in body
coordinates.

For externally applied torques with locked whecls, or else
with no thruster torques but active whecls or control moment
gyros, one has the following representations for the angular
momentum:

(r'=0)

t°=0) 4

= {I"w
T AG AL - EONR(0)

where A() denotes the change of variables matrix from the
incrtial axes to the body axes, which is parametrized as
follows?'-22;

A =21 +L7H7 T +T+E x o (5

The inverse of A(£) is A(--&). The inverse of the kinematic
equation is likewise globally defined:

&) '=201+&TH 7' - ¢ x] (6)

The second form of Eq. (4) for the angular momentum arises
from h being inertially constant in the absence of external
torques. The modeling of structural deformation effects intro-
duces additional terms in Eqs. (2) and (4), as well as the need
also to add the structural dynamics to the equations of motion,
such as in work by Dwyer'' and by Monaco and Stornelli.'?
However, it will be secn that only the linc-of-sight kinematics,
given by Eq. (1), necd be accurately modeled for VsC design.

Singularity Avoidance

The singularity occurring if the relative orientation between
initial and target attitudes corresponds to ¢ = or —n in Eq.
(3) can be eliminated as follows: the incrtial refcrence axes with
respect to which all orientations are referred are tg be rotated
by one-quarter turn about the initial Euler axis e(0). If the
target attitude had becn the original inertial reference frame,
then the initial attitude in its new parameterization becomes
£(0) =e(0) or —e(0), whereas the final attitude likewise
becomes, respectively represented by — e(0) or e(0). All inter-
mediate attitudes £(¢f) are automatically kept nonsinguiar by
the control law itself, since, as shown by Dwyer,222 no
singularity can be introduced by the torque synthesis transfor-
mation itself.

III. Variable-Structure Control

A surface or manifold in the state space represents static
relationships among the different state variables describing the
behavior of the system. These relationships are enforced on the
dynamic description of the system so that the resulting
reduced-order dynamics will contain desirable features. The
task is usually accomplished by opportune drastic changes in
the structure of the fecdback controller that induce velocity
vector fields directed toward the sliding manifold in its immedi-
ate vicinity: hence the name variable-structure control.'®

A nonlinear dynamic system model, which captures the
esscntial features of the spacecraft model {Eqs. (1) and (2)), is
given in state-space form below:

d

T2 = Fxx, (7
dx,
E?/(prz) +G(x, xa)p (8)

Systems modeled by Eqs. (7) and (8) are referred to in the VSC
literature as being in regular form, as discusscd by Luk'yanov
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and Utkin??*; x, (i = 1, 2) are locally smooth coordinate systems
defined on open sets of R" (n =3 for rigid spacecraft); F(x,) is
an invertible smooth n x n matrix; G is also required to be an
invertible matrix; f is a smooth vector field. For rotational
dynarhics, as in Egs. (1) and (2), one has F~'(¢) given by Eq.
(6), whereas G ~! =I" for control with external torques, or
G '"=1°-I" for reaction whecl control. Likewise,

T=U" ") x »} or f=("=1)""{WE) x w} in each

casc; yt is then the vector of control torques t or —1'. The pair
of vectors (x,. x;), here (&, w), will be denoted by x. For flexible
systems, G may depend on the deformation state, unless x,
inctudes elastic deflections as well as attitude parameters, and
x; includes deformation rates as well as angular velocities. Two
kinds of control laws will be considered, one to enforce the
desired evolution of the attitude variables, and the other for the
rate variables, as discussed next.

Sliding Motions in Attitude Variables

It is true that exogenous disturbances can bc handled by
outer loop filters and regulators, and elastic deformation effects
can be handled directly through insertion thereof into the
torque equations, or indirectly by singular perturbation synthe-
sis, as discussed by Dwyer.!! Nevertheless, plant modeling er-
rors directly affect the inverse dynamics. The ensuing tracking
crror is interpreted in VSC as a deviation of the system state
(xy, X3), from the sliding surface S defined below:

S={x|s:=x,—m(x) =0} 9
m(x): = Flx,) 7', Ax,) (10)

where /;, determines the desired form of evolution of x,.

The perturbed system is best studied when expressed in the
surface coordinates x,, s, yielding Egs. (12) and (13) below, by
inscrtion of the following representation for x, in terms of x,
and s:

Xp=5+m(x) =5+ Fx) ",4x) (1
The transformed equations of motion then take the form
(%xl =f1hx}) + F(x)s 2y
d
ot =fx;.5) + G(x). 9p (13)

where fand G are given by the following expressions:

N
Fx,8) = fTxy, s +m(x)) = [%:]F(-VI)[S +m(x))] (14)

G(x,, 8) = Glx,, s + m(x))] (15)
Equivalent Sliding Mode Control

The ideal evolution of the system on the suface S satisfies the
ideal sliding mode conditions given by

s=0 (16)
d

—_— = 17
dts 0 (17

known as the invariance conditions.'®"?

The reduced-order fecdback control that would turn S into
an invariant manifold for the system is called the equivalent
control, denoted here by yi.,. The equivalent control, given by
Eq. (18), is found by application of the invariance conditions
[Egs. (16) and (17)] 10 Eq. (13):

feg(x) = —G(x,. 0) 7f(x,.0) (18)



264 T. A. W. DWYER Il AND H. SIRA-RAMIREZ

It should be noted that on the sliding surface the evolution of
the kinematic variable x, is given by Eq. (19), which justifies
the form of Eq. (10):

d
i =flalx)) (19)

It can be shown that the equivalent control is exactly the con-
trol obtained by fecdback decoupling, such as given in Refs.
8-10 whenever the sliding surface is defined by the correspond-
ing commanded closed-loop trajectories.

Initial conditions might not lie on the ideal surface S. More-
over, if driven by the equivalent control, the system state will
generally deviate from the sliding mode regime due 1o model-
ing errors in the computation of y,. This motivates the VSC
control stratcgies discussed next.

Additive VSC Correction

VSC is implemented by a choicé of control law that counter- -

acts deviations of the surface tracking error s in Eq. (9) from
zero. Such a control.law can be obtained by a choice of inputs
salisfying the sliding mode existence conditions, which for a
single input casc arc given by the following intuitively clear
relations:

lim is <0 (20)
v=o0+ dt

. d
“_l_l.r;\ (—j;s >0 2n

For general vector-valued situations conditions (20) and
(21) are replaced by the Lyapunov-type condition below:

S =g <o (22)

Condition (22) is verified by s when a control law of the
following form is used in Egs. (12) and (13):

p=pu(x;,5) = =G\ (x, ) flx), 9) + K sign(s)]  (23)

Here sign(s) is the vector sign function

sign(s) = [sign(s,), sign(sy), . . .} (24)
with
: I if 5, >0
sign(s) = {— 1 il <0 (23)

Note that fis as in Eq. (14), G as in Eq. (15), and K is any
positive definite diagonal matrix of designer-selected weights:
indecd, one then gets

d-d, sl = — 257K sign(s) (26)

The VSC law p(x,, s) is a correction to the equivalent con-
trol, to account for errors in its computation. Indecd, by setting
s approximately zero near the switching surface S, one finds, by
inspection of Egs. (18) and (23),

p(x,, 0) = p(x,) — G = (x,, O)K sign(s) 27

The VSC gain K is experimentally (or optimally)?® set
sufficiently high to guarantee the overshooting of the ideal
surface S, thereby triggering the switching logic. Only an
estimate of the ideal control g, (x,) is therefore needed at each
instant, although more accurate values of u.,(x)) require less
control effort.

Multiplicative VSC Correction

A VSC law can also be constructed as a multiplicative correc-
tion, rather than as an additive correction, to the equivalent
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control. To do this, it is first 10 be observed that control laws
such as Eq. (27) are of a switching form, generically given
below:

ifs,>0
if5; <0

uit(xy)

i=012,...,n(28
1i(x) il

Hix,, 8) = {

It is easily checked that the sliding mode existence condition
(22), when applied to the system excited by the control law, Eq.
(28), leads to the following characterization of the off-surface
controls g;* and p;” :"°
min{p, 1"} <pp g <max{pu,pt), i=12,...,n (29)
A VSC law that can be easily shown to verify conditions (29)
is as follows, with k; > I:
1%, 8) = —k; | feglx)) | sign(s),  i=1,2,...,n(30)
Again only an estimate ji; ., of p, ., is needed in Eq. (30),
since errors are detected by the switching logic, and the gains
k; can be set sufficiently larger than unity to guarantee
reachability of the switching surface. Better accuracy in the

estimation of g, ., has the effect of requiring smaller VSC
gains k; and hence less control effort.

Chattering Avoidance

Undesirable chattering, evident in cither VSC implementa-
tion above, can be avoided at the cost of tracking accuracy.
This can be done by replacement of sliding surface reachability
by boundary-layer reachability: that is, the system state (x,, x,)
or (x,, s} is required to be maintained only in a dead zone about
the ideal surface, within designer-selected tolerances ¢, > 0 for
cach coordinate s,.

The requirea & — accurate VSC can be obtained by replace-
ment, in Eq. (27) or (30), of the sign(s,) function by the “&-
saturation” function defined below:

sat(s): = {“f?“‘) flsl>c 3D
e, if |s;)| <e

The resulting controllers have been successfully employed
with optimally varying gains in precision maneuvering of
robotic manipulators under the name of suction control, in the
work of Slotine.?®

Sliding Motions in the Rate Variables

In the preceding considerations, the sliding surfaces repre-
sent relations between the pairs of state variables x; and x;,
aimed at obtaining a reduced desirable evolution of the x;
variables. It turns out that some other options n?ay also be
desirable in the controlled dynamic behavior of the state vari-
ables x,,. In particular, detumbling or induced nutation®* arc
also part of common requirements and objectives in spacecraft
control problems. This poses the problem of synthesizing the
appropriate surface equation on which to induce a sliding
regime with equivalent dynamics which characlerizes a desir-
able property of the x, state variables.

A desired reduced-order sliding dynamics may be specified
as follows:

d
a Xy = frq(x2) (32)
The sliding surface s = x; — m(x,), on which the idcal sliding

motion {Eq. (32)] is realized, is given by the solution of the
following partial differential equation:

om .
6_ Foxm(x) = fr,[m(x)} =0 (33)
X)

The proof is bascd on the idea of having the ideal sliding
dynamics for x; define the equivalent control function. By sub-
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stituting x, = m(x,) in Eq. (32) and using Eq. (8) with s = 0,
one finds

d

a2 =Txi ) + Glxi mlx g = fagm(x)]- (34)

which yiclds

Heg)) = =G ~'oey, m(e)){ = fou [mOx] + ST, m(x )]} (35)

On the other hand, the equivalent control is also given by Eq.
(18). together with Egs. (14) and (15) for 7, G, respectively. at
s = 0. Equating both expressions for the equivalent control
from Eqs. (18) and (35), the partial differential equation [Eq.
(33)] is obtained.

IV. VSC for Spacecraft Reorientation Manecuvers

In this scction, the general results of Sec. 111 are applied to
reoricntation maneuvers. A nonlinear sliding surface is found
which results in a linear ideal sliding motion for the kinematic
variables. The ideal sliding motions, for each attitude parame-
ter, can be prescribed as independent (decoupled) exponen-
tially stable motions toward a desired final orientation. The
solution of the single-axis problem provides a design avenue
for the treatment of the muitiaxial problem.

Singlc-Axis Reorientation

Single-axis maneuvers can be described in terms of the
Cayley-Rodrigues kinematic description of the externally
controlled spacecraft:

d
=i+ (36)
%w=-llar° R 37

or with I® replaced by (1°—1') and t° by —1’ for reaction
whecl control. In either case, linear system equations may also
be obtained by the alternative choice of the angular displace-
ment as the orientation parameter [when the double integrator
system = m; & = (1/I%¢° is obtained, or its counterpart with
a reaction whecl]. However, Eq. (36) is used to stress the viabil-
ity of applying the VSC approach directly to the nonlinear
model, as well as to motivate the choice of control for the
multivariable case. On the other hand, it can be shown that, by
using the linear model and a linear sliding surface, not only is
the globality of the sliding modc existence sacrificed, but one
also loses the frecdom of choice for the rate of convergence
toward the desired rest oricntation.
A desirable sliding surface is given below:

S={Cw:s=0=21 4+ -¢) =0,
A <0, ¢, =const} (38)

where £, is the desired final value of the orientation parameter.
Its obvious advantage is that it provides a linear reduced-order
ideal sliding motion, as can be easily secn from substitution of
o from Eq. (38), with s = 0, into Eq. (36):

d
3, (O =2 =< A<0 39

ic., =, is an asymptotically and exponentially stable
cquilibrium point.  Using Eqs. (13-15) and m(¢) =
241+ EH (& - &), one obtains, in this case,

ds [- 20 =82 4288 s 2% - £ -éz+2éé./)+ﬂ
di (1+¢%? ) (+&»? r
40
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The equivalent control is obtained cither by using Eq. (18) or
directly by enforcing the ideal sliding conditions [ Egs. (16) and
(17)] on Eq. (40):

=2+ ) T -2+ 2N L (4D

Roughly speaking, this establishes the fact that faster maneu-
vers require larger applied controlled torques. The equivalent
control constifutes a reference level for the computation of
the actual VSC fecdback gains. Using the reachability condi-
tions (20) and (21), these gains can be synthesized by either
additive or multiplicative VSC correction, as discussed in the
previous section, as follows. The multiplicative option yields

%= —k|tl,| sign(s), k>1 (42)

If a saturated controller is used, the sign function is simply
replaced by the saturation function [Eq. (31)]:

%= —k|td| sat(s) (43)

On the other hand, the additive correction approach requires
sctting s = 0 and ds/dr =0 in Eq. (40). One then obtains an
alternative expression for the controller:

1% =12 + r(&)s — k sign(s), k>0 (44)
(or with sat instead of sign), with
rE) = A1+ £2) (1 = 824 268 (45)

This results in the stable surface dynamics ds/df = —k sign(s),
for which the reachability condition s(ds/d¢) ( = —k|s|]) < 0is
always satisfied. The control law given by Eq. (43) is preferred,
however, for its inherent simplicity.

Multiaxial Reoricntation

Multiaxial reorientation maneuvers are characterized by a
desired orientation parameter vector £(f,) = £,and a boundary
condition of the form w{t) =0, i =1, 2,3, where ¢, denotes
the final maneuvering time, and o, represents the angular ve-
locity about the ith principal axis. In a VSC approach to this
problem, one starts by considering ¢, as arrequilibrium poirit
for the reduced-order ideal sliding motions taking place in the
sliding surface s = w — m(&) = 0. By identifying ¢ with x;, us-
ing Eq. (10) and the nonsingularity of F(¢&) = T(£), it follows
that m(¢,) = 0. The idea! sliding motion is governed by the
vector field £, 4¢), which must have ¢ = ¢, as an equilibrium
point, i.e.: fiAE) =0. ,

If a lincar behavior of the sliding motion is preferred, then
the desired vector field in Eq. (19) is of the following form: |

Jik8) = A —¢) (46)

where A is an arbitrary constant stable matrix, thus inducing
an asymptotically stable motion toward the desired orientation
parameter vector.

By virtuc of Eq. (9), the sliding surface is

{(€.m):s = —F NEOAE ~E,) =0}

={C @)s =0 =21+ 7)1 =& x JAE L) =0}
(47)

S

since the surface squation (10) is now as follows:
m(€) =21 4+878) "NAE— L) =& x AE — &)1 (48)
If A is chosen to be diagonal (A = diag[4,, 1,, 2,), 4, <0 for

all i), then the sliding motions are decoupled, and arbitrary
time constants of exponential convergence can be individually
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Fig. 1 Multiaxial rest-to-rest mancuver.

imposcd on the controlled kinematic motions toward the
desired final orientalion.

The equivalent control is obtained by using Eq. (48) in Eqgs.
(18), (14), and (15), with the appropriate interpretation of G,
. F, and f. Thus, for the externally controlled spacecraft, the
equivalent torque is

5
0 0 _
=10 2%

—{I'FTOAE =N X[FTUOAC =& (49)

[FHOAE ~ ENAL - &)

whereas for control with orthogonal reaction wheels it is as
follows:

=10~ I 1P~ OAGE = £)IAG ~ £

~ h@IF A - £ (50)

Evaluation of the gradicnts yields the same computed torques
obtained by Dwyer."* A variable-structure controller can now
be synthesized by any of the previous methods.

Alternatively, a crude estimate of the equivalent control can
be obtained instcad, as if the mancuver were of the single-axis
type. This idea, although rather ad hoc, is in the same spirit as
the method of the hierarchy of controls.?* Thus, using the pre-
ceding expressions for the lincarizing sliding surfaces, the fol-
lowing control laws are proposed for externally controlled
spacecraft:

0= k|t lsign(s), k>l i=123 (S
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with the equivalent torque estimates given below:

f?cq =AM+ EDTI =] +2EEME - &), i=1,2,3
(52)

Simiilar estimates hold for reaction wheel controt torques. The
ideal sliding motions of the controlled attitude parameters
evolve according to the decoupled linear model given by
Eqs. (9), (10), and (46) when A = diag()).

To avoid high-frequency firing of thrusters and their associ-
ated chattering problem in the sliding dynamics, a saturated
controller can be uscd as before:

= —kllfl eql Satl](st) (53)

This alternative is especially useful if reaction wheels or control
momient gyros are used as actuators. The VS control given by
Eq. (53) or (52) guarantecs feachability of the sliding surface
for any trajectory reasonably close to the interscction of the
sliding submanifolds [to account for the approximate nature of
Eq. (52)). Example 1 illustrates the validity of this controller
for the creation of sliding motions.

Example 1 (Multiaxial Rest-to-Rest Mancuver)

The simultaneous reorientation of alf threc body axes is con-
sidered here, for a spacecraft controlled with variable external
torques, with the following inertia matrix taken from Vadali
and Junkins® and Carrington and Junkins®:

I° = diag[114.562, 86.067, 87.212] kg-m®

In this example, a rest-to-rest mancuver is attempted using
VSC for each axis, as if singlc-axis mancuvers were to be per-
formed; i.e., the control law [ Eq. (53)) is used for each axis. The
target atlitude parameter values are all zero. Each of the atti-
tude paramecters is ideally expected to evolve linearly, with
independent time constants for each axis. In this example, the
chosen exponential rates are 4, = —0.15s7', 1, = --0.20s7",
and A;= -0.16s7'. Sufficicnt magnification gains for the
equivalent control estimates were found to be given by
k=15, k,=14, and k; = 1.7. The value of ¢ in the saturated
controller was taken as 0.001 rad-s~'. Figure la depicts the
different phase portraits of state variables corresponding to
each axis. Figure 1b depicts the time evolution of the applicd
torques.

V. VSC of Detumbling Mancuvers

In this scction, maneuvers sccking a null angular velocity
about each of the body axes are considered, without regard for
the final orientation paramecters. 1t turns out that the VSC
approach allows for various other kinds of angular velocity
maneuvers, which are all conceptually treated in the same man-
ner. For instance, despinning with respect to just one or two
axes is possible whilc niaintaining a constant angular velocity
with respect to the remaining axes. For this reason, a constant
vector of desired final angular velocitics w, is considered here,
without nccessarily assuming its valuc to be zero. It is also
possible to impose exponential rates of decay independently for
the angulur velocity profile components about each axis by
prescribing appropriate nonlinear sliding surfaces, as will be
demonstrated.

Detumbling with Undamped Ideal Dynamics

According to Eqs. (2) and (32), the detumbled motion in an
externally controlled spacecraft is characterized by the desired
angular velocity dynamics:

w=0 ] (54)
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i.e., the desired vector field of Eq. (32) is simply f5, = 0. From
Eqgs. (2) and (4), the following equivalent torque vector is
obtained:

tq= —(I'0,) X 0, (55)

i.e., once the desired angular velocity is reached, the average
applied torque should be constant and dependent on the value
of the desired angular velocity. In case w, = 0, such an average
torque is zero. (The same amount of torque is to be produced
by the VSC in each direction for infinitesimal periods of time.)
The solution of Eq. (33) is in this case given trivially by
o =m({) = w,; ie., the sliding surface is

S={¢ w):s=0—un,=0} (56)

For the additive VSC correction approach, one first con- -

siders the Lyapunov function V(s)=s"Ps, with P=1"=
diag[/), 1, I?), on the surface differential equation obtained
from Eqgs. (2) and (56):

(%s = (197 + 0] X (s +0) + ) 't (5T)
to obtain the rate of change of V]s(1)):
% V(s) =257 — 10, + (%) X @, + (I%,) X 5] (58)
Therefore, the choice of control, give by

=13 — (I%) X 0y — (I’w,) X s — K sign(s)  (59)

with K =diaglk,, ky, k,], k, >0 for i =1,2,3, guarantecs a
negative-definite time derivative of the Lyapunpv function, and
thus sliding surface reachability. If a saturated torque con-
troller is preferred for the maneuver, then the controller is
specified by replacement of sign by sat.

The options are again several: @, = 0 implies total detum-
bling, whereas, say, o, = ®, =0, w; = w,, implies constant
spin with respect to the third principal axis, such as for Earth
pointing in orbit, in which case w,, is the orbit rate. In case
w, =0, then 7, =0, so that the VS control law that achieves
detumbling is decoupled and takes the following form, for the
saturated torque controller case:

1) = — k17" sat, (o) (60)

Example 2 (Undamped Multiaxial Detumbling)

In this example, a detumbling maneuver is considered for a
spacecraft with locked reaction wheels and externally applied
torques. The matrix 7° of spacecraft products of inertia is the
same as in Example 1. The initial angular velocities are given
by w, =0.1, w, = —0.1, w, = 0.1, measured in radians per sec-
ond. The initial orientation is assumed to be coincident with
the inertial reference frame, i.e., £{0) =0, i = 1, 2, 3. The satu-
rated torque control law, for each control input, is given by Eq.
(60), with k; = 219 chosen for i = 1, 2, 3, and the value of ¢ was
assumed to be 0.002 rad-s~'. The simulation results are shown
in Figs. 2a-2c.

Detumbling with Exponentially Damped Ideal Dynamics

An ideal angular velocity sliding motion can also be consid-
ered to be represented by an exponentially stable decay toward
rest. The partial differential equation (33) defining the sliding
surface is easily solvable for the single-axis case. (In fact, it
reduces to an ordinary differential equation.) In the multiple-
axes case, the solution of the corresponding matrix partial
differential equation will not be attempted here. However, the
single-axis solution provides an attack scheme for the multiax-
ial detumbling problem, by considering single-axis sliding sur-
faces in combination with equivalent torque profiles derived
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Fig. 2 Undamped multiaxial detumbling.
from the ideal decoupled exponentially stable multia)_(ial
dynamics. This results in an ideal stable dynamic motion
dominated by linear exponential decay.
Damped Single-Axis Detumbling

Even though trivial per se, single axis detumbling will first be
considered here, as essential motivation for the multiaxial case.
The following ideal sliding dynamics for the evolution of the
angular velocity is chosen:

iw=;1w,

0 61
de A< =

Letting the (unknown) sliding surface coordinate be defincd by
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s =w —m(£), then the diffcrential equation describing the
evolution of this coordinate is

Es___(,o)klto__

o 2
@ o I+ E9s + m(O)} (62)

The equivalent control is found by setting s =0 and
(d/dt)s = 0 in Eq. (62):

Toa= 0 6{“+€2)m(5) (63)

On the other hand, the ideal sliding motion given by Eq. (61)
leads to a different expression for the equivalent control:

12, = Il = I°Am(¢) (64)

Equating the expressions for the equivalent control and ignor-
ing the trivial solution m({) = 0, one obtains:

0_m__ 2y -1 :
% =2i(1 4+ ¢%) (65)

Equation (65) has as a solution m(§) = 2X tan™'(¢); i.e., the

sliding surface is
={(¢ w):s =0 —24 tan~ (&) = 0} (66)
The equivalent control thus takes the following form:

13, =2/%%tan~'(%) (67)
which, roughly speaking, indicates that faster stabilizing ma-
neuvers require larger applied torques.

The existence of a sliding motion requires a variable-struc-

ture controller for which conditions (20) and (21) are satisfied.
From Eqgs. (62) and (63), one obtains

. d . _
Jl_l‘t‘l)l* as =% — (19 1:2q <0 (68)
. d 0y —1,0—~ 0)—1;
lim —s={%"4""—(% >0 (69)
o0 dr

From here it is easy to conclude that the variable structure
controller given by Eq. (30), but with s given as in Eq. (66),
satisfies the existence conditions (68) and (69) while creating
an asymptotically stable trajectory toward the origin. The
saturated torque controller given by Eq. (43) can also be used,
again with the new s.

Multiaxial Exp ially D d D bli

A desired ideal shdmg dynamlcs can bc prescribed as a linear '

decoupled stable field vector: i.e., one lets the vector field /5, of
Eq. (32) (with x, = w) be as follows

Sra (W)

where A =diag [4,, 45, 4;) with 4, <0 for all 4, and w, is a
constant vector of desired final angular velocities, which is
assumed here to be zero for simplicity.

The equivalent torque, shown below, is obtained in this case
from Eq. (35), using Egs. (2) and (70):

=Alw —w,) (70)

= Ao — (I ~'(I"0) x o] (7

If the sliding surface s = w — m(¢) =0 is used, then the
equivalent control is also expressible as follows:

o= '(lo)[—%%' TOm(E) + (1) ~'(%0) x w] )
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Similar formulas can be obtained for reaction whecl torques.
The partial differential equation (33) can be obtained by com-
paring Eqs. (71) and (72). After substituting w = m(¢) and
discarding the trivial solution case @ = m(¢) = 0, the following
expression is obtained:

om
o

with T~!(¢) given by Eq. (6).

Rather than attempting to solve the preceding matrix PDE,
a single-axis method will be presented which results in a locally
stable ideal sliding motion with a simple controller structure.
The approach is valid in the neighborhood of the origin of the
phase space.

Individual sliding surfaces for each axis, suggested by Eq.
(66), are used:

=AT7(®) (73)

Si={(w):s; =w, ~ 24 tan" &) =0, 4, <0},

i=1,2,3 (79
Using the invariance conditions (16) and (17), one immediately

obtains, after differentiation of the surface coordinates, the
equivalent control vector with the components

1 (@) = 4,1 o, +(5,€2 ~ f:)(l;z:é(?é; + &)o,
~ (= o, (75)
13 (@) = 12]0_ (é &+ & )(l;l_:é(fzca )U)Jd
— (8- Nw,w, o)
[, 4 &6 = 8o + €8+ & |
13 (@) = 1310_ 361 6 l|+ c33 2 2-
(8 - Dw,w, )

When substituted in the dynamic equations (2), the preceding
torques yield the following ideal sliding dynamics:

iw, - Alwl + A[I:(Qéz = ’:})wz + (élél + fz)wg] (78)

de 1+ ¢

&= o + A{(ézfn b+ Gy c.)w,] (79)

d —_

S5 = Ay + A,[(E’c' ':2)“;‘: gz:’ * 5')‘"’] (80)
Since {; = tan{w,/22) for all i, it follows that for small values of

w,, i =1,2,3, the second terms on the right-hand side of Egs.
(78-80) are small, being at least of second-order magnitude in
the angular velocity values. The closed-loop dynamics is thus
dominantly linear and exponentially stable. Using the same
argument, the torques given by Eqgs. (75-77) are approximated
by Eq. (71). This approximation is used as an estimated value
of the equivalent torque vector, with components 77, in the
synthesis of the VSC laws:
9= —k,|f2cq| sign(s;), k; >0, i=1,2,3 (81)
It is easy to show that in a sufficiently small neighborhood
of the sliding surface S = NS;, the controller given by
Eq. (81), with s; from Eq. (74), achieves sliding surface reach-
ability. This is again done by verifying that s; (ds;/df)<0. If a
saturated torque controller is preferred, the preceding sign
function is replaced by the saturation function defined by
Eq. (31). Similar results are obtained for reaction wheel
torques, with I,-°w,. replaced by h,(¥), and 1?_“] by —7iq.
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Fig. 3 Damped multiaxis! detumbling.

Example 3 (Damped Multiaxial Detumbiing)

The spacecraft parameters of Example 1 are again used in
this example. Stabifized independent angular velocity profiles
are obtained using the saturated torque controller correspond-
ing to Eq. (81) with k, = 1.2, ¢, = 0.001; the values of the expo-
nential decays along each axis are taken to be 1, = —0.14,
A= ~0.16, ;= —0.2. Figures 3a-3d show the phase plane
responses w, vs £, the individual angular velocity responses w,,
and the torque profiles t? for i = 1,2, 3.

V1. Discussion

A general method of variable-structure controf with nonlin-
ear switching surfaces has been applied to multiaxial spacecraft
reorientation and detumbling maneuvers. Cayley-Rodrigues
attitude parameters were used to permit the rational, singular-
ity-frec, and unconstrained construction of exponentially de-
caying ideal motions for such attitude maneuvers. Under the
resulting overshoot-and-correct control law, those spacecraft
attitude parameters were shown to follow linear, decoupled,
exponentially stable motions toward their target valucs, with
independently chosen time constants. It was also shown that
VSC-implemented multiaxial detumbling designed to imitate
single-axis maneuvers results in ncarly asymptotically exponen-
tially stable controlled motions. More generally, any of scveral
previously published attitude mancuvers, based on optimal
control coupled with fecdback linearization, can also be imple-
mented but with greatly reduced on-line computational com-
plexity, as well as improved robustness.

The emphasis in this paper has becn on the ability of VSC
implementation to permit such ideal-mode! following, with
highly reduced command generation complexity. Robustness
with respect to modcling errors, although not exhaustively ex-

amined here, is known to be inherent in VSC methods, as
already shown in the referenced literature. In particular, the
presence of structural deformations can-be accounted for by
higher VSC gains, thereby not affecting line-of-sight pointing
accuracy, since the switching functions depend only on the
kinematic part of the model.
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