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Sliding-mode control on slow manifolds of DC-to-DC power
converters

HEBERTT SIRA-RAMIREZt

In this article, general relationships are established among variable structure control
strategies and pulse-width modulated control schemes leading to sliding modes in
non-linear systems. The results are applied to the design of a sliding regime for the
regulation of DC-to-DC switchmode power converters exhibiting a slow integral
manifold due to time-scale separation properties among input and output circuits.

1. Introduction

Using elementary notions from differential geometry (Isidori 1985), a general
relationship is established among the sliding modes resulting from a variable struc-
ture control (VSC) strategy (Utkin 1977, 1978, 1981, 1983) and those resulting from a
pulse-width-modulated (PWM) control scheme for the regulation of non-linear
analytic systems.

Under the assumptions of infinitely fast switchings for the VSC scheme and
infinite-frequency duty cycles for the PWM approach, the essential similarities and the
conceptual differences between these approaches are conveniently exhibited in terms
of the average behaviour of the controlled motion.

The average behaviour of the PWM controlled system is obtained from the system
model by simply replacing the discrete control input (switch position function) by a
smooth analytic function of the state known as the duty ratio. The ideal sliding
dynamics, obtained from the VSC scheme, is similarly obtained by replacing the
switch position function by a smooth input known as the equivalent control (Utkin
1978). The equivalent control and the duty ratio coincide when the integral manifold
of the average PWM controlled system is taken as a sliding surface for the VSC
option. Conversely, the ideal sliding dynamics of the VSC scheme adopts as an
integral manifold that of the average PWM controlled system when the equivalent
control is made to coincide with the corresponding duty ratio. Integral manifolds of
the average PWM controlled system are seen to satisfy the necessary and sufficient
conditions for the local existence of a sliding regime. Conversely, sliding manifolds
locally qualify as integral manifolds of the average PWM controlled system.

As an example of the proposed theory, a popular DC-to-DC power converter
circuit of the boost type is analysed under the assumptions of a constant duty ratio
(see Severns and Bloom 1985, Middlebrook and Cuk 1981, Venkataramanan et al.
1985, Bilalovich et al. 1983). The computation of a local invariant set is considerably
simplified by exploiting a time-scale separation property of the average PWM con-
trolled system. This allows the use of the slow manifold as a sliding surface. The time-
scale separation property is shown to be physically significant in terms of the relative
values of the neutral frequency associated with the input filter with respect
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to the value of the output circuit time constant. The justification for such an as-
sumption stems from desirable non-oscillatory stability properties of the converter
response. A sliding-mode approach, based on VSC, is proposed by specifying as a
switching surface an affine variety which contains the slow manifold of the average
PWM controlled system. This variety does not globally qualify as an integral
manifold of the average system and therefore only local stable sliding regimes exist on
the switching surface. The region of equivalence of the sliding modes for the VSC and
PWM approaches is completely identified.

Section 2 presents a general equivalence among PWM and VSC schemes for
non-linear analytic systems, § 3 contains the DC-to-DC converter example and § 4
summarizes some conclusions and suggestions for further research.

2. Background and general results
Consider the non-linear analytic system defined in R":

(1) = f(x) + ug(x) (2.1

with f, g smooth vector fields defined on an open neighbourhood X of R". The scalar
control function u is assumed to take values on the discrete set {0, 1}.

A common feature of the VSC and PWM control schemes is the discontinuous
character of the right-hand side of (2.1). Both schemes coincide in their essential
features when their corresponding average behaviours are computed, respectively,
under the assumption of infinitely fast switchings and infinite-frequency duty cycles.
The rest of the section is devoted to demonstrating this fact.

2.1. Generalities about sliding modes under VSC
The sliding-mode control of (2.1) by means of a VSC scheme entitles the use of a
feedback control law of the form

(2.2)

1 for s(x)>0
0 for s(x) <0

where the smooth function s(x) determines a ‘switching surface’ or a ‘sliding manifold’
in R" defined as
S={xeR"s(x)=0} 2.3

It is assumed that the gradient of S, denoted by ds, is nowhere zero in X.

We shall henceforth qualify a result or assumption as local whenever x is restricted
to X, an open neighbourhood of R" which has non-empty intersection with S.

Let the expressions: s— +0 and s— —0 denote the fact that s approaches zero
from positive and negative values respectively. Necessary and sufficient conditions for
the local existence of a sliding mode on S are satisfied whenever the switching logic
(2.2) and the controlled motion (2.1) are such that

lim ds/dt <0, lim ds/dt>0 (2.4)

s=+0 s= -0

Let L, s denote the directional derivative of the sliding surface coordinate function s in
the direction of the vector field h. The equation (2.4) is thus rewritten as
lim Ly, s= lim {ds, f+g)><0
s—++0

5= +0

(2.5)
lim Lys= lim (ds, f>>0

5= -0 s=-0
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The gradient has the natural interpretation of a linear functional in the tangent
space of R". However, as a vector, the gradient is assumed to be locally directed from
the region where s < 0 towards the region where s > 0. This fixes the local orientation
of § according to the definition of s(x).

Remark 1

Notice that if a sliding mode locally exists on S for the reversed switching logic:
u=1 for s(x) <0 and u=0 for s(x) >0, then the existence conditions (2.5) are ob-
tained with the inequality signs also reversed. If one redefines S in (2.3) by means of a
surface coordinate function s,(x) = —s(x), the assumed inequalities become valid
again. Therefore, there is no loss of generality in assuming that the existing sliding
regime satisfying (2.5) is obtained from (2.1) and (2.2).

Remark 2

If a sliding motion locally exists on S for the adopted switching logic (2.2), then
necessarily L,s = (ds, g)> <0 locally on S. This is immediate from the existence con-
ditions (2.5) and the linearity of the directional derivative operator. The condition L,s
< 0 represents a transversality condition of the vector field g with respect to the surface
S. The transversality condition is easily seen to be a necessary condition for the
existence of a local sliding motion on S with switching logic (2.2). As previously
discussed, when a sliding motion exists for a reversed switching logic, the trans-
versality condition adopts the opposite inequality sign.

We shall concentrate our analysis on a region where the transversality condition is
assumed to be satisfied. However, in the region where conditions (2.5) fail, the vector
field g may be transversal to S and a sliding regime may still locally exist with a
reversed switching logic. In general, in the neighbourhood of the intersection of the
sliding surface S with the set of points where (ds, g) = 0 a sliding regime does not exist
except in those cases termed singular (where L ;s is also zero). The reader is referred to
Utkin (1983) for a survey of existing results about this particular case.

According to (2.2) the state trajectories of the controlled motion of (2.1) are
defined everywhere in X except at the surface of discontinuity S. Several definitions
have been proposed to describe the solution of (2.1), (2.2) when a sliding regime exists
locally on S. Filippov (1964) defines an average vector field describing the ideal sliding
dynamics which generates the ideal corresponding trajectories. This average vector
field is obtained by a geometric average or convex combination of the vector fields
defined on each ‘side’ of S. This average vector field is tangential to the sliding surface
at each point of the existence region. Utkin (1978), on the other hand, defines the
average controlled trajectories in terms of the response of the system to a smooth
control function known as the equivalent control. The equivalent control, denoted by
ugo(x) is obtained from the invariance conditions (or ideal sliding conditions according
to Itkis 1976):

§=0, LysurqmeS=0 (2.6)

The equivalent control is thus a smooth control function which locally turns § into an
integral manifold (invariant set) of (2.1). The ideal sliding dynamics is then governed
by

X = f(x) + ugo(x)g(x) (2.7)

Filippov’s and Utkin’s definitions of an ideal sliding mode are totally equivalent for
the case at hand. In more general situations, typically, when the control function
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enters non-linearly in the differential equation of the system, the definitions have been
shown to yield different results (Utkin 1978). Utkin’s definition is adopted below to
obtain some of the relevant facts about the sliding mode control scheme by means of
VSC.

We denote by Ker ds the tangent distribution generated by S and defined as
the n— 1-dimensional subspace of the tangent space to X at each point of S.
Ker ds = {h:{ds, h) = 0}. From the definition of the ideal sliding dynamics (2.6) it
follows immediately that

S+ ugg(x)geKerds, ie. {ds, f+uge(x)g) =0 (2.8)

In other words, the smooth vector field represented by f + ugq(x)g will be locally
tangent to the sliding surface at each point of existence of the sliding regime. As a
consequence of this, the ideal sliding dynamics has as a local integral manifold
(invariant set) the sliding surface S.

Lemma 1
The equivalent control, if it locally exists, is unique, i.e. the sliding manifold S
uniquely determines the equivalent control for the system (2.1).

Proof

Let ugq;(x) be also an equivalent control associated with a sliding mode
locally created on S. We then have from the definition of equivalent control:
ds, [ + ugq(x)g) = {ds, f + ugq,(x)g> = 0 and hence (ugq — o, ) {ds, g)» = 0. Since
by assumption the transversality condition is satisfied, {ds, g)> is non-zero. It follows
that ugqg = ugq, locally on S. a

Theorem 2

A necessary and sufficient condition for the existence of a sliding mode on S is that
the equivalent control satisfies

0 <uge(x) <1 (29

Proof
Suppose a sliding motion exists on S. Then, from (2.8) the equivalent control is
given by
s f> Ly (2.10)
{ds, g> L,s
From (2.5) and the transversality condition, the above quantity is locally positive, i.e.
ugo(x) > 0. On the other hand, using (2.5) again one obtains

“EQ(X) =

Lyves _ Lys _ ‘
Tg;—l}-L—s—l——uEQ(x)>0 (211)

4

which implies ugq < 1 locally.

To prove the reverse implication of the theorem, let (2.9) hold true for a smooth
control function ugq(x) which turns S into a local invariant manifold and assume that
a sliding motion does not exist locally on S. Then, the inequality 0 <1 — ugqo(x) <1
also holds true. By assumption, the smooth vector field generated by ug, will locally
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belong to the distribution associated with S. In this region the following relation will
be satisfied:

{ds, f+ uEQ(x)g> = “EQ(X) {ds, f+g>+(1— “EQ)<dS, f>=0

It follows, necessarily, that the quantities {ds, f + g and {ds, f are opposite in signs
on the surface S. The linearity of the inner product implies that {ds, g) cannot be zero
and thus the transversality condition is locally satisfied since its sign can be arbitrarily
established. We then have

Kds, f+&)ls=0= lim {ds, f+g)= lim $<0
s> +0 s+ +0

and also

s, fDls=0= lim {ds, f+0,g>= lim $>0
s—+-0 s=—0
which means that the control law (2.2) locally creates a sliding mode on S. This is a
contradiction, and hence the theorem is proved. a

Remark 3

The pair of inequalities (2.9) determines the region or regions of local existence of
a sliding mode. The intersection of the open regions defined by each inequality with
both the sliding surface candidate S and the region of validity of the transversality
condition determine the open set on S where a sliding mode can be achieved by means
of the VSC law (2.2) acting on the system (2.1). The existence of a sliding mode
in other regions where the transversality condition exhibits a different sign is not
precluded provided the opposite switching logic is used.

2.2. Generalities about PWM control

In a PWM control option, the scalar control u is switched once within a duty cycle
of fixed small duration A. The instants of time at which the switchings occur are
determined by the sample value of the state vector at the beginning of each duty cycle.
The fraction of the duty cycle on which the control holds the fixed value, say 1, is
known as the duty ratio and it is denoted by D(x(t)). The duty ratio is usually specified
as a smooth function of the state vector x. The duty ratio evidently satisfies 0 < D(x)
< 1. On a typical duty cycle interval, the control input u is defined as (see Fig. 1):

1 fort<t<t+ D(x(1)A
u=
0 fort+D(x()A<T<t+A

(2.12)

14 —
YA
b D{x) A—*

o) U S W
t t +D{x)a t+A

Figure 1. Typical duty cycle in PWM control.
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It follows then that, generally,

1+ D(x(A t+A

{[(x(1)) + g(x(x))} dr + J f(x(1)) dr

t+ D(x(1)A

x(t+A)=x(t) + J

t

t+ D(x(1)A

—x() + j " o de + f ¢(x(0)) de

The ideal average behaviour of the PWM controlled system response is obtained by
allowing the duty cycle frequency to tend to infinity with the duty cycle length A
approaching zero. In the limit the above relation yields

lim XA =XO L [ fHAf(x(r)) dr + JHDMA g(x(1)) dr}

A—=0 A A=0 A

= %x = f(x) + D(x)g(x) (2.13)
As the duty cycle frequency tends to infinity, the ideal average dynamics of the PWM
controlled system is represented by the smooth response of the system (2.1) to the smooth
control function constituted by the duty ratio D(x). The duty ratio replaces the discrete
control function u in the same manner as the equivalent control ugq, of the VSC scheme,
replaces u in (2.1) to obtain (2.7).
We refer to (2.13) as the average PW M controlled system.

Definition 3

An n — 1-dimensional manifold X is said to be a local integral manifold, on an open
neighbourhood X of R”, of the average PWM controlled system (2.13) if for some 0 <
D(x) < 1, there exists a smooth function ¢:R"— R such that £ = {x € R":0(x) =0},
whose gradient do is nowhere zero in X, and such that locally on T

{do, f(x) + D(x)g(x}) =0 (214)
From the above definition it follows that the duty ratio satisfies
{da, Lo
D(x) = — =L 1
(x) (do. g Lo (2.15)

Notice that {do, g> = 0 makes D(x) unbounded unless {da, > is itself zero, in which
case f+ug trivially belongs to the tangent distribution Kerdo and thus
the trajectories are locally constrained to X for any arbitrary control function u. We
therefore assume that locally on X the quantity {do, g)> # 0. From this assumption,
it follows that, without loss of generality, we may consider {do, g) as a negative
quantity in the region of interest. To see this, suppose {do, g> > 0 and consider the
following alternative definition of the integral manifold T = {x:¢,(x) = —a(x) = 0}.
On the region of interest we now have (do,g)=(—do,,gd=—{da,, g> >0, ie.
(do,,g> <0. From the above assumption and the definition of the duty ratio, it
follows that in order to have 0 < D(x) < 1, necessarily {(ds, f> > 0 locally on X.

Lemma 4

If X is a locally integral manifold for (2.13), then X is also a local integral manifold
for x = f(x) + D,(x)g(x) if and only if D(x) = D,(x) in the region of interest.
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Proof

Sufficiency is obvious. To prove necessity suppose D, (x) # D(x) locally on Z, but
assume that X is a local integral manifold for both controlled systems. It follows from
Definition 3 that on £:{da, f+ D(x)g> = {do, f + D,(x)g) = 0. From this equality
it is easy to see that (da,(D(x) — D,(x))g> =(D(x) — D,(x))<{do, g» =0. Since by
hypothesis {(do, g) # 0 then necessarily D(x) = D,(x) locally on Z. This is a contra-
diction and the lemma is established. O

Theorem 5
A necessary and sufficient condition for T to be a local integral manifold of (2.13)
is that locally on T

(do, f+g><0, <do,f>>0 (2.16)

Proof
Let T be a local integral manifold for (2.13), then f + D(x)g satisfies (2.14) and
from the definition of duty ratio,

Ko, > _
RCE

Using the hypothesis that {dg, g < 0, it follows from the right-hand side of (2.17) that
—{da, > > {da, g and therefore {da, f + g> <0. On the other hand, using the first
inequality of (2.17), it follows that —{dg, > <0, ie. {do, /) >0.

To prove sufficiency, suppose (2.16) holds true locally on X. Then, there exists
positive smooth functions a(x) and b(x) such that on the region of interest

a(x)<{de, f +g> + b(x){do, f>=0 (2.18)

It then follows that rearranging the above expression {do, f + [a(x)/(a(x) + b(x))1g> =
0, i.e. there exists a smooth control function 0 < D(x) = a(x)/(a(x) + b(x)) < 1 such
that, locally on X, {da, f + D(x)g) = 0. In other words, in the region of interest, X isa
local integral manifold of (2.13). ]

qu
Lo

D(x) = <1 (2.17)

In a similar form to the VSC case, (2.16) determines the regions of existence of
a local integral manifold for the average PWM controlled system. Note that the
definition of duty ratio could have been established in the opposite manner by
ascribing it to the portion of the duty cycle in which the control u is zero, i.e. this
control value occurs at the beginning of each cycle. Local portions of the integral
manifolds may exist in the regions where both conditions (2.16) are violated with this
alternative use of the switching sequence. The situation is totally parallel to that
encountered in the VSC case. Further equivalences are established in the following
section.

2.3. Ideal equivalence of VS and PWM control

In a VSC scheme, the switching surface § is necessarily a local integral manifold for
the ideal sliding dynamical system, controlled by ugqo(x). In a PWM control scheme,
the average system (2.13) may possess a local integral manifold corresponding to the
duty ratio D(x). The following theorem demonstrates that local integral manifolds of
the average PWM controlled system, if they exist, qualify as a local sliding surface.
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When a sliding regime is created on such portions of the manifold, the corresponding
equivalent control coincides with the duty ratio. In two-dimensional systems this is
particularly interesting since any state trajectory of the average PWM controlled
system, which happens to be globally, or only locally, inside the region determined by
(2.16) also qualifies, respectively, as a global, or local, integral manifold itself. Hence, a
global or local sliding motion can be treated along these one-dimensional surfaces.
This last fact will be exploited in § 3.

Theorem 6

If there exists a smooth function a: R"— R such that X = {x € R":0(x) =0} is an
n— 1-dimensional local integral manifold (invariant set) for the average PWM
controlled system (2.13) then a sliding mode exists, locally on X, in the same region
where it qualifies as a local integral manifold. Moreover, the equivalent control
corresponding to such a sliding motion coincides, locally in the same region, with the
duty cycle.

Proof
Since ¥ is an integral manifold for the average PWM controlled system (2.13),
then Theorem 5 applies and (2.16) holds true. It follows that locally on Z:
o, f+g>= lim {do, f+g)= lim <0
g~ +0

o+ +0
(do, f>= lim {do, f>= lim >0
a——0 a-=—-0

i.e. the variable structure control law:

1, fora(x)>0
u= (2.19)
0, fora(x)<0

applied on system (2.1) creates a sliding mode locally on X.
To prove the second part of the theorem, note that if a sliding mode exists on
Z then, necessarily, the transversality condition {dg, g>=L,6 <0 is satisfied. By
definition, the corresponding equivalent control satisfies the invariance condition on
X
{do, f +uge(x)g> =0 (2.20)

Subtracting then the expression (2.20) from (2.14), which represents the local integral
manifold condition for X, one obtains after letting s = g,

{do, (ugo(x) — D(x))g) = (ugo(x) — D(x)){do, &> = 0

and by virtue of the assumption on <ds,g> being non-zero, it follows that
ugolx) = DAX) tocaly on 2. 0

The converse theorem completes the equivalence between VSC and PWM control
schemes in their respective idealized features.

Theorem 7

If a local sliding motion exists on the n— 1-dimensional smooth manifold
§ = {x € R":s(x) = 0} then, locally, S qualifies as an integral manifold for an average
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PWM controlled system. Moreover, the duty ratio corresponding to this average
system coincides, locally in the same region, with the equivalent control.

Proof

Suppose a sliding motion locally exists on S, then (2.5) holds true locally on S and
hence the conditions for Theorem 5 are easily seen to be also valid. Hence, S quali-
fies as a local integral manifold of the average PWM controlled system. Notice,
furthermore, that from Theorem 2, 0 < ugqo(x) < 1 is satisfied in the region of interest.
The equivalent control also turns S into a local integral manifold in the region where
the inequalities (2.16) are also valid. By virtue of the uniqueness of the duty ratio, the
equivalent control necessarily coincides with the duty ratio as smooth functions of the
state vector. U

Theorems 6 and 7 allow us to draw the following conclusion:

The necessary and sufficient condition for the local existence of a sliding mode on an
n— 1-dimensional manifold S is that it also locally qualifies as an integral manifold for
an average PWM controlled system in the region of existence of the sliding mode. In this
region of equivalence, the equivalent control and the duty ratio totally coincide.

It should be pointed out that the previous result can also be derived from
Filippov’s definition of average trajectory on a surface of discontinuity. This approach
leads to the above result in a more direct fashion and it will be presented elsewhere.

It is, generally speaking, very difficult to compute an integral manifold for a system
of non-linear differential equations. However, for the class of linear time-invariant
systems exhibiting a two-time-scale separation property, known as singularly per-
turbed systems (Kokotovic et al. 1986), affine varieties containing the slow manifold of
the system can be explicitly computed with considerable simplicity. Generally
speaking, hypersurfaces or affine varieties containing slow manifolds are not,
themselves, global integral manifolds.

3. Sliding-mode control of DC-to-DC switchmode power converters
3.1. Generalities

Linear networks on which intentional switchings are conveniently carried out
to achieve electrical energy transfer among dynamic storage elements or, more com-
monly, to achieve steady state regulation of the output variables, constitute a special
class of variable structure systems. The control action is represented by a voluntary
change in the network topology, associated with the operation of a switch (transistor,
diode or combination thereof).

Switchmode controlled networks have important applications in DC-to-DC
power converters, and other related areas (switched capacitor circuits). They con-
stitute a vast developing field of knowledge with on-going applications in modern
power electronics and robotic control. It is not possible to survey, in a paper of this
nature, the vast amount of contributions available in this exciting field of applied
research. For this reason, the reader is referred to the book by Severns and Bloom
(1985) and the multivolume series of Middlebrook and Cuk (1981). For closely related
results, the reader is referred to Venkataramanan et al. (1985) and Bilalovich et al.
(1983).
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3.2. Sliding motions on the slow manifold of the boost converter

Consider the boost converter of Fig. 2, where the state variables are defined as:
x;=1/L, x,=V./C, and parameters; b= E/\/Z, Wo = l/ﬁé, w, = 1/RC. The
control ‘input’ is again represented by a discrete-valued variable u € {0, 1} represent-
ing the ideal switch position.

Exl = —WyX, + uwex, +b
d (3.1
77 X2 = WoX1 = Wi Xy — uwox,

The system of differential equations describing the converter corresponds to a
bilinear system due to the multiplicative character of the control function u with
repsect to the state vector. However, the average response of the system to a constant
duty ratio PWM control scheme is governed by a linear system in which u is replaced
by a value 0 < g < 1, as demonstrated in § 2.

mp\, g

i

Figure 2. Boost converter.
The average PWM controlled system is then

d
—x;=—(l—wWwex,+ b

dt (32)
g .
Exz =(1—@wox; —w X,
Equilibrium points
These are given by
b b
W1 (3.3)

X188~ 77 3y X255 = 77 ’
T (- pPwd TR (1= pw,

Elimination of the parameter u demonstrates that the family of equilibrium points for
constant duty ratios describes a locus represented by a parabola:

w
xl,ss = ‘l‘xg,ss (34)

b

DC gain
The DC gain is obtained as the quotient of the steady state values of the output
voltage and the input voltage:

I/SS X Ss 1
Glw) = =22 =

= 3,
E-JcE (U-w =
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As the duty ratio u is increased from 0 to 1, the DC gain increases from 1 to infinity.
This indicates the ‘step up’ character of the boost converter (in more realistic models,
including parasitic resistances, the efliciency of the circuit never reaches infinity).

Stability of equilibrium points
The characteristic equation, associated with the average model describing the
response of the circuit to a constant duty ratio, is given by

4w A+(1—p2wi=0 (3.6)

The roots of this characteristic equation always have negative real parts and hence,
the average trajectories are asymptotically stable towards the equilibrium point. The
damping coefficient { of the system is simply { = w, /[2wo(1 — )], while the natural
frequency of the average system coincides with (1 — g#)w,. The value of the damping
coefficient ¢ determines the nature of the average response. Thus, for values of £ < 1
the response is oscillatory, while for values of £ > 1 one of the modes in the response is
overdamped, while the other represents a fast transient. The damping coefficient is
also a measure of the ratio of the time constant of the output circuit w, = 1/RC to the
natural frequency w, of the LC input circuit.

Eigenspaces and affine varieties containing the slow manifold of the
controlled system

If it is assumed that the component values of the boost converter satisfy &> 1,
a time-scale separation is obtained in the nature of the response specified by the
eigenvalues of the controlled system. A fast eigenvalue A, (u) and a slow eigenvalue
4,(y1) are obtained from this assumption. This has an important bearing in the non-
oscillatory nature of the converter and it is deemed as a desirable design property. The
eigenvalue A,(y) is assumed to be large while A,(p) is assumed to be small.

The cigenspace associated to each eigenvalue is given by either one of the fol-
lowing equivalent expressions:

L U—wwe W
2w i T T e

where substitution of A(p) by A,(w) or 4,(u) identifies, respectively, the fast or slow
eigenspace. In spite of their equivalence for ue (0, 1), the first expression better
describes the slow eigenspace (eigenline) for p = 1, while either of them can be used
when u=0.

A unique feature of linear time-invariant systems with time-scale separation prop-
erties is that the slow manifolds are contained in affine varieties obtained by rigid
translation, to the equilibrium point, of the slow eigenspace. However, generally, such
varieties are not themselves global integral manifolds. This will be demonstrated in the
particular example under consideration.

Instead of introducing a singular perturbation parameter ¢, the above feature will
be used in the computation of the affine varieties containing the slow manifolds of the
system for the extreme controls u =0, u = 1 and for the variety corresponding to the
slow manifold of the average controlled system with constant duty ratio p.

For u =0, the equilibrium point is located at

xz,ss = —b_; Xl,ss = Xv;l—zb' (38)
Wo Wo

3.7
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and the affine variety containing the slow manifolds of the different state trajectories is
constituted by the straight line that contains the equilibrium point and has slope
determined by the slow eigenline direction. Using the slopes of the slow eigenlines
found in expression (3.7), with z = 0, the following equivalent definitions are obtained
for such an affine variety:

So= {xeRZ:x2= —/12(0)x1+~b—(1+/12(0)w—;>} (3
w Wo w3

4]

_ om Wo b ALO)
So_{xeRz'xz_w1+iz(0)xl+w0<w1+,12(0)>} (3.10)

where 4,(0) is the slow eigenvalue obtained from (3.6) with u = 0. Figure 3 shows the
linear variety S, and the state trajectories corresponding to different initial conditions.
In this case S, is also a global integral manifold for the system (3.1) with u=0, as is
easily verified.

le

Figure 3. Slow manifold for u = 0.

For u=1, an equilibrium manifold exists only for the output voltage variable
X,, represented by the x, axis. Using the first expression in (3.7), the affine variety
containing the slow manifold is represented by the x, axis, i.e.

S;={xeR*:x,=0} (3.11)

The family of fast (conservative) manifolds is parametrized by the value of x; in
the initial condition of the trajectory (see Fig. 4). The system is then unstable since,
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X2

Figure 4. Slow manifold for u= 1.

physically, the switch position at u = 1 corresponds to having an ideal (non-resistive)
inductor connected in parallel to a constant voltage source. In this case, again, S, is a
global integral manifold for the system (3.1) with u=1.

When the system is controlled by a switching law with constant duty ratio
1 €(0, 1), the average PWM controlled system is described by (3.2). The affine variety
containing the slow manifold of the different trajectories of (3.2) is given by any of the
following equivalent expressions:

= 2.5y, 1= HWo_ __ b A

S, {xeR =X, 1 Az(u)xl 0= we 2(8) 1 —0} (3.12)
— 2Py _%ZL”L _*,L_ __L'lzfliy -

S, {xeR ¥ x2+(1 ) Oxl 1= 0[1+(1 ) (2)]_0} (3.13)

Contrary to the previous cases, the affine variety S,, shown in Fig. 5, is not a global
integral manifold for system (3.2) with u restricted to the interval (0, 1). As shown in
the previous section, the region of the state space where a local integral manifold exists
for system (3.2) is given explicitly by the existence conditions (2.16).

The intervening fields and the gradient covector for the linear variety are given by

0 i
f(x)=(b-— W°x2)a_xj + (wow; — w1 X;) ox,

I3 5,
g(x) = Woxzbz’ - Woxla -
1 X2

(1 —ww,
do = — - edxy +dx
wy +4,(1) ! z
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Figure 5. Affine varieties containing slow manifolds.
Particularizing the existence conditions (2.16) of Theorem 5 for the dynamical

system (3.1), represented by the above vector fields, leads to the following region of
existence of a local integral manifold for the average PWM controlled system (3.2):

A2 (p)b
27 wwow, (19
(1 —pwd b(1 — ww,
[?viuz(ui B W‘]"Z N T T G

The condition <{da, g> <0 is represented by an open hemispace given by the
inequality constraint
S Wit e
(1= pwy
As was justified in the previous section we restrict our attention to the region
where the constraints (3.14)-(3.16) are valid. This unbounded subset of R? is shown in
Fig. 6. After some tedious but straightforward calculations, it can be verified that the
three lines bounding the region of interest have a common intersection point P, on
the linear variety S,. The coordinates of this intersection point P, are given by

_ blo(w) b
=T [(r“ #)zwé * W1:|

)
2 (1 — pwwow,

(3.16)

2

(3.17)
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Figure 6. Region of existence for average PWM integral manifold.

It is evident that the local integral manifold is constituted by the unbounded portion
of S, to the right of this point P,.

Example

Figure 7 depicts simulated state trajectories in a boost converter, foru=0,u=1
and a PWM control scheme with constant duty ratio u = D = 0-5. The component
values of the circuit are L =150 yuH, C =72 4F, R=10Q and E=400 V.

3.3. A variable structure control approach

The preceding developments identified a portion of S, where a local integral
manifold exists for the average PWM controlled trajectories. This portion of the
integral manifold may be utilized to synthesize an equivalent sliding mode by means
of variable structure feedback control. The simplicity of the VSC is then used ad-
vantageously in combination with the stable, non-oscillatory behaviour of the average
dynamics on the slow manifold while maintaining a complete equivalence of the ideal
sliding dynamics of the VSC scheme with the average behaviour of the PWM control
alternative.

Next, S, is taken as the switching surface § for a VSC scheme creating a local
sliding regime leading to stable equilibrium. Notice that the sliding mode will be local
due to the fact that S, does not globally qualify as an integral manifold for (3.2) and
hence Theorem 5 only applies to that portion of S, which does exhibit such a
property.
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Figure 7. Simulated PWM-controlled response and slow manifolds.

In terms of the surface coordinate value s, the switching surface is defined from,
say, (3.12) as

(1 — pwwq b Aa(w) }
S,=<{xeR¥:s=x,— —- Xy — - =0 (3.18)
g { Powi T (1= ww Ay () + w,
The VSC law is of the form
ut fors>0
u= (3.19)
u- fors<0

with 4™, u~ controls (switch positions) yet to be specified taking values in the discrete
set {0, 1}. Using the definition of s in (3.18), the distribution Ker ds is given by
(1—pwy 0 0
Ker ds = — — 3.20
AR {wl + 2,0 8%, T o, Sy
The invariance condition f + ugg(x)g € Ker ds on s = 0 translates, upon use of the
corresponding vector field expressions above, into

Wo A2 (1)bw, jl
— L wyxy+ s+ b |(u—ugg) =0 3.21
g g+ e (20
that is:
- (3.22)

which means that, along the valid portion of S,, the average behaviour of the PWM
controlled system and the ideal sliding dynamics are totally equivalent. As expected,
the necessary and sufficient conditions for the existence of a sliding mode on §,,
obtained from Theorem 2 (or, equivalently, from condition (2.5)) lead to the
determination of the region of existence, totally coincident with that found for the
local integral manifold of the average PWM controlled system (3.2). The variable
structure control law guaranteeing the existence of a sliding motion on S, is obtained
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from condition (2.5) as

WoW, [ lz(#)b b ] +
— i+ 207+ = [fp—uty <0 323
it A T A pwd Ty [T )
for s> 0 and
wow, [ Az ()b b ] =
et by 4 227 L fu—ut >0 324
wrt ) T T g Ty [T i
for s < 0.

It then follows that the variable structure control law guaranteeing the existence of
a sliding motion on S, is given by

ut=+1 fors>0
u= (3.25)
u =0 for s<0
whenever
Ay (u)b b ]
X, + = +— (>0 (3.26)
[ (- owy
which along s = 0 is equivalent to
A (u)b
5 _Aab (3.27)
(1 —pwow,

i.e. a sliding motion exists on S, to the right of the point P, confirming our previous
result for the PWM controlled case. In spite of the local character of the sliding
mode, the switching logic (3.25) guarantees global reachability of the portion of S,
where such sliding motion exist, even from the region to the left of the point P,.
As demonstrated generally, to the left of the point P, on S, a sliding mode does not
exist with the switching logic (3.25). A sliding mode still can be created on §,, in this
region, with a reversed switching logic to that of (3.25). It is clear that on an open
neighbourhood of the point P, a sliding mode does not exist in general.

Notice that any of the average PWM controlled trajectories, totally contained
within the existence and transversality region determined by (3.14)—(3.16) and leading
to S, after a fast transient, also qualifies as a one-dimensional integral manifold in R?
parametrized by the initial conditions. These manifolds globally sustain a sliding
motion leading to stability on the slow portion contained in S,. However, the analytic
expression for these class of manifolds makes them extremely impractical as sliding
surfaces due to electronic hardware implementation of transcendental functions of
logarithmic nature. The proposed approach, using the slow manifold characterized by
a linear variety, exploits simpler expressions for the sliding surface S, and involves
only measurement of output voltage and input current while being realizable with
operational amplifiers and resistors.

4. Conclusions and suggestions for further research

By establishing an ideal equivalence among VSC and PWM control schemes, a
design procedure has been found which proposes the creation of a sliding regime on
the integral manifold of the average PWM controlled system. The advantages of a
VSC option over a PWM control alternative lie in the hardware simplicity and closed-
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loop robustness. If, on the contrary, a PWM control scheme is still preferred, the
proposed design procedure allows for the computation of the necessary duty ratio as a
truly feeedback control law. The duty ratio is obtained as the equivalent control
associated with the designed sliding manifold. Using either scheme, the ideal average
behaviour of the controlled plant is guaranteed to be identical. Necessary and
sufficient conditions for the existence of a local integral manifold for the average
PWM controlled system are represented by the existence of a local sliding mode on
such an integral manifold. Alternatively, the existence of a sliding mode on a certain
manifold guarantees that such a surface also qualifies as an integral manifold for an
idealized average PWM controlled response. In both cases the equivalence of the duty
ratio to the equivalent control was established. This result unifies both approaches
and renders an equivalence which can be used to cast the design issues, associated
with PWM control techniques, into a geometric framework with the advantages of a
more intuitive and systematic methodology.

In realistic applications, high-frequency switchings or high-frequency duty cycles
are necessary to approximate the ideal behaviour exploiting the equivalence among
both approaches.

The method was used to obtain a VSC law leading to a sliding mode on an affine
variety containing the slow manifold of the boost converter. Such a possibility was
derived from desirable time-scale separation properties among the LC input filter
natural frequency and the RC output circuit time constant. Being only a local integral
manifold, the affine variety does not globally satisfy the sliding mode existence con-
ditions. However, its simplicity makes it attractive for hardware implementation since
the switch position is determined only from sign information (i.e. on bit data) about
an affine functional of the converter’s state.
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