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VARIABLE STRUCTURE CONTROL OF FLEXIBLE JOINT MANIPULATORS

Hebertt Sira-Ramirez* and Mark W. Spong**

Abstract

In this article we study the robust control of robot manipulators with
flexible joints. Our results are based on the nonlinear model developed in
ref. [17] which is globally linearizable via diffeomorphic state coordinate
transformation and static nonlinear state fecdback. An outer-loop control
based on the sliding mode theory of variable structure systems is pro-
posed for robust tracking. A nontrivial eighth-order example, repre-
senting a two-link elastic joint manipulator, is presented.

1. Introduction

Most of the theoretical control results for robot manipu-
lators have been based on models which assume perfect
structural rigidity. Recently it has been experimentally
confirmed [22] for a large class of robots, such as those
with harmonic drive transmission, that the joint flexibility,
if uncontrolled, is a major limiting factor to higher perfor-
mance. For control systems designed using rigid dynamic
models the best one can do is to “detune” the closed-loop
system so as not to excite the unmodeled resonant flexible
models of the system. The drawback to this is that these
unmodeled resonant modes lie within the frequency range
of the desired closed-loop bandwidth. In other words,
detuning the system to avoid excitation of the joint flexi-
bility is possible only at a cost of degraded performance.
The alternative, which we pursue in this article, is to base
the controller design on more realistic models which
account for the joint flexibility explicitly. Our results in
this article are based on the flexible joint model of ref. [17]
which is shown in that reference to be globally feedback
linearizable via diffeomorphic coordinate transformation
and nonlinear static state fecdback. The global linearizabil-
ity of the system in this manner in a nonlinear “inner
loop” allows the design of an “outer-loop” controller which
robustly stabilizes the linearized dynamics around an equi-
librium point or equilibrium trajectory [16]. Variable struc-
ture control and its associated sliding regimes [23-25] are
used for the outer-loop controller design. A linear switch-
ing (sliding) surface is proposed on which a globally stable
sliding motion is created for the linearized system. Inver-
sion of the linearizing state coordinate transformation
provides a nonlinear sliding manifold where the original
coordinates exhibit a globally stable behavior of robust
nature.

The article is organized as follows. Section 2 presents the
model from ref. [17] for manipulators with flexible joints.
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Section 3 discusses the global state space diffeomorphism
and nonlinear inner-loop contro! law that reduces the
system to Brunovsky canonical form. Section 4 presents a
variable structure control approach for the design of the
outer-loop tracking controller. Section 5 discusses robust-
ness issues and Section 6 presents a controller design
example for a two-link manipulator with flexible joints.
Conclusions and some suggestions for further research are
presented at the end of the article.

2. Modeling

We consider an n-link manipulator with flexible joints.
For simplicity, we treat the case of revolute joints actuated
by DC motors, and model the flexibility of the ith joint as
a linear torsional spring with spring constant &, := k for
all i. The same techniques and resuits, however, are appli-
cable for prismatic joints and for nonlinear springs. The
results here, in fact, are unchanged if we allow a spring
with any force/displacement characteristic $(A#), where
Ad is the angular displacement of the spring as long as the
spring characteristic is describable by a diffeomorphism
¢: R—- R,

Because of the additional degrees of freedom introduced
by the elastic coupling of the motor shaft to the links, we
model the rotor of each actuator as a “fictitious link,” that
is, as an additional rigid body in the chain with its own
inertia. Thus the manipulator consists of n “actual” links
and n “fictitious” or rotor links. Referring to Figure 1, let
q=(qy...» g2,)" be a set of generalized coordinates for
the system where

gy = theangleof link i, i=1,...,n, (2.1)

(22)

10 j =1
gy = o i=1,...,n,

where 8, is the angular displacement of rotor i/ and m; is
the gear ratio. In this case then g,; — ¢,,_; is the elastic
displacement of link i.

Rotor i

ri2Jj

Figure 1. _FElastic joint



We next define the n-dimensional vectors q, and q, as

T
=995+ 92.-1) > q, = (42,44,-~-,42n)T-

Under the modeling assumptions of [17] the equations of
motion are found from the Euler-Lagrange equations as

(2.3)
(2.4)

D(a,)d4, + c(qd,) + K(a, - q;) = 0,
Ji, ~ K(Ql - ‘12) =u.

The n X n matrix D(q,) is symmetric, positive definite
for each q,. J is a diagonal matrix with the actuator
inertias (reflected to the link) along the main diagonal. The
vector ¢(q,,q,) contains Coriolis, centripetal, and gravita-
tional forces and torques, K = diag(k,,..., k,) is the di-
agonal matrix of joint stiffness constants,\and u =
(uy,...,u,)T is the input vector of generalized forces pro-
duced by the actuators.

In case all joints are perfectly rigid it is shown in ref.
[17} that the model (2.4)-(2.5) reduces to the usual rigid
joint model

(D(q)) + )Gy + (g1, ) = u. (2.5)

3. Fecdback Linearization

It is well known that the rigid robot equation (2.5) may
be globally linearized and decoupled by nonlinear feed-
back. This is just the familiar inverse dynamics or com-
puted torque control scheme which transforms (2.5) into a
set of double integrator equations which can then be
controlled by adding an “outer-loop” control [16].

The above technique of inverse dynamics control is now
understood as a special case of a more general procedure
for transforming a nonlinear system to a linear system,
known as external or feedback linearization. :

Definition 3.1:

A nonlinear system

% = f(x) + }n: g.(x)u;

im1
= f(x) + G{(x)u 3.1)
is said to be feedback linearizable in a neighborhood U, of
the origin if there is a diffeomorphism T: U, - R" and
nonlinear feedback

u = a(x) + B(x)v (3.2)
such that the transformed state
y = T(x) (33)

satisfies the linear system

y = Ay + By, (34)

where (A4, B) is a controllable linear system.

Necessary and sufficient conditions for a system of the
form (3.1) to be fecdback linearizable are given in ref. [6].
In ref. [17] the model (2.3)-(2.4) was shown to be globally
feedback linearizable. This result is extremely important
for control design. It is known [16] that the structure of
fecdback linearizable systems allows the design and imple-
mentation of highly robust nonlinear control algorithms,
such as the sliding mode design detailed here.

We will briefly summarize the feedback linearization
result for the model (2.3)-(2.4) before proceeding with the
robust outer-loop control. We first write the system
(2.3)-(2.4) in state space form by defining state variables

X, = qQ, X, ={q,,
1= G 2 =4 (3.5)

X3 = {3, X4 = @,

Then from (2.3)-(2.4) we have

X, = X,, (3.6)
X, = —D(xl)_l{c(xl,xz) + K(x, - x;)}, (3.7
iJ =Xy, (38)
X, =JK(x; ~ x3) + J " lu. (3.9)

Since the nonlinearities enter into the second equation
above, while the control appears only in the last equation,
it is not obvious that the system is linearizable nor can u
immediately be chosen to cancel the nonlinearities as in
the case of the rigid equation (2.5).

Consider now the nonlinear state space change of coor-
dinates

Y =Ti(x) = x,, (3.10)
V2= (x) = T = x,, (3.11)
¥ = Ty(x) = Tz

= = D(x;) {e(xy,x,) + K(x, — x3)}, (3.12)

Nu=Tx) =T
= - 2D elxnx) + K~ x3))

d
"'c—(‘D(xl)-l(c(xlvxz)

ax,

_if d¢
-D(x,) K

X, +
+K(x; ~ "3))) + K(x, ""4)}

= fo(X1, X5, %3) + D("l)_lkx.u (3.13)



where for simplicity we define the function f, to be
everything in the definition of y, above except the last
term, which is 10 'K, Note it x4 uppears only i this
last term so that f, depends only on x,, x,, and x,.

The above mapping is actually a global difteomorphism.
Its inverse is found by inspection to be

X, =Y, (3.14)
X,=Y,, (3.15)
x; =y + KH(Dy)y + e(yny:)),  (3.16)
X4 = K_lD(Y1)(Y4 - fA(thZsh))- (317)

The linearizing control law can now be found from the
condition

Y4 =V, (318)

where v is a new control unit. Computing ¥, from (3.13)
and suppressing function arguments for brevity yields

s My _ af,
y= Ex—lxz - EX—ZD '(c + K(x, = xj)) + b—;;x‘

d
+ Z[D“]Kx‘ + DTK(J K (%, — x;3) + T M)

= —B7 (x)a(x) + 7' (x)u,

where B~} (x)a(x) denotes all the terms in (3.19) but the
last term, which involves the input u, and 87! :== DK/ L,

(3.19)

Solving the above expression for u yields
u = a(x) + B(x)v

With the nonlinear change of coordinates (3.10)-(3.13)
and nonlinear feedback (3.20) the system (3.6)-(3.9) now
has the linear block form

(320)

y=

ocoQCo
OO O~
OO ~NO
O~NO O
-~ OO

= Ay + By, (3.21)
where I = n X n identity matrix, 0 = n X n zero matrix,
yT = (5 yS ¥5. &) € R*, and v € R”. The system (3.21)
is (modulo a reordering of the equations) said to be in
Brunousky canonical form.

The nonlinear control law (3.20) is not completely deter-
mined until the function v is specified. Since v is the
control input to the linear system (3.21) it can be designed
to control the linear system (3.21). For example, linear
optimal control methods or pole placement technique can
be used to design v. In the next section we will discuss a
variable structure design for v in order to guarantee ro-
bustness to parametric uncertainty in the inner-loop con-
trol (3.20). '
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Remark:

It is easy to determine from the linear system (3.21)
what the response of the system in the y, coordinate system
will be. The corresponding response of the original coordi-
nates X, is not necessarily easy to determine since the
nonlinear coordinate transformation (3.10)—(3.13) must be
inverted to find the x,. However, in this case the trans-
formed coordinates y, are themsclves physically meaning-
ful. Inspecting (3.10)~(3.13), we see that the variables y,,
¥;» ¥3, and y, are n-vectors representing, respectively, the
link positions, velocities, accelerations, and jerks (deriva-
tive of the acceleration). Since the motion trajectory of the
manipulator is typically specified in terms of these quanti-
ties [7), they are natural variables to use for control.

4, A Variable Structure Control Approach

Variable structure control of systems through sliding
regimes has been the subject of extensive investigations for
the last 30 years. The reader is referred to the work of
Utkin [23-25] and Itkis {19] for complete details on the
historical aspects of the approach and its wide range of
applications. For the application of variable structure the-
ory to the control of rigid manipulators the reader is
referred to ref. [15].

The approach is based on the specification of a sliding
surface or sliding manifold where the system state is forced
to evolve thanks to active switchings among available
feedback control laws. These laws are designed to bring
the state trajectory to the vicinity of the surface and
maintain it there in an “overshoot and correct” fashion,
The static relationships among the state variables describ-
ing the surface are imposed on the dynamic equations of
the controlled system. As a consequence of this, the state
variables used as dependent variables to describe the
surface lose their character of independent state variables
and can be discarded in the description of the resulting
reduced order manifold-constrained dynamics. The result-
ing state equations specify a behavior which is largely
independent of the original system parameters and de-
pending instead on the design parameters used for the
synth'éhis of the sliding-surface equations. If a sliding’ mo-
tion can be created and the manifold conditions are satis-
fied in an average sense, the surface parameters totally
determine the dynamic evolution of the controlled system.
The sliding surface is thus designed to bestow desirable
characteristics to the average ideally manifold-constrained
motions of the system. In what follows we assume that
both the original vectors x;, and the transformed vectors y,
may be used for feedback, and we consider the robust
control problem.

Following [19], we consider the transformed system:

=Y
2= Y,
¥ = Yo
Vo= V.

(4.1)

)



This system represents n uncoupled fourth-order
tems of the form:

subsys-

P = Yais

Y2 = Vs .

. (4.2)
Y3i = Yais

Y = ¥

On each subsystem a switching function is defined as

3

=X M Vi  Yair
Jj=1

(43)

then the set

3 \\Q-\
S = {Y € R 5= Z m; ¥ + Yy = 0} (4.4)
J=1

defines a sliding surface for the ith subsystem and estab-
lishes an algebraic relationship among the subsystem state
variables. If, in particular, we choose y,; to act as the
dependent variable in the submanifold definition in (4.4),
then y,; does not qualify as a state variable under ideal
sliding-mhotion conditions (i.e., if the surface equation is
exactly satisfied) and it is to be discarded from the system
description in sliding mode. The function s, is addressed
as the surface coordinate function and it is useful to obtain
a differential equation describing its evolution in terms of
the undiscarded state variables. The ith subsystem equa-
tions can be written as

Yu=Yune  J=L23i=1..n, (4.5)

3
$; = mys; + Z ['"i(j—l) - mi3mij]yji + ¥, nyg = 0.
j=1 ‘

(4.6)

1f a sliding motion can be created on s, = 0 by means of
an appropriate VSC law,

v fors; >0,

! vy fors, <0,

4.7

the resulting reduced order dynamics, ideally evolving on
the sliding surface, are described by
j=12,i=1,...,n,

Vi = Vi

(4.8)

3
M= Z my V.

j=1
Each subsystem is then totally governed by the design
coefficients of the switching surface m;; and therefore the

stability of the controlled system depends on the choice of
these design parameters. In the case at hand, stability is
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guaranteed whenever the m, , coefficients are chosen as

mpmyy—my>0,i=1,...,n.

(4.9)

m, >0, j=1,23,

The smooth control input which makes S; into an in-
variant surface for the state trajectories is obtained from
the following invariance conditions:

s; =0, ;=0 (4.10)
as
3
Vigg= — E ['"i(j-l) - miz’”ij])’ji- (4.11)
J=1

This control is known as the equivalent control [23]. Its
existence constitutes a necessary condition for the creation
of a sliding motion on the sliding surface.

A necessary and sufficient condition for the existence of
a sliding regime on S; is that the following existence
conditions be satisfied:

lim §,> 0. (4.12)

5= -

lim §; <0,
5 +0

It follows from (4.11) and (4.12) that these conditions are
equivalent to

v‘." > ¥ ks (4 13)
v, < ¥ EQ-

A variable structure control law that satisfies the ex-
istence conditions is synthesized by

v; = —\|v, golsign s;, A > L (4.14)
A second possibility is to prescribe a linear control law
with variable structure gains of the form:

3
V= - Z Vi Yjir (4.15)
jml

with y,; taking two possible values {¥/5 ¥i;)- Substituting
the controller expression in the differential equation for s,
and imposing the existence conditions (4.12), the following
variable structure gain switchings law is obtained:

e i > Mgy~ mgm,; for sy, >0,
= ¢/—/ < Mij-1 —msm,, for 8 ¥ < 0, (4.'(’)

j=1,2,3, i=12,...,n

The above approach generates, upon inversion of the
linearizing transformation, a set of nonlinear sliding
surfaces and a nonlinear variable structure control law
whose switchings are also determined by nonlinear condi-
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Figure 4. (a) Link 2 position (radians). (b) Link 2 velocity (radians/sec)

outer loop model (5.3), where a sudden change of 100% in
the nominal values of the perturbation terms ¢ and  was
allowed during sliding motion. The SIMNON nonlinear
simulation package was used in the simulations. The in-
sensitivity of the controlled motion to the parametric per-
turbations is clearly demonstrated by these simulations.

7. Conclusions and Suggestions for Further Research

In this article the concepts of global feedback lineariza-
tion and variable structure control have been combined to
design a robust control law for flexible joint manipulators.
Diffeomorphic state coordinate transformation and nonlin-
ear static state feedback account for the exact linearization
in an inner-loop stage, while an outer-loop variable struc-
ture control law is designed to achieve robustness to
parameter uncertainty and external disturbances.

The simplicity of the linear Brunovsky form not only
allows for a straightforward specification of stable sliding
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Figure 5. (a) Outer-loop control »;. (b) Outer-loop contrel v,

surfaces and switching laws but also allows the demonstra-
tion of the robustness of the variable structure controller
in a transparent manner.

It should be pointed out that in order to achieve the
robustness to parameter uncertainty, the proposed scheme
requires for its implementation the measurement or esti-
mation of the transformed state variables, which in this
case are the vectors of joint position, velocity, acceleration,
and jerk. It is, of course, a tautology that any state
fecdback control algorithm requires fecdback of the system
state. An interesting topic for future research would be to
include a robust state estimator as part of the overall
control, scheme to overcome the difficulties of measuring
directly the joint acceleration and jerk.

Since the Brunovsky form used here is independent of
the joint stiffness, the proposed control algorithm may
become ill-conditioned for manipulators with very stiff
joints. This is because, for very stiff joints, the system is
“nearly” a system of coupled second-order equations rather



than fourth-order equations. In this case, the results of
refs. [11], [12], and [18] can be used to exploit the resulting
two-time-scale behavior. It would be of interest here to
investigate the properties of the variable structure con-
troller here as the joint stiffness k — co.
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