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Nonlinear Variable Structure Systems in Sliding Mode:
The General Case

HEBERTT SIRA-RAMIREZ

Abstract—The problem of inducing jocal sliding regimes on smooth
state-space surfaces of nonlinear single-input single-output controlled
systems is addressed in full generality, The notion of relative degree, in its
more general form Is used in establishing the most salient features of
nonlinear controlled systems undergoing sliding motions, including their
characteristic disturbance rejection properties.

I. INTRODUCTION

In this note, we examine the properties of general single-input single-
output nonlinear variable structure controlled systems operating in sliding
mode (1).

It is found that a sliding regime locally exists on the zero level set of the
output function, if and only if the nonlincar system has relative degree
{2], 3] equal to one. The corresponding n — 1 dimensional zero
dynamics precisely coincides with the /deal sliding dynamics [1] in local
surface coordinates. Using the ideas in [3), the problem of inducing
sliding regimes on systems with relative degree higher than one is
examined. The disturbance rejection properties of nonlinear systems
undergoing sliding motions are also analyzed and a general matching
condition is found.

In Scction IT we present some background material about a generaliza-
tion of the relative degree concept. normal forms. and zero dynamics
New and gencral results about sliding motions, in general nonlinear
systems, are presented in Section 111, Section 1V contains the conclusions.

1. BACKGROUND AND MAIN RESULTS
A. Relative Degree, Normal Forms, and Zero Dynamics

Consider the smooth single-input single-output nonlingar system of the
form
dx/dt = X (x, u)

. y=h(x) (2.1)

focally defined for all x € 0, an open set in R". We often refer to (2.1) as
the pair (X, h).

The smooth level set A~'(0) : = {x € 0: h(x = 0}, locally defines the
sliding manifold. The gradient of h(x). denoted by dh, is locally
assumed to be nonzero almost everywhere on h~'(0) and it is oriented in
such a way that dh locally points from the region where A (x) < 0 towards
that where h(x) > 0.

The Lie derivative [4) of a scalar function &(x). with respect to a
smooth vector field X, locally defined on 0. is denoied by Lxo. In Jocal
coordinates, Ly¢ is expressed as Ly¢ = (36/8x)X. For any positive
integer &, one recursively defines Lia(x) = Lylli 'o(x)] =
[8(L*- 3 (x))/0x1X. ~

Remark: Lie derivatives constitute an efficient shorthand notation for
time derivatives of scalar functions along solutions of differential
equations. For instance, with reference to (2.1), dy/dt = (dh/dx)dx/dt
= (3h/0x)X =: Lyh (also expressed as <dh, X>). d*y/di? =
[8(Lxh)/3X)X = LLyh) =: L}h. For any integer r, d’y/dt’ = L'h.
Suppose d/y/dt/ is locally independent of w, for j = 0, 1,2, -+, k. then
Adly/di*V/ou = 0, ie. BILLKI/du = BLALY \HNOu =
B@B(LY - h)/ax)X)/ou = [O(L* " h)/ax{(3 X/ du) = Loyl % th =
0.
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Definition 2,1; The pair (X, h) has relative degree r at x°, if d*y/dt*
does not explicitly depend upon u, locally around x°, foraitk < r - I.
In other words

Lixny Lih(x)=0  forall xin N, and all k<r-1

L;nnL;"’l(Xo)*o 2.2
with A being an open vicinity of x° contained in 0.

Proposition 2.2 3]: Let (2.1) have local relative degree r on x°. Set
o:(x) = Lig'h(x)fori = 1,2, -, r, while the functions ¢,.,(x),j =
1,2, '+, n = r, are chosen to be functionally independent of the first r

_ functions, with the only additional requirement that, locally around x°, '

Loxsaubrs; =0 for all j's, Define new £ coordinates as 2 = €(x) with
d(x) = col [¢(x), ', ¢a(x)] being & local diffeomorphism [4] on N.
The transformed system, said to be in normal coordinates, is locally
expressed, around 2° = ®(x°) as

dz/dt= 2, I=1,2, vy r=1
dz,/dt= L5 hY®(2), ¥)
dz..,/dt=qfz) J=1,2,  n=r, y=z,. (2.3)
Proof: Obvious from the choice of coordinates. [m]

Remark: If initial conditions of (2.1) are set on M (i.e., on ;, = 0),
then the components 2, * -+, Z, of the normal coordinate vector 2 are all -
zero, Hence, any point x° on M is expressed, in normal coordinates, as:
(0, n) where n = ¢0l (o4, ** *, 24). If, furthermore, a feedback controt v
= o(2) is used such that {L%A) (¥ (), #(2)) = Olocally around z°, the
evolution of the controtled system locally remains on &~ 1(0). (By virtue of
the definition of local relative degree. and the Implicit Function theorem
(4], such an ox(z) is locally guaranteed to exist around z° and, moreover, it
is uniquely defined.)

Definition 2.3 [2]): The dynamic behavior of the system (2.1), with
initial conditions set on A~ '(0), and feedback control input &(z) such that
the quantity dz/dr = [L%Ah] (¥ ' (2), $(2)) = 0, described in normal
coordinates by

dn/dt=q(0, n)=qo(n) 2.4)

is addressed as the zero dynamics. ]
Assumption: It is assumed throughout that y = A(x) has been chosen
to make the system (2.4) asympiotically stable (i.e., it is globally
minimum phase {2}).
Lemma 2.4: The relative degree of a system is a feedback invariant.
Proof: For a system with feedback v = w(x, v), the time derivatives
of y are locally independent of u if and only if they are locally independent
of v. [m}

[1I. SLIDING REGIMES IN GENERAL NONLINEAR SYSTEMS
A. Generalities about Local Sliding Regimes

A local variable structure feedback control law for (X, k) is obtained

by letting
R A )]
“ {u “(x)

with 4* (x} > u~(x), locally on a neighborhood N of x°,

Definition 3.2 [1], [5]: A sliding regime is said to locally exist on an
apen set M of A '(0). if, as a result of the control policy (3.1), the state
trajectories of (2.1) satisfy

Jim dy/dt= Jim Lxgecnh

for h(x)>0

for A(x)<0 L)

= lim (dh, X(x, (D) <0
nliro“' dy/dt= .'-i.T- Lyxuu-unh

-hlir‘p_ {dh, X(x, u~(x)) >0, 3.2)
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Theorem 3.3: A sliding regime locally exists on an open set M of
h-%0) for some discontinuous control law of the form (3.1), if and only if
the system (X, h) has local relative degree equal to 1.

Proof: Necessity is obvious from (3.2). To prove sufficiency,
suppose Laxsah(x) = 8(Lxh)/3u # 0 locally around x°. Let e~ (x)bea
smooth, locally strictly positive function of x. Then, by virtue of the
Implicit Function theorem, the equation [Lyh)(x, u) = ¢ (x) locally has
a unique smooth solution & = =" (x) such that Ly ey (x) = €7 (x) >
0. By the same arguments, given a smooth locally strictly negative
function ¢ * (x), a smooth control law & = u;*(x) locally exists around x*
such that Ly ueranft(x) = €(x) < 0. Hence, a sliding regime locally
exists on an open set H of &= 1(0) since (3.2) is satisfled hy the variable
structure feedback control law u*(x) = u~*(x) for A(x) < 0 and ¥~ (x)
= u*t(x) for h(x) > 0. 0

Condition Lax/at # 0, is a general local iransversality condition [5).

Example: For systems of the form X(x, u) = f(x) + ug(x), y =
h{x), the local transversality condition akes the form L4 < 0.

For all injtial states located on a vicinity M of x in h~'(0), the unique
control function, #£@(x), locally constraining the system trajectories to
the manifold y = A(x) = 0, in the region of existence of a sliding regime.
is known as the equivalent control, The resulting dynamics, ideally
constrained to M, is the Ideal sliding dynamics (1], and it evidently
coincides with the zero dynamics of (X, h). A coordinate free description
of such dynamics is

dx/dt= X (x, u¥e(x)). 3.9

Since M becomes, locally an integral manifold [4) for (3.3). It follows
that the gradient of A is locally orthogonal to the controlled vector field
X(x, u¥e(x)), e,

Lyuutouh(x)={dh, X(x, u"9(x)))=0. 3.4

Theorem 3.4: A necessary condition for the local existence of a sliding
regime on an open set M of 4~'(0) is that there locally exists a unique
smooth equivalent control, ¥#Q(x), satisfying

o (x)<ufd(x)<u (x) 3.9

for the given smooth feedback functions u~(x) and u*(x).

Proof: To prove uniqueness, notice that if a sliding motion tocally
exists on M, then (X, &) has local relative degree 1, i.e., Loxa,(x) # 0
for all x in a vicinity N of x° By the Implicit Function theorem the
equation [Lyh] (x, u) = 0 has, locally, a unique solution ¥&Q(x) in M for
which (3.4) holds valid. Hence, If a sliding regime exists, the equivalent
control locally exists and is uniquely defined.

Suppose now that a sliding regime locaily exists on M for the switching
feedback control law (3.1). Then, locaily on M, the following three
relations hold valid: ’

Lxwutunhm(dh, X(x, u*(x)<0 3.6
LyyuE0unh = (dh, X (x, u50(x))) =0 (e8]
Lxpu-unh={(dh, X(x, u-(x))>0, (3.8)
Subtracting (3.7) from (3.6) and (3.8) from (3.7) one obtains
' {dh, X(x, u*(xX) = X (%, 452(x))} <0
{dh, X(x, uf@(x))=X(x, u~(x)))<0. 3.9

From the Mean Value theorem, there exists smooth functions w7 (x) and
u; (x), such that locally on M

{dh, X (x, 1 (x)) = X (x, u®(x)))
e [+ (x) - uE(x)) (dh, X (x, ug (x))/u) <0

(dh, X (x, w™(x) - X(x, u~ (x)))
={uEQ(x)—u = (X)){ah, dX (x, ug (x)/u)<0 (3.10)

where 2 (x) and 17 (¥), respectively, satisfy #50(x) < v 2 (x) < u ! (x)
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and - (x) < u,”(x) < uFQ(x), i.e., locally on M, u~(x) < uke(x) <
ut(x), 0

Example: Let X(x, u) = f(x) + ug(x) be such that, locally on an
apen set M of A~ 0), Lyh < 0. LyguErh = Lk + uS Lok = 0
implies ugg = =~ Lyh/L,h. ic., the equivalent control locally exists and
is uniquely defined. Furthermore, if a local sliding motion exists on an
open set M of h~'(0), we locally have on MiLsh + u~Lh < Oand Lsh
+ 'L > 0. This impties that there exists smooth functions a(x) > 0
and b(x) > 0. such that a(x) [Lh + u* L) + b(x)Lh + u"lhh =
la(x) + b Loh + laleu’ (x) + blx)u~(x))g(x) = 0,l.e., Lsh +
Lot lalxu® (x) + blodu~ (x)[a(x) + b(x)] = 0, ie, u"(x) <
ta(xdu (x) + bl () alx) + b(x)) = uE(x) < u*(x) locally on
M 0

Defintion 3.5: Let (X, h) have local relative degree | on x” € A~ '(0).
The system (X, h) is said to exhibit a local control foliation property
about the manifold 4~ (0), if and only if given smooth feedback functions
u(x) < uyx) < wy(x), defined on M, then, [Lyh) (x, ) > [Lyh] (x,
u) > [Lyh) (x, ty), locally on M, (See [6] for the singularly perturbed
case.) O .

Theorem 3.6: Control faw (3.1) locally induces a sliding regime, for
system (X, h). on an open set M of k=~ '(0), if and only if (X, k) exhibits a
control foliation property about A~'(0), and there exists a feedback
control #59(x) locally satisfying both (3.4) and (3.5) on M.

Proaf: Suppose that, thanks to a control action of the form (3.1), the
system localty exhibits a sliding regime on an open set M of A~ '(0). Then,
according to Theorem 3.4, there necessarily exists a unique smooth
uEQ(x) satisfying u™(x) < wEQ(x) < u*(x)locally on M. Since a sliding
motion exists on M, it follows that {Lyh] (x, ¥~ (x)) > O, {Lxh) (x,
uEQ(x)) = 0, and [Lyh] (x, u*(x)) < 0, locally on M, i.e., [Lxh] (x,
u=(x) > (Lxh) {x, uBQ(x)) > [Lyh) (x, u*(x)) on M. Hence, (X, &)
exhibits & control foliation property.

If, on the other hand, the system (X, A) exhibits a control foliation
property and u£@(x) exists such that locally on an open set M in h-'(0),
[Lyh) (%, uEQx)) = 0 and u*(x) > uEQ(x) > u=(x). Then, it follows
that [Lyh] (x, u=(x)) > [Lxh] (x, u¥0(x)) = 0 > [Lyh} (x, u=(x)).
Hence, necessarily, [Lxh) (x, 4*(x)) < 0 and [Lyh] (x, u"(x)) > O
holds true on M. It follows that there exists an open neighborhood M of x°
€ 0, with nonempty intersection with &~ '(0). where conditions (3.2) are
satisfied. Thus, a sliding regime locally exists on 4 0).

Example: Notice that for X(x, u) = flx) + wug(x), and if the
transversality condition L4 < 0 holds locally true, the control foliation
property is triviaily satisfied. It follows that, for affine systems, the
condition v~ < 49 < - is both a necessary and sufficient condition for
the existence of a sliding regime (see [5)).

B. Sliding Regimes in Variable Structure Systems with Relative
Degree Higher Than One

If, for the proposed output function y = h(x), the system locally
exhibits relative degree 7, higher than 1, on x°, then, an alternative to
create a local sliding motion, which eventually reaches A='(0), is to use
the auxitiary output function (see [3) for the basic idea in local feedback
stabilization)

wek(x)m L A(x)+ ¢ L h(x) + o H o Leh(x) +6h(x) (.11
or, in normal form coordinates

WRZL 0t H 2t ol (3.12)

Evidently, Lyx/a k(x°) = Lgxn,,,L:{”l(X’) # 0, i.c., the system (X,
k) has local relative degree 1, and a sliding motion can now be locally
created on an open set of k~'(0). Then, ideally, w = O and 2, = ~
Cragloy = 00 =123 = 2. The ideal sliding system, associated with
the new sliding surface k- '(0), is expressed as

dz/dimz,,; w1, 2,000, r=2

Az, /At =2 —C 321 =~ O 2= G0y

R T (3t ST REER X R LION
Jml, e

dz,.,/dt=q(2, 22, *

Lets "t 20)
y=2,, w=0

yh=r
(3.13)
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Tt is casy to see that by suitable choice of the parameter ¢, '+, ¢,.3, an
asympiotically stable motion can be obtained for the first 7 - 1 normal
coordinates. Thus, while a sliding motion locally takes place on &-'(0),
the original output y and its first 7 - 1 derivatives asymptotically
approach zero (i.e., the state vector of the syster approaches the manifold
h=1(0), as initially desired). The corresponding equivalent control is now
locally given, in original coordinates, as the unique solution of {Lyh} (x,
u5%(x)) = 0.

Example: For systems with affine vector fields X = f + w g and
output y = h(x) which exhibit relative degree 7 on x°, the function w =
k(x)is givenby k(x) = Li-" h(x) + Craak i 2 (x) + 0 4 oLsh(x)
+ c.h(X) and the eq\nvalem control is compulcd as uEQ(x) & ~Lk/
Lk = +CalfoVh 4 oo b elLTh 4+ el h)/LLY h. Locally,
on an open sct M of h='(0), the last expression takes the form ufQ(x) =
LA/l Ly . 0

The use of the auxiliary output w = k(x) implies the possibility of
either being able to completely measure the original state variables and
proceed to use (3.11), or else being able to gencrate 7 ~ | derivatives of
the original output function y. The last possibility is usually accomplished
by means of a high gain, phase lead, *'post-processor,'’ as proposed in
[3), fed by the output signal y(¢). The transfer function of such a post-
processor Is given by

= Kn(s)

U+ Toy G149

with 7 being a sufficiently small positive constant, K a sufficiently large
gain with, locally, the same sign as Loxa L’ 'A(x). n(s) is a stable
-polynomial built a8 A(s) = s'~' + ¢, 381 + 0+ o5 + €,

C. Disturbance Rejection Properties of Systems Undergoing Sliding
Regimes

Consider a smooth nonlinear perturbed system of the form
dx/dt= X (x, u, w)

y=h(x) (3.15)

where w is a scalar perturbation signal affecting the system behavior. Let
us assume that the system locally has relative degree 1 on x°, and suppose
the input w is assumed to have local relative degree higher than 1 with
respect to the output function h. In normal form coordinates, the
perturbed system is written as

dz /dt=(Lxh)($-'(2), u, wy=[Lyh[(¥}(2), u)

dn/dt=q(zi,n W) pyez. (3.16)

If a sliding motion can be created on 2, = 0, the equivalent control
u®(2), Is clearly unaffected by the perturbation signal w, slthough the
ideal sliding motion may still be affected. The following lemma follows
immediately,

Lemma 3.8: Let (X, k) have local relative degree 1. The existence of a
local sliding motion on an open set M of h~'(0) is independent of the
perturbation signal w if and only if w has local relative degree, at least,
equal to 2, with respect to the output function 4 (x).

Theorem 3.9; The ideal sliding dynamics is totally unaffected by
perturbation signals w, of any kind, if and only if the matching condition

3X/dw € range {3.X/du} (3.17)

is satisfied.
Proof: If the zero dynamics is unaffecied by w, necessarily. Lyy.a,®,
= Qfori = 2, -, n Sincethe ¢;'s were chosen to also satisfy Ly s,
= 0,fori =2, n, it follows that IX/dw is. at Icast locally, exactly
in the range of 9X/du. On the other hand, 3.X/3w is lacally in the range
of dX/3u if and only if there exists a smooth funcuon h(x) such that,
locally on M, 3X/dw = b(x) [0X/u). Hence. fori = 2,3, +, nwe
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have aLxd/dw = Loyt = Lpwnaxnu® = 8(x) Loy ¢ = 0.
Hence, w does not affect the zero dynamics.

IV, CONCLUSIONS

In this note, the relevance of the relative degree concept has been
examined in the analysis and design issues refated to the creation of sliding
regimes for general nonliner systems. The results indicate that the
simplest possible structure at infinity must be exhibited by nonlinear
systems undergoing sliding motions on the zero level set of the output
fecdback function. General necessary as well as necessary and sufficient
conditions for the existence of sliding regimes have been presented. The
disturbance rejection properties of sliding mode control were also
examined and a generalization of the matching condition was found.
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Error Bounds in the Averaging of Hybrid Systems
J. EZZINE anp A. H. HADDAD

Abstract—This note analyzes the errors introduced by the averaging
of hybrid systems. These systems involve linear systems which can take
8 number of different realizations based on the siate of an undesly-
ing finite state process. The averaging technique (based on a formula
from Lie sigebras known as the Backer-Campbell-Hausdortf (BCH)
formula) provides a single system matrix as an approximation to the
hybrid system. The two errors discussed are: 1) the error induced by the
truncation of the BCH series expansion; and 2) the error between the
actual hybrid system and its average. A simple sufficient stability test is
proposed to check the asymptotic behavior of this ervor, In addition,
conditions are derived that allow the use of state feedback to arrive at
a time-invariant system matrix instead of averaging.

1. INTRODUCTION AND PROBLEM FORMULATION

Hybrid systems are a special class of piecewise constant time-varying
systems. Such models switch at different time instants among a finite set
of linear time-invariant realizations. Systems of this type can be used
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