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Sliding regimes in general non-linear systems:

a relative degree approach

HEBERTT SIRA-RAMIREZt}

In this paper we treat the problem of inducing local sliding regimes on non-linear
smooth surfaces defined in the state space of general non-linear controlled systems.
A suitable notion of relative degree is found to be of crucial importance in
establishing the most salient properties of non-linear systems undergoing sliding
motion. The relevance of sliding modes in several control problems as complemen-
tary ‘outer loop’ feedback is examined.

1. [Introduction

The notion of the structure at infinity of dynamical controlled systems plays a
fundamental role in the understanding of non-linear controlled dynamics. Thus far,
this concept has allowed the evolution into a non-linear setting of many basic and
long standing automatic control problems. Among these problems we find local
stabilization, feedback linearization, disturbance decoupling, interaction decoupling,
systems invertibility and non-linear adaptive control (see Byrnes and Isidori 1984,
Isidori 1985 a and the excellent introductory material in Isidori 1987, which is closely
followed in this work).

In this paper, we examine the relevance of the notion of the structure at infinity (or
relative degree) and of its associated state coordinates transformation into normal form
coordinates, in general single-input single-output non-linear variable-structure con-
trolled systems operating in sliding mode (Utkin 1978).

It is found that a sliding regime exists locally on the zero level set of the output
function, if and only if the non-linear system has relative degree equal to 1 (i.e. it
exhibits the simplest structure at infinity). The corresponding (n — 1)-dimensional
zero dynamics precisely portray the qualitative features of the ideal sliding dynamics
(Utkin 1978) in local surface coordinates. The problem of inducing sliding regimes on
systems with relative degree higher than one is also examined. The implications of the
relative degree concept in sliding mode disturbance decoupling, variable-structure
control of feedback linearizable systems and model-matching problems, via sliding
modes, are also analysed.

In § 2 we present background material on a generalization of the relative degree
concept, normal forms and zero dynamics. New results on sliding motion for general
non-linear systems are also presented in that section. Section 3 presents applications
of sliding modes in control areas such as disturbance decoupling, feedback lineariza-
tion and model matching. Section 4 contains the conclusions and suggestions for
further work in this area.
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2. Background and main results
2.1. Relative degree, normal forms and zero dynamics
Consider the non-linear smooth system of the form:

dx/dt = X(x, u)}
y = h(x)

locally defined for all x € O, an open set in R”, u: O - R, is a (possibly discontinuous)
scalar feedback input function, while, for each fixed smooth feedback control u(x), X
represents a locally smooth controlled vector field defined on O. The output function
h: O - R is a locally smooth scalar function of the state. We often refer to (2.1) as the
pair (X, h).

The level set h™'(0) ={x € Q:h(x) =0}, locally defines a smooth (n—1)-
dimensional locally regular manifold of constant rank (i.e. an integrable manifold. (See
Boothby (1975); addressed as the sliding manifold.) The gradient of h(x), denoted by
dh, is assumed locally to be non-zero on h~'(0) except possibly on a set of measure
zero. h™1(0) is oriented in such a way that dh points locally from the region where h(x)
< 0 towards that where h(x) > 0.

We shall refer to a property as local around x°, whenever it is valid on an open
vicinity N of a given point x° € O, with O o N. If the point is located on h™!(0) we say
the property is valid locally on h~1(0) if it is valid on an open set M of the submanifold
h~1(0) (i.e. on an open subset of A~ (0) " N).

The Lie derivative of a scalar function ¢(x) with respect to a smooth vector field X
locally defined on O, is denoted by Ly¢. One recursively defines, for any positive

integer k: L% ¢(x) = Ly[ L% ! ¢(x)].

.1

Definition 2.1
The pair (X, h) has locally around x° a zero at infinity of multiplicity r if

LoxjaaLih(x) = 0 brmlxthdeaHk<r-1} 22

LﬁX/iiuLS{— ! h(xo) #0

The integer 1 is also called the local relative degree of (X, h) at x°.

Example

Consider the non-linear system (2.1) with X(x, u) = f(x) + g(x)u. Then 6X/0u=
g(x). Suppose the system has local relative degree r at x°. Using Definition 2.1 we
compute, for any x in N: Lgya,h(x) = Lih=0; Loy Lxh(x) = Ly[L; g h(x)] =
L L h(x) + uL2h(x) = L,L h(x) = 0; Loxjaul3M(x) = Lo Ly, (o [L h(X) + uL h(x)] =
L,[L3h(x) + uL L h(x) + uL;Loh(x) + u> L;h(x)] = L,Lih(x) =0 .... Generally,
one obtains, Lya L%k h(x) = L,Lh(x) =0, for all k<r—1 and all x in N. Finally,
Loxsau Ly *h(x°) = L, L7 " h(x®) # 0. Definition 2.1 thus generalizes the usual defi-
nition of local relative degree (see Byrnes and Isidori 1984).

Remark

The relative degree of (2.1) is interpreted as the minimum number of times one has
to differentiate y, with respect to time, in order to have the derivative of y depend
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explicitly on u. Notice that if y® (0 < k <r) is independent of u, then 3y*/du = 0. Since
¥ = Lxh(x) = Ly[Lk ' h(x)] = {0[L& ' h(x)1/0x} X(x, u) = {0y*V/0x} X(x,u) and
since y*~ 1 is assumed to be independent of u, it then follows that, [ L% h(x)]/0u =
A({OLLE™ " W(x)1/0x} X (x, u))/du = {O[Ly ™ h(x)]/0x}0X/0u = Lox o [ Ly " h(x)] = 0. If
¥ is the first time-derivative that explicitly depends on u then, in general, 0y /ou =
Lox,eu[ L " h(x)] # 0 (i.e. not identically zero). This completely justifies our definition
of relative degree.

Proposition 2.2

Let (2.1) have local relative degree r on x°. Set ¢,(x) = Ly 'h(x) fori=1,2,...,r,
while the functions ¢, . j(x),j = 1,2, ..., n —r, are chosen to be functionally independent
of the first r functions, with the only additional requirement that, locally around x°,
Lox/ou®,+;=0 for all js. Define new z coordinates as z= d(x) with ®(x)=
col [¢,(x), ..., d,(x)] being a local diffeomorphism on N. The system (2.1) is locally
expresssed, around z° = ®(x°) as

dz;fdt =z, ,,, i=12,..,r—1
dz, /dt = [Lxh](®@ ™' (2), w)

2.3)
dz,,;/dt=qyz), j=1,2,...,n—r
y=2z;
Proof
Obvious from the choice of coordinates (see also Isidori (1987)). 0

System (2.3) is said to be in local normal form coordinates. A block diagram
depicting the structure of the system (2.3) is shown in Fig. 1.

“L l ] J
s ! L »
L 19 @.u) S

b eee ¥

a(&.n ) S 1

N

Figure 1. Block diagram of a non-linear system in normal form.
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Remark

It is easy to see, from the definition of the normal coordinates, that if initial
conditions of (2.1) are set on M (i.e. on z; = 0), then the components z,, ..., z, of the
normal coordinate vector z are all zero. Hence, any point x° on M is expressed, in
normal coordinates, as (0, 1), where n =col (z,, 1, ..., z,). If, furthermore, a feedback
control u=o(z) is used such that [Lyh](® '(z), u(z)) =0 locally around z° the
evolution of the controlled system locally remains on A~ '(0). (Note that from the
definition of local relative degree and the implicit function theorem (Isidori 1985 a),
such an ofz) locally exists around z° and it is uniquely defined.)

Definition 2.3

The description, in normal coordinates, of (2.1) with initial conditions prescribed
on an open set M of h™!(0) and feedback control input a(z) such that dz,/dt =
[L5h1(D 1 (2), a(2)) =0, locally on M,

dn/dt = q(0, 1) = qo(n) (24)

is addressed as the zero dynamics.

The qualitative behaviour of the zero dynamics is entirely governed by go(#). The
system is said to be minimum phase if the dimension of the stable manifold
(Guckenheimer and Holmes 1983), around an equilibrium point in h™'(0), is n —r.
The system is globally minimum phase if it is minimum phase and (2.4) is globally
asymptotically stable (Byrnes and Isidori 1984). From now on, we assume that
y=h(x) has been chosen to render the system globally minimum phase, i.c. the
internal behaviour of the system, while being forced to exhibit locally zero output
value, is asymptotically stable to an equilibrium point located on the manifold h~'(0).

Lemma 2.4

Let u = u(x, v) be a regular feedback law (i.e. du/dv # 0). The relative degree of a
system is a feedback invariant under regular feedback.

Proof

For a system with regular feedback, u = u(x, v), the time-derivatives of y are locally
independent of u if and only if they are locally independent of v. d
Remark

Lemma 2.4 implies, in particular, that for a non-linear system, with local relative
degree r around x°, given by dx/dt = X(x, u); y = h(x), and feedback control law,
u = ofx, v), which in closed-loop form is written as dx/dt = X(x, a(x, v)) = X*(x, v),
the equality: L%.h = L% h, holds valid for k=0,1,2,...,r— 1l and all xina neighbour-
hood of x°.

2.2. Generalities about local sliding regimes

A local variable-structure feedback control law for (X, h) is obtained by letting the
control function u take one of two possible feedback function values in the set
U = {u*(x),u”(x)}, with u™ (x) > u~ (x) locally defined on a neighbourhood N of x°,
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according to the sign of the scalar output function h(x), i..

ut(x) for h(x)>0
“TVu () for h(x) <0

(2.5)

The feedback structures u*(x) and u~ (x) are usually fixed beforehand, but they
may also be part of the design problem.

Definition 2.5 (Utkin 1978, Sira-Ramirez 1987, 1988 a)

A sliding regime is said to exist locally on an open set M of h~!(0), if, as a result of
the control policy (2.5), the state trajectories of (2.1) satisfy

im Ly, wh= lim {dh, X(x,u"(x))) <0
h—0*

h-0+ (2.6)
lim Ly ,-ph= lim {dh, X(x,u™(x))> >0
h—-0- h—0"

Theorem 2.6

A sliding regime locally exists on an open set M of h~ 1(0), if and only if the system
(X, h), has local relative degree equal to 1 {i.e. (X, h) has one zero at infinity on a point
x%e M). :

Proof

If Lyx.h does not depend locally on u (i.e. Loy, h(x) = 8{Lyh}/éu = 0 for all x in
N) then, changing the control u from u*(x) to u™ (x), in the vicinity N of x°, does not
have any effect on the local sign of Ly, ,,h. Therefore, a sliding regime can not locally
exist on M.

To prove sufficiency, suppose L,y a,h(x) = 8{Lyh}/0u # 0 locally around a neigh-
bourhood N of x°. Let ¢ (x) be a smooth, locally strictly positive function of x. Then,
by virtue of the implicit function theorem, the equation [Lyh](x, u) =¢ (x) locally
has a unique smooth solution u = u~(x) such that Ly, - h(x) =& (x) > 0. Simi-
larly, by the same arguments, given a smooth locally strictly negative function &*(x),
a smooth control law u = u™*%(x) locally exists around x° such that Ly ,qh(x) =
¢*(x) < 0. Hence, a sliding regime locally exists on an open set M of h™*(0) for the
found variable-structure feedback control law:

ut(x)=u"*(x) for h(x) <0
T (0 =ut for h(x) >0

Condition Ly ,,h # 0, is a generalized local transversality condition (Sira-Ramirez
1988 a).

Example

For systems of the form X(x, u) = f(x) + g(x)u; y = h(x), the local transversality
condition on an open set M in h~'(0) takes the form L h <0. To see this, simply
subtract the sliding regime conditions (2.6) on any point x of M: L h+ u™ L,h < 0and
Lyh+u” L;h>0, to obtain [u* —u” ]Lh<O0.
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For ali initial states located on a vicinity M of x° in h~'(0), the unique control
function, u®Q(x), locally constraining the system trajectories to the zero level set of
h(x) in the region of existence of a stiding regime is known as the equivalent control (i.c.
the equivalent control locally turns the open set M in A~ '(0) into an integral manifold
for the controlled system trajectories starting on M). The resulting dynamics, ideally
constrained to M, is the ideal sliding dynamics (Utkin 1978). A coordinate-free
description of such dynamics is

dx/dt = X(x, uF%(x)) (2.7)

It follows from the definition of local integral manifold that on an open set M of
h~1(0) the controlled vector field X(x, u¥?(x)) satisfies

Ly eurapph(x) = <dh, X(x, u*?(x))> =0 (2.8)

Equation (2.8) actually constitutes a definition of the equivalent control law. To
see that such ideal feedback control law is well defined, we must prove that (2.8)
locally defines 4*?(x) in a unique way. Moreover, it will be established that the
equivalent control thus defined is necessarily locally intermediate among the extreme
feedback control laws u* (x) and u™ (x).

Theorem 2.7

A necessary condition for the local existence of a sliding regime on an open set M
of h~1(0) is that there locally exists a unique smooth equivalent control, satisfying

u”(x) <ufUx) <ut(x) (2.9)

for the given smooth feedback functions «~(x) and u* (x).

Proof

First we prove uniqueness. If a sliding motion locally exists on M, then (X, h) has
local relative degree 1, i.e. Lyy,a,h(x) = 8Ly (h)/6u # 0 for all x in a vicinity N of x°. By
the implicit function theorem the equation [Lyh](x,u) =0 has, locally, a unique
solution u®?(x) in M for which (2.8) holds true. In other words, if a sliding regime
exists, the equivalent control locally exists and is uniquely defined.

Suppose now that a sliding regime locally exists on M for the switching feedback
control law (2.5). Then, locally on M, the following three relations hold valid:

Lx(x,w(x))h:(dh, X(x,u™{(x))> <0 (2.10)
Lyxuranh = <dh, X(x, uF%(x))> =0 (2.11)
Lx(x'u-(x))h = {dh, X(x,u” (x))> >0 (2.12)

Subtracting (2.11) from (2.10) and (2.12) from (2.11) one obtains

dh, X(x, u* (x)) — X(x, uF2(x))> < 0} (2.13)

{dh, X(x, uF(x)) — X(x,u"(x))> <0

From the mean value theorem (Boothby 1975), there exists smooth functions ug (x)
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and ug (x), such that locally on M
dh, X(x, u™ (%)) = X (x, u52(x))> = [u™" (x) — u"%(x)]
x {dh, 0X(x, ug (x))/oud <0

<dh, X(x, uF(x)) — X(x,u™ (x))) = [u*(x) ~ u™ (x)]
x {dh, 0X(x, ug (x))/0u)y <0

(2.14)

where uf (x) and ug (x), respectively, satisfy uFQ(x) <ug (x) <u*(x) and u~(x) <
ug (x) < uF(x), i.e. locally on M, u™ (x) < u"®(x) < u* (x). O

Example

For the linear control case, if a local sliding motion exists on an open set M
of h~'(0) then necessarily L,h<0. Since Ly ,eoh=Lh+uf?Lh=0 then
ugq = — L h/L,h, ie. the equivalent control locally exists and is uniquely defined.
Also, from the existence conditions (2.5), we locally have on M, L h+u* L h <0
and L h+u™ L h> 0. This implies that there exist smooth functions a(x) >0 and
b(x) >0, such that a(x)[L;h+u* Lh]+ b(x)[L;h+u” L,h] = [a(x) + b(x)]L h +
La(x)u* (x) + b(x)u~(x)]g(x) =0, ie. Lyh+ Lh[a(x)u*(x)+ b(x)u~(x)1/[a(x) +
b(x)]1=0, ie. u~(x)<[a(x)u*(x)+b(x)u~(x)1/[a(x) +b(x)] = uE%x) <u*(x) locally
on M.

Remark

It should be stressed that the local existence of an equivalent control is not
sufficient to guarantee the local existence of a sliding motion on h~!(0). Additional
conditions must be satisfied by such an equivalent control in order to be able to
conclude local existence of a sliding regime. The next theorem establishes the nature of
such conditions.

Definition 2.8

Let (X, h) have local relative degree 1 on x° € h™(0). The system (X, h) is said to
exhibit a local control foliation property about the manifold A~ *(0), if and only if given
any smooth feedback functions u,(x) < u,(x) < u;(x), defined on M, [Lyh](x, u,) >
[Lxh](x, u,) > [Lyh](x, u3), locally on M. (See also Sira-Ramirez 1988 b where the
crucial importance of this assumption in the sliding regimes of singularly perturbed
systems is established.)

Theorem 2.9

Control law (2.5) locally induces a sliding regime, for system (X, h), on an open set
M of h~1(0), if and only if (X, h) exhibits a control foliation property about h~*(0)
and there exists a feedback control, uE?(x), locally satisfying (2.8) and (2.9) on M.

Proof

Suppose that, thanks to a control action of the form (2.5), the system locally
exhibits a sliding regime on an open set M of 1~ (0). Then according to Theorems 2.7
and 2.8 there necessarily exists a unique smooth uf?(x) satisfying u~ (x) < u®?(x) <
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u*(x) locally on M. Since a sliding motion exists on M, it follows that
[Lyh](x, u™ (x)) > 0, [Lyh](x, u¥(x)) = 0 and [Lyh](x, u" (x)) <0, locally on M, ie.
[Lyh](x, u (x)) > [Lyh](x, uB(x)) > [Lxh](x, u* (x)) on M. Hence, (X, h) exhibits a
control foliation property.

If on the other hand the system (X, h) exhibits a control foliation proprty and
uEQ(x) exists such that locally on an open set M in h™*(0), [Lxh]}(x, 4*%(x)) = 0 and
u* (x) > uF(x) > u~ (x). Then, it follows that [Lyh](x, u™ (x)) > [Lyh](x, u"®(x)) =0
[Lyh](x, u”(x)). Hence, necessarily, [Lyh](x, u*t(x)) <0 and [Lyhl(x,u"(x))>0
holds true on M. It follows that there exists an open neighbourhood N on x° e M,
with non-empty intersection with h~'(0), where conditions (2.6) are satisfied. Thus, a
sliding regime locally exists on h~'(0). Ol

Example

Notice that for X(x, u) = f(x) + ug(x), and if the transversality condition L h <0
holds locally true on an open set M of h™'(0), then the control foliation property
is automatically satisfied. Since Lyh=L h+uLh, then for u*>u®?>u",
Leh+u*Lh<Loh+u™Lh=0<Loh+ u”Lh. Tt follows that, for the class of
affine systems, the condition u~ <u®® <u~ is both a necessary and sufficient condi-
tion for the existence of a sliding regime (Sira-Ramirez 1988 a, 1989).

Example
Consider the non-linear system

dx /dt = cos (ux,) — x7 = X (x, )

dx,/dt =sin (ux,) =: X ,(x, u)

y=x;=th(x)
%2
A
2 4
i = o
—
_ — —_——

0 B T b3
_ — = L ioiiemsormins ,-,,»._.c:%—[ —
[ e

—— - ——
e —
— — —
-2 _lL__

Figure 2. Controlled trajectories with local sliding motion on x, =0.
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In this case, the vector field dX/0u= —x, sin (ux,)d/0x; + x, cos (ux,)d/0x,.
Since L,y a1 = x; cos (ux,), the local relative degree of the system, with respect to the
output y = x,, is equal to 1 everywhere except on the line x, = 0. Thus, a local sliding
motion exists on the manifold x, =0 by use of an appropriate variable-structure
control law. Indeed, from Lyh =sin (ux,), it is seen that the feedback control law
u= —x, sign x, locally creates a sliding regime on x, =0, 0 <x, <./n. The ideal
sliding dynamics is obtained for the control law satisfying Lyh = sin (4®?(x)x,) =0
on x, =0, ie. uFQ(x) = 0. It follows that dx,/dt = 1 — x3, locally describes the ideal
sliding motion. Figure 2 depicts the controlled phase trajectories.

2.3. Sliding regimes in variable-structure systems with relative degree higher than one

If for the proposed output function y = h(x) the system locally exhibits relative
degree r higher than 1 on x° then a sliding regime does not locally exist on h~!(0).
However, using the ideas of Isidori (1987) for local feedback stabilization, then an
alternative means to create a local sliding motion which eventually reaches h~1(0) is
obtained. The idea is to use the auxiliary output function

w=k(x) =Ly "h(x) +¢,_, Ly 2h(x) + ... + ¢; Lyh(x) + coh(x) (2.15)
or in normal form coordinates
W=z, +C_3Z 1+ ... +¢1Z3+ o2y (2.16)

Evidently, Lyx,a,k(x°) = Lax,e, L 'h(x®) #0, i.e. the system (X, k) has local relative
degree 1, and a sliding motion can now be locally created on an open set of k~!(0).
Then, ideally, w=0and z, = —¢,_,z,_, — ... —¢,z, — ¢oz,. The ideal sliding system,
associated with the new sliding surface k~!(0), is expressed as

dzfdt=z,,,, i=12,..,r=2
dz, _Jdt=2,= —c¢,_ 52, — ... — €12, — CoZ;

dz,,;/dt=q(z,,25, ..., 2,1, —(Cro2Zpq + ...

F+ 12 €21 )y Zriyyenns Zp) > (2.17)
j=1..,n—r
y=2z
w=0 )

It is easy to see that by suitable choice of the parameters cg,...,c,_,, an
asymptotically stable motion can be obtained for the first r — 1 coordinates, z, to z,_,
(and hence, for z, too). Thus, while a sliding motion locally takes place on k~*(0), the
original output y and its first r — 1 derivatives asymptotically approach zero (i.e. the
state vector of the original system approaches the manifold h~!(0), as originally
desired).

The corresponding equivalent control is now locally given, in original coordinates,
as the unique solution of

[Lyxk](x, u®Q(x)) = [Lyh+ ¢,y Ly *h+ ... + ey LEh+ co Ly h](x, uBQ(x)) =0
(2.18)
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Notice that when h~1(0) is reached by the sliding controlled trajectory, the
equivalent control locally becomes the unigue solution of

[Lxk](x, uP(x)) = [Lyh](x, u*®(x)) = 0 (2.19)

Example

For systems with affine vector fields, X = f + ug and output y = h(x), which
exhibit relative degree r on x°, the function w = k(x) is given by k(x) = L™ 'h(x) +
¢-2 L7 h(x) + ... + ¢, L h(x) + coh(x) and the equivalent control (2.18) is com-
puted as

uFQ(x) = — L k/Lk=[Lyh+c,_, L7 "h+ .. + ¢y Lih+co L h)/L LT h

Locally, on an open set M of h™'(0), this expression takes the form uFQ(x)=
Lyh/L, LT h,

The use of the auxiliary output w = k(x) implies the possibility of either being able
to completely measure the original state variables, and proceed to use (2.15), or else
being able to generate r — 1 derivatives of the original output function y. The last
possibility is usually accomplished by means of a high-gain phase-lead ‘post-
processor’ (this idea is taken from Isidori (1987), Chap. 2, § 5) fed by the output signal
w(1). The transfer function of such a post-processor is given by

-~ Kn(s)

(1+ Ts) (220
with T being a sufficiently small positive constant, K a sufficiently large gain
with, locally, the same sign as L,y s, L™ ' h(x). n(s) is a stable polynomial built as n(s) =
ST, o8+ .+ s+ (see Fig. 3).

v

.
x=X(x,u) S

Variable
Structure
Control Law

Figure 3. Sliding regime creation in systems of relative degree > 1.

Example
A simplified model of a spacecraft attempting a soft lunar landing is given by
(Cantoni and Finzi 1980)
dx /dt =x,; dx,/dt=g— (a/x3)u; dxy/dt= —u

where x, is the position coordinate, oriented downwards with origin on the ground,
x, is the downward velocity and x; represents the combined mass of the spacecraft
and the residual fuel. ¢ is a constant of the relative ejection velocity. The control
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parameter u represents the rate of ejection per unit time and it is assumed to take
values on the discrete set {0, a} with a a given constant such that o« is the maximum
thrust of the braking engine. Consider the output to be y = h(x) = x,.

In this example, X = x,0/dx, + (g — (6/x3)u]0/0x, — ud/0x; and Lyh = x, while
80X /0u= —(0/x3)0/0x, — 0/0x;. Hence, Loxa,h=0. Lih=g—(0/x3)u and Loy, Lxh=
—(0/x3) #0, i.e. the system has relative degree 2. Consider then the auxiliary output
w=k(x)=x,+cx,, with ¢>0. Then Lyk=cx,+g—(0/x3)u, and Ly,k = —(0/x3).
A local sliding regime can now be created on k™ '(0):={x e R*: x, = —cx,}. The
equivalent control is found to be u®? = (x;/06) [cx, + g]. A local sliding motion exists
on k™!(0) provided 0 < uf?=(x;/0)[cx,+g] =(x3/0)[—c’x, +g] <a. The first
inequality is obviously satisfied since x, < 0 before landing, and the second inequality
states that the net average descending force x;[g — ¢%x, ] along the sliding line is to be
bounded by the maximum thrust oa. Notice that since x, =0 when x; =0 on the
sliding surface, the position coordinate of the ideal sliding dynamics, regulated by the
asymptotically stable dynamics, dx, /dt = —cx,, guarantees a soft lunar landing. On
the sliding line the mass evolution is governed by dx;/dt = —(x;/0)[g — ¢*x,].

3. An ‘outer loop’ sliding mode control approach to some non-linear control
problems
In this section the relevance of sliding regimes is examined in several non-linear
control problems. The basic ideas are taken from Isidori (1987). The substantial part
of his development is closely followed, if only in the context of the more general case
represented by (2.1).

3.1. Robust stabilization in feedback linearizable systems
Suppose the local relative degree of the system (X, h) is n at x°, with n being the

dimension of the system state. It follows that, in normal form coordinates, the system
may be locally expressed around z° as

dzfdt=z,,; i=12,...,n—1

dz,jdt = [Lyh](® ™1 (2), w) (3.1)

y=2

where by definition of relative degree O{[Lyh](®™'(z°), u)}/du= Lay,s, Ly "h#0. It
follows, from the implicit function theorem, that given any external independent
scalar input function v, the equation [L%h](® '(z),u) =v locally has a unique
smooth solution u = a(z, v) around z° Hence, using such a control law on (3.1), one
obtains the linear controllable system:

dz;=2z,,; i=12..,n—-1
dz,/dt =v (32)
y=z
If one defines a new auxiliary linear output in new coordinates as

w=k(z)=z,4Cho2Zp-1+ ... + €123+ CoZ, (3.3)
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or in original coordinates as
w=k(x) =Ly 'h(x) +c,_, L% 2h(x) + ... +¢; Lyh(x) + coh(x) (3.9

then, the relative degree of (3.1) with respect to w is 1, as it is easily checked. Hence, a
sliding motion can be created on an open set of k~*(0) by a suitable choice of smooth
(possibly linear) ‘outer loop’ feedback structures v* (z) and ¢~ (z) such that on an open
set of k™ 1(0), v~ (2) < v¥%(z) < v™ (z), with

UEQ(Z) =(Ch_2—Cn-3)Zn-1 +(Ch2Cro3 = C-s)Zn—2

+ o (Cpaz€y —Co)Za +ChozC0Zy (3.5)
If such a sliding regime is created on k™ 1(0), w is ideally set to zero and hence z, =
—Cp—2Zny—1 — ... —C 25— CoZ,. The ideal sliding dynamics is governed by
dzjdt=z,,,; i=12,..,n-2
dz,_Jdt= —C,_ 32,1 — ... —C12,—CoZ, (36
y=2z
w=0

Evidently, system (3.6) can be made locally asymptotically stable by suitable
choice of the design parameters c;. The result is the possibility of locally reaching the
original surface h~!(0) while a sliding motion locally takes place on an open set of
k~1(0). The variable-structure control policy provides some degree of robustness to
the exactly feedback-linearized dynamics (see Spong and Sira-Ramirez 1986 and Sira-
Ramirez 1988 a).

3.2. Disturbance rejection properties of systems undergoing sliding regimes
Consider a smooth non-linear perturbed system of the form

dx/dt = X(x, u, w)}

(3.7)
y=h(x)

where w is a scalar perturbation signal affecting the system behaviour. Let us assume
that the system locally has relative degree 1 on x° and that &(Lyh)/ow=
Lox,awh(x) =0 (i.e. the input w is assumed to have local relative degree higher than 1
with respect to the output function h). In normal form coordinates, the perturbed sys-
tem is written as

dz, fdt = [Lyh](®'(2), u, w) = [Lyh](® ' (2), u)
dn/dt = q(z,,n, w) (3.8)
y=2z;

If a sliding motion can be locally created on z, = 0, the equivalent control u¥?(z)
obtained by zeroing the first equation of (3.8) is clearly unaffected by the perturbation
signal w. Only the ideal sliding dynamics is influenced by the perturbation input w.
The next lemma follows immediately.
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Lemma 3.1

Let (X, h) have local relative degree 1. The existence of a local sliding motion on
#~'(0) is independent of the perturbation signal w if and only if w has local relative
degree at least equal to 2 with respect to the output function h(x).

However, notice that w, in general, does affect the evolution of the ideal sliding
dynamics (zero dynamics), unless the normal form coordinates z,=¢,(x),...,
z, = ¢,(x), are chosen in such a way that Ly, ¢; =0 for i =2, ..., n. But, owing to
the fact that the normal form description demanded that the ¢;s were chosen to also
satisfy L,xa,0; = 0,fori =2, ..., n,it follows that 0X/dw is at least locally exactly in the
range of 8X/du. On the other hand, 6X/dw is locally in the range of 0X/0u if and only if
there exists a smooth function b(x) such that locally on M, dX /0w = b(x)[0X/du].
Hence, for i =2, 3,...,n we have Ly 5, 0: = Lipxoxjon @i = b(x) Loy ou®: = 0. 1t follows
that w does not affect the zero dynamics. We have thus proved the following general
theorem.

Theorem 3.2

System (3.7) is totally unaffected by perturbation signals w, of any kind, if and only
if the matching condition

80X /dw e range {8X/0u} (3.9)

is satisfied.

Remark

For the case of affine vector fields of the form X(x, u, w) = f(x) + g(x)u + p(x)w.
Condition (3.9) is equivalent to p(x) € range g(x) which is a well known ‘invariance
condition’ (see Drazenovic 1969 for the linear time-invariant case and also Sira-
Ramirez 1988 ¢ for the non-linear case).

Notice however that even in the case of a perturbation signal with relative degree
equal to 1, it is still possible to create a local sliding motion on the zero level set of the
output function. For this, bounds are to be known for the perturbation signal. In
general, the extreme values of the variable-structure control law u*, u~ will depend on
the bounds of the perturbation signal. Usually, however, the feedback functions 1™ (x),
u~ (x) are fixed at the outset. In this case the following theorem applies.

Theorem 3.3

Let the system dx/dt = X(x, u, w) and y = h(x) have local relative degree 1 both in
u and w, and let the system exhibit a local control foliation property on h~1(0).
Suppose the scalar perturbation w is known to be restricted to the bounded interval
W = [Woin» Wonax ] Of the real line. A sliding regime locally exists on A~ (0) if and only if
forall we W

u” (x) <u®x, w) <u*(x)

Example
Consider the dynamic model of an ideal separately excited direct-current motor
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(Rugh (1981), pp. 98-99):

dxl/dt= _(Ra/La)xl —(K/La)x2u+(Va/La) = Xl(x9 u)
dx,/dt = —(B/J)x, + (K/J)x u+ (1/J)T" = X ,(x, u)
y=x; = h(x)

with x, being the armature current, x, the angular velocity of the motor shaft moving
against a viscous torque characterized by a damping coefficient B, and J is the
moment of inertia of the mechanical load. The control u is the controlled current in
the field circuit. V, is the constant armature voltage. R, and L, represent armature
circuit resistance and inductance while K is the torque constant of the motor. T" is a
load perturbation torque.

Here, 0X/0u= —(K/L,)x,08/0x, 4+ (K/J)x,3/0x, and L,x,,h=(K/J)x, and the
system has local relative degree equal to 1 everywhere except on x, = 0. However, the
perturbation torque, which also acts as an input, exhibits relative degree also equal
to 1, since 8X/0T“=(1/J)d/ox, and Lyy,rh=1/J#0. Moreover, since
(1/J)8/6x, ¢ range 0X/du, the load perturbation torque T" cannot be decoupled from
the angular velocity output. A sliding regime does exist on x, = 0, but its creation has
to take into account the magnitude bounds of the perturbation torque. The control
foliation property is trivially satisfied in this example and thus a sliding regime can be
created whenever a variable-structure feedback field current law with extreme values
u* (x), u” (x) can be prescribed such that

u't(x) <min (Bx, — w)/Kx, <max (Bx, — w)/Kx, <u*(x)

weW weW

In spite of this possibility, the ideal sliding dynamics cannot be made totally
independent of the perturbation load torque.

3.3. Robust disturbance decoupling in the absence of the matching condition

Suppose that the input w in (3.7) has local relative degree larger than r with respect
to the output function h(x). Let the vector ¢ denote the first r normal coordinates

w T 7_77
"’[: G50, w) S

Figure 4. Confinement of perturbations to zero dynamics block.
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Zy, 23, ..., 2,. In such coordinates, the system (3.7) is expressed locally around z° as
dz;/dt=2z,,,, i=12..,r—1
dz,/dt = [Lyh](®1(2), u) (3.10)
dnfdt=q(&,n, w);, y=12,

Given a smooth feedback control law u=a(z,v) such that, locally on M,
[L%h](®~(z2), «(z, v)) = v, with v being an external independent scalar input, then the
output y is totally decoupled from the perturbation input w (see Fig. 4). Notice, once
more, that such a scalar control law exists by virtue of the implicit function theorem
and the general definition of relative degree. This proves the ‘if” part of the following
theorem, which generalizes the linear version in Isidori (1987, Chap. 2, § 6).

Theorem 3.4

Let (X, h) have relative degree r on x°. There exists a smooth feedback control law
of the form u=a(x,v), which locally decouples the output y=h(x) from the
disturbance input w if and only if the input w has relative degree strictly greater than r
on x°, ie. for all x in a neighbourhood N of x°:

Loxowly 'h(x)=0; i=1,2,..,r (3.11)

Proof

To prove necessity, suppose u=o(x,v) is any feedback control law locally
decoupling the output h from the perturbation input w. The closed-loop system is
expressed as

dx/dt = X(x, a(x, v), w) = X*(x, v, W)} (3.12)

y="hx)

If in the system (3.12) w is locally decoupled from the output then necessarily the
normal form coordinates, z;= Li-'h, i=1,...,r, are all locally independent of w.
From (3.12) it follows that the quantities Ly *h, i = 1, ..., r, are also independent of w.
Hence, locally around x°, &(Lk 'h)ow = Lyy,, L' 2h=0 for i=1,2,...,r. Since
dz,/dt = [Ly.h](x,v,w) must also be locally independent of w, then one has
O[L5-h](x, v, w)/éw = 0. Hence Ly h/dw =0 and therefore Loy, Ly "h=0 locally
around x°. O

Since Layaw Ly *h=[(Ly 'h)/0x]1éX/0u=0, i=1,2,...,r, condition (3.11) is
equivalent to the condition of having 8X/du locally contained in the null space of the
matrix €(x) given by

éh/ox

ALy h)/éx

Qx) = (3.13)

ALy hyjox

which constitutes a generalization of the condition found in Isidori (1987) for systems
linear in the control.
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The sliding mode disturbance decoupling problem can be formulated as follows.

Consider the perturbed system (3.7) with local relative degree r. It is desired to
find a variable-structure control law, inducing a local sliding regime on an open set
of the zero level set k~*(0) of an auxiliary output function ¥ = k(x), such that the
original output y is locally stabilized to zero while being unaffected by the perturba-
tion signal w.

The variable-structure control law will constitute an ‘outer loop’ feedback control,
inducing locally desirable robustness properties into an ‘inner loop’ feedback control
law. Such a control law of the form u = a(x, v) is assumed to be devised for ‘exact’
disturbance decoupling. The sliding mode approach is especially useful in obtaining a
robust design with respect to small modelling errors and other external perturbation
signals. This discontinuous control scheme can be accomplished by proposing an
auxiliary output function of the form

¥ = k(x) = Lz "h(x) + ¢, L 2h(x) + ... + ¢ Ly-h(x) + coh(x) (3.14)
which in normal form coordinates is a linear output function given by
Yy=kz)=z,+¢_32_ 1+ ... T €123+ o2, (3.15)

Devising a variable-structure control law that locally creates a sliding regime on
an open set of k™ !(0), the ‘outer loop’ closed-loop system in normal form coordinates
would be expressed locally around z° as

dzfdt =z, i=1,2,...,r=2 )
dz,_Jdt=z,=w—0C,_32,_1— ... —C1Z3 — CoZ,
dz,/dt = v=05[1+ sign k(z)Jv™* (z) + 0.5[1 — sign k(z)]v" (2) L (3.16)
dn/dt = q(£, 1, ) '
y=zy; Y=k )

The corresponding ideal sliding dynamics is thus

dzifdt=z;,,, i=12,..,r=2
dz,_ fdt= —c, 32,1 — ... —C1Z; — CoZ; (3.17)
dnjdt=q(&,n,w); y=2z,; ¢=0

If the coefficients ¢, in (3.15) are appropriately chosen an asymptotically stable
motion is obtained towards z, = 0 which is totally independent of the perturbation
input w.

The following trivial lemma will be useful.

Lemma 3.5
Let m = m(x, u, w) with u=x(x, v, w) such that locally Jo/dw # 0. If m is locally
independent of w, then m is also locally independent of u.

If one is allowed to conduct measurements on the disturbance signal w (this will be
the case in the model-matching problem), one can relax somewhat the hypothesis
imposed on the formulation of the disturbance-decoupling problem.

Indeed, suppose that both the perturbation input w and the control input u have
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local relative degree r (notice that a smaller local relative degree of w renders the
problem unsolvable) and consider the control law u = a(x, v, w). The closed-loop
system becomes

dx/dt = X(x, u, w) = X(x, a(x, v, w), w) = X*(x, v, w)}
y = h(x)

Let Q*(x) denote the matrix in (3.13) with X substituted by X*. Using the result of
Theorem 3.4, a feedback control law exists that locally solves the disturbance-
decoupling problem, if and only if

0X*/dw € Null space of Q*(x) (3.19)

(3.18)

It follows, from the definition of local relative degree, that the first r — 1 entries of
the vector Q*(x)0X*/0w are all identically zero. The last entry, which must also be
zero, is given by

[&(L%- " h)/0x]0X*/0w = Loxwe, L- ' h=0 (3.20)

Notice that since the quantities [d(LY: 'h)/0x]8X%/éw = Loy e L: th = 0{Li.h}/ow
=0,i=0,1,2,...,r— 1 are independent of w it follows according to Lemma 3.5 that
they are also independent of . Hence Li.h=Lihfori=0,1,2,...,r— 1. Condition
(3.20) is then rewritten as

L('X’/(‘w Ly Yh= L[aX/aw + (82X /ou)da/ow] Ly 'h
= LoxowLy th+ (Oa/OW)Liox o Ly th=0 (3.21)

If a control law a(x, v, w) exists satisfying (3.21), then one may essentially eliminate
all possible influence of w on the rth differential equation of the normal form model.
The solution of (3.21) with respect to o is explicitly found only in special cases, as the
next example shows.

Example
If X(x,u)=f(x)+g(x)u+ p(x)w, condition (3.21) translates to L,L} 'h+

(0a/ow)L, L *h=0. In this case L,L}"'h and L,L}"'h are independent of w and
hence da/dw = —(L,L}"'h)/L,L} 'h. Integrating with respect to w one finds that
a(x, v, w) = —(L, L ' h/L,L; ' )w + ¥(x, v). Choosing y(x, v) = —(Lyh/L, L™ 'h) +
(1/L, L~ ' h)v the controlled system, expressed in normal form coordinates, is reduced
to

dz;fdt=2z;,,; i=12..,r—1

dz,/dt = v (3.22)

dn/dt=q(& n,w); y=1z,

Once again, v can be designed as a variable-structure feedback control law
switching on the basis of the sign of an auxiliary output function of the form h(z)
=z,+¢,_,2"" 1 + ... +¢coz, with appropriately chosen coeflicients.

3.4, Sliding mode stabilization in non-linear model-matching schemes

In the model-matching problem (Isidori 1985 a, b, 1987) one wishes to obtain a
feedback control law for the system dx/dt = X(x, u), y = h(x) such that the input-
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output behaviour coincides with that of a linear system characterized by dz/dt =
Az + bw, y=cz. In the design of such a feedback control law we are allowed to
measure the input w of the reference linear system and its state vector z, ie. u=
ox, z, w).

The problem can be solved by seeking the required feedback so that the output
error signal, e = h(x) — Cz, is decoupled from the input w. One can also impose, after a
local decoupling law has been found, that the non-linear system output y be robustly
stabilized to zero from the input w.

Following Isidori (1987, Chap. 2, § 6), consider the ‘extended’ system dx®/dt =
Xe(x, u, w); y = h¢(x®), with x* = col [z, x] given by

dlz Az bw. " 3123
dt x N X(x, u) " 0| S 329

If we let u = a(x, z, w) and denote X*(x%, w) = X(x, a(x, z. w)), it is easy to see that
the matrix Q(x) of (3.13), corresponding to the extended system (3.23), and denoted by
Q°(x) is given by

Oht/0x* —c Oh/ox
N Lyht)/ox° —cA  &(Ly-h)/ox
0 (x) = (Lx .)/ _ ‘ x.) (3.24)
(L2 1 he)/ox* —cA™™Y AL th)/ox

For the extended system dX*®/éw = col [b, 8X*/0w]. Using the result of Theorem
3.4, this column vector must belong to the null space of Q°(x). This implies that the
following conditions must be satisfied:

— b+ Loysyouh=0; —cAb+ Loy, Lyeh=0; .5 —CA" b+ Logyau L= 1" =0
(3.25)

Since the relative degree is invariant under feedback, the terms of the form
LoyouL%:h (k= 1, ..., r —2) in (3.25) vanish. This means that necessarily cb =cAb =,
...,cA""2b=0. The linear reference model must exhibit at least the same relative
degree as the non-linear system. Since by Lemma 3.5, Li.h = Lkh, for k=0, 1, ...,
r — 1. The last equality in (3.25) implies that the nonlinear feedback control law must
satisfy

—CA"T b+ Loy Ly 1= —cA”” Yo+ Lexsenienom Lx 'h
=cA""'b + (80t/ow) Lisx oLy 'h=0
i.e. (Ga/dw) =(cA" ™' b)/L:ya Lt h. Since in this case 0X/du is independent of w (and
so is L ' h) one can integrate with respect of w to obtain

a(x, z, w) = [cA"" ' b/Loxa Ly " 1w +7(x, 2) (3.26)

To determine the unspecified part, y(x, z), of the feedback control law (3.26), one
imposes equality among the rth derivatives of the output, , of the non-linear system,
as well as the corresponding one of the reference model output (see Isidori (1987)).
This is equivalent to setting to zero the rth differential equation of the normal form
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model of the extended system. This procedure leads to
cA'z + cA"” 'bw = [ Ly-h](x, ax, z, w))
= [Ly-h)(x, [cA"™ 'b/Loy/pu Ly " 1w + 9(x, 2)) (3.27)

The definition of relative degree and the implicit function theorem guarantee the
local existence of a unique solution for y(x, z), i.e. for a(x, z, w).

Example
For controlled vector fields X of the form f + gu, (3.27) results in

CAZ+ A" bw = Lyh + ([cA" ' b/Loxjo, L Blw + y(x, 2)) L L} ' h

a(x, z, w) = [cA" "' b/Loxja Ly Yhlw + ¥(x, 2)
= [cA"z + cA" ™ bw — LI KY/L L b

which coincides with the result in Isidori (1987).

The closed-loop system makes the non-linear model behave in the same manner
as the linear system from the input—output viewpoint, except for a term depending
on the initial condition that can also be appropriately set to zero. Indeed, the output
of the non-linear controlied system is of the form

o) = h(x(8)) = e(t) + cz(t) = et)
+ ft c exp [A(t — )] bw(o) do (3.28)
V]

Writing the normal form equations for the extended system it is easy to see that ifa
control law obtained from (3.27) is used the term e(t), above, only depends on the
initial conditions of the extended system. Its effect can therefore be cancelled.

The output y(t) generated by the closed-loop extended system can now be
stabilized by appropriate choice of the input w. Since the non-linear system behaves in
a linear fashion and responds according to (3.28), a variable-structure control law
(which properly takes into account the relative degree of the linear system) can now be
devised for robust stabilization of the non-linear system with arbitrarily prespecified
eigenvalues. The details are left for the reader.

4. Conclusions and suggestions for further research

In this paper the relevance of the relative degree concept has been examined in the
analysis and design issues related to the creation of sliding regimes for general non-
linear systems. The results indicate that the simplest possible structure at infinity must
be exhibited by non-linear systems undergoing sliding motions on the zero level set of
the output feedback function. General necessary, as well as necessary and sufficient,
conditions for the existence of sliding regimes have been presented. The disturbance
rejection properties of the sliding mode control were examined and a generalization of
the matching condition was found. The implications of sliding mode control as an
‘outer loop’ feedback strategy was also examined in a variety of control problems,
including : local stabilization of feedback linearizable systems, disturbance decoupling
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problems-- with and without measurement of the disturbance input—and non-linear
model-matching. The basic results and original ideas of Isidori (1987) in this area were
shown to easily generalize to the non-linear control case.

Several important research areas may be pursued in the future within the context
of the paper. For instance, one may wish to extend the general results about sliding
motions to the case of non-linear multivariable systems and non-linear discrete-time
systems.
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