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Abstracr: The theory of variable structure systems and their
associated Sliding Regimes is extended to controlled dynamical
systems described by first order quasilinear partial differential
equations.
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1. Introduction

The theory of variable structure systems (VSS)
and their associated sliding regimes constitutes an
interesting field of the control systems discipline
with a vast number of applications. A detailed
account of the basic elements of the theory, as
applied to dynamical systems described by
.ordinary differential equations (ODE), is con-
'tained in the work of Utkin [10-12].

There are only few instances where the sliding
mode control method has been applied to systems
described by partial differential equations (PDE).
In Orlov and Utkin [5), sliding modes were pro-
posed for the regulation of a distributed thermal
process described by a second-order PDE of the
parabolic type. The control scheme resorted to a
finite dimensional approximation of the distrib-
uted process. The sliding mode creation problem
was defined on the associated finite dimensional
controlled system approximation, characterized by
a set of ODE’s. In Orlov and Utkin [6], the theory
of sliding mode control was extended to infinite
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dimensional systems described by differential
equations defined in Banach spaces. Applications
were given, in that article, for a multi-dimensional
heat process. In Breger et al. [2] discontinuous
control is proposed for the heat equation using
averaging theory.

In this article the theory of VSS, and their
associated sliding regimes, is extended to dynami-
cal systems described by first order quasilinear
PDF’s (FOQPDE). The key idea is to exploit the
geometric features of the flows associated to the
characteristic direction field of a controlled
FOQPDE. The sliding mode conditions are thus
characterized in terms of a finite dimensional slid-
ing mode existence problem defined on the con-
trolled characteristic equation. The results may then
be easily particularized for the case of controlled
systems described by first order linear PDE’s, of
the homogeneous and nonhomogeneous type.

Section 2 presents the definitions and main
results. Section 3 is devoted to a simple illustrative
example. Background material and terminology
on the geometric aspects of QPDE’s are directly
taken from Chapter 2 of Arnold’s book [1]. For
deeper background on the subject of PDE’s, the
reader is referred to the extensive treatise written
by Courant and Hilbert [4].

2. Main results

2.1. Sliding regimes in systems described by con-
trolled FOQPDE’s

Consider a dynamical system described by a
feedback-controlled FOQPDE:

SN

ar i igl EX;XI‘(U, x, t, u)=b(v, x, 1, u),
(2.12)

y=h(U, x, t) (21b)
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where y is the scalar-valued output function, x
represents the vector of local spatial coordinate
functions x, defining points on an open set in R”,
t denotes time, while u=u(v, x, t) is a distrib-
uted feedback control law taking values in R. The
function v is the unknown scalar function, re-
garded as the distributed ‘state’ of the controlled
system. For each smooth solution v of (2.1), the
X,’s are the smooth components of a time-varying
control-parametrized vector field X, which is as-
sumed to be locally nonzero and defined on an
open set of R". The function b: R"*>— R and
the function h: R"*3>— R are locally smooth
functions of their arguments. Condition y =0 is
assumed to locally define an isolated smooth
manifold solution v = ¢(x, t), i.e.,

h(e(x, 1), x,t)=0.

The graph of v is assumed to be a smooth
time-varying surface with locally nonzero gradient
except possibly on a set of measure zero. This
surface is addressed as the sliding manifold, or the
sliding surface, and is locally defined as

S= {(v, x, )R v=¢(x, t)}

All our considerations and results are of a local
character on a given open set N of R"*? described
by the local coordinate functions (v, x, ¢). The
projection of such an open set N onto R"*! is
labeled as M and such a set is equipped with local
coordinates (x, t). For a given smooth feedback
function u = u(v, x, t), and a corresponding solu-
tion v of (2.1), the vector field

col[X(v, x, 1, u),1]

|

is a smooth vector field locally defined on M.

Definition 1 [1). Given an n-dimensional surface y
in M and a (not necessarily smooth) function
¥ : v — R, the Cauchy data, or the initial condition,
of the FOQPDE (2.1) is constituted by the pair
(¢, v). The n-dimensional submanifold I' in N,
represented by the graph of ¢ on v, is called the
initial submanifold. Given a smooth feedback func-
tion u, an initial submanifold I' is noncharacteris-
tic at the point (x,, #,) in ¢, if the vector

COI[X(U(,, Xos to, u(UO’ X0 tO))’ 1]

in R"*1 is not tangent to y at the point (x,, #;),
with vy = ¢(xg, t5).

It will be assumed throughout that for a given
smooth distributed feedback control u(v, x, t)
and a given Cauchy data (represented by the
noncharacteristic initial condition submanifold I"
in R"*?), the graph of the solution v of (2.1) is
locally smooth, with nonzero gradient everywhere
on the open set N where we carry our considera-
tions, except, possibly, on a set of measure zero.
This assumption is satisfied in several classical
physical examples. (See, for instance, Arnold [1],
p. 62.)

Available to the controller is a distributed varia-
ble structure feedback switching law:

u={u+(v, x, 1)

u (v, x, 1)

for y >0,

2.2
for y <0, (2.2)

with u* (v, x, t)>u" (v, x, t), locally.

Definition 2. A distributed sliding regime is said to
locally exist on an open set A~ of the manifold §
if and only if the total derivative of the output
function of the controlled system (2.1)—(2.2) satis-
fies (see [10]):

jim 92 <0 and  1im &0 (2.3)
y— +0 dt y——0 d:

To simplify notation we introduce the vector

z = col(v, x, t) of local coordinate functions and
the control-parametrized vector field

¢=col[b(z, u), X(z, u), 1]

referred to as the characteristic direction field of
(2.1). The Lie derivative of a scalar function h(z)
with respect to the vector field £, for a given
feedback control input u = wu(z), is denoted by
L;(, . uzpyh or simply by L:h. In local coordinates:

Leh=(8h/3v)b(z, u) + (3h/3x) X(z, u)
+9h/dt.

Theorem 1. For a given Cauchy data (¥, v) defi-
ning an initial submanifold I" with nonempty inter-
section with N, a distributed sliding regime locally
exists for system (2.1)-(2.2) on an open set N
(:=NNS) of S, if and only if the phase flows
corresponding to the controlled characteristic direc-
tion field of (2.1), which arise from the initial
submanifold ®, exhibit such a local sliding regime
on N under the influence of the switching law (2.2).
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Proof. Suppose a distributed sliding mode locally
exists for (2.1)-(2.2) on an open set A of S.
Then, the total time derivatives of y, at any point
z in N, belonging to the graph of the solution of
the controlled equation, can be computed in terms
of the directional derivatives along the controlled
characteristic direction field £ These derivatives
are given by:

for y>0:

%{ =[3h/dv]dv/dt + [8h/0x])dx/dt + [3h/3t]

=[3n/0v]b(v, x, t, u*)
+[0h/0x] X (v, x, t, u*) + [0h/0t]
=L urph <0;

fory <0:

%f— =[3h/dv]dv/dt + [dh/3x]dx/dt + [3h/3t]

=[0h/9v]b(v, x, t, u™)
+ [0k 3x]) X (v, x, t, u”) + [0k /0]
=Lz umaph > 0.

In other words, the controlled dynamical system
described by the following set of ordinary dif-
ferential equations:

%j-=£(z’ u)’ (243)

y="h(z),

(also known as the controlled characteristic equa-
tion (2.1)), with initial conditions taking values in
I', exhibits a local sliding regime on the open set
A of the sliding manifold S, determined by y = 0,
when u is governed by the switching law (2.2).
Sufficiency follows easily by assuming that a slid-
ing mode exists for the controlled characteristic
system and hypothesizing, at the same time, that a
distributed sliding mode does not exist. By revers-
ing the arguments presented above, a contradic-
tion is easily established. O

(2.4b)

Local sliding regimes, on subsets of S, of the
distributed controlled system (2.1), (2.2) are, hence,
completely characterized in terms of the local
sliding motions — on the same manifold S — of the
finite dimensional time-varying system (2.4) con-
trolled by a switching law of the form (2.2).

Theorem 2. A distributed sliding regime exists on
an open set N of S for system (2.1), (2.2) if and
only if there is an open neighborhood N of S in R"*?
where

(]
5‘;Leh#=0. (2.5)

Proof. If L h does not depend locally on u then,
changing the control u from u*(z) to u~(z) at
points z of A" does not have any effect on the sign
of L.h. Therefore, there exists an open set N in
R"*2, containing 4", where the existence condi-
tions (2.3) are violated and a sliding regime can
not locally exist on A",

To proof sufficiency, suppose L h(z) explicitly
depends on u, locally around 4" in N. Let e7(z)
be a smooth, locally strictly positive function of z.
Then, by virtue of the implicit function theorem,
the equation

Leh(z, u)=¢(z2)

locally has a unique smooth solution u = u~%(z)
such that

Ly wpyh(2) =e(2)>0.

Similarly, by the same arguments, given a smooth
locally strictly negative function £*(z), a smooth
control law u = ug (z) locally exists such that

Lg, wrraph(z) =e7(2) <0.

Hence, conditions (2.3) are locally valid around N
and a sliding regime exists on the open set A" of §
for the found distributed variable structure feed-
back control law:

P

for h(z) >0,
for h(z) <0. D

Definition 3. For all initial states z located on the
open set A" of S, the unique distributed control
function, u%Q(z), locally constraining the dis-
tributed trajectories to the sliding manifold S, in
the region of existence 4" of the sliding motion, is
known as the distributed equivalent control. (i.e.,
the equivalent control turns the open set A" of §
into a ocal integral manifold of the characteristic
controlled direction field defined on A~ for some
given initial Cauchy data defined on A"). The
resulting characteristic dynamics, ideally con-
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Y(z,0)= e.(z—g)l

=0, - 2
. U/\r=‘f’(’t;ﬂ“f *

Fig. 1. Partial distributed sliding mode of v, + uv, = 0, on v = exp(— x?).

strained to S, will be addressed as the characteris-
tic ideal sliding dynamics. (See the original concept
in Utkin [10} for ODE’s.) A coordinate-free de-
scription of such dynamics in S is:

4o, uo(2), A(2) =0, (9)

The direction field £(z, uE2(z)) will be referred
to as the equivalent direction field.

Given an arbitrary smooth, noncharacteristic
initial n-dimensional submanifold I" of the zero
output manifold v = ¢(x, t), every integral mani-
fold of the equivalent direction field, £(z, ut?(z)),
is evidently a local solution, specified by v =
¢(x, t), of the PDE representing the distributed
ideal sliding dynamics:

o > 'a‘U’Xi(v, x, 1, u®(v, x, 1))

E o1 X
=b(v, x, t, u™(v, x, 1)), (2.7a)
y(v, x, t)=0. ‘ (2.7b)
} ny”

—(1—5)1’
Y(z,0)= €

Y

Fig. 2. Total distributed sliding mode of v, + uv, = 0, on v = exp(— x?).

A necessary and sufficient condition for an open
set A" of S to qualify as a local (n+1)-
dimensional integral manifold of the controlled
trajectories (2.6) is that the gradient of 4 be lo-
cally pointwise orthogonal to the smooth
equivalent direction field £(z, uF9(z)), i.e.,

L, oupyh(2) =0 forzes . (2.8)

For an exposition of the results available for
the assessment of the existence of sliding regimes
in systems of the general form (2.4), the reader is

refered to Sira-Ramirez [7] and to [8,9] for other
classes of systems.

3. Example
Consider the controlled system described by

(3.1a)

2
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y={—v+exp(—x2) for —a<x<a, (3.1b)

0 elsewhere.

Let w be a given positive constant. The distrib-
uted variable structure control law

u=w sign[—v+ exp(—x2)],

excercised along each possible characteristic,
creates a distributed sliding regime on the mani-
fold y = 0 when the controlled motions start from,
say, the initial submanifold defined by:

I'={(0, x): v=o(x)}
where
(exp|— (x - £)]

for —a+é<x<a+§,
0 elsewhere

é(x) =

with £ a given positive constant satisfying £ > 2a.
Figures 1 and 2 depict the nature of the sliding

regime creation process on y = 0 by means of the

distributed controlled motions of (3.1).

4. Conclusions and suggestions for further research

The theory of variable structure systems under-
going sliding motions can be easily extended to
controlled systems described by first order quasi-
linear PDE’s. The key property of such class of
dynamical systems is the possibility of relating
properties of their solution to those of a controlled
system described by a set of ordinary differential
equations (best known as the characteristic equa-
tion). This property was used in this article to
establish conditions for the local existence of a
distributed sliding regime for a quasilinear dy-
namical system on a given switching surface. A
distributed sliding mode locally exists for the dis-
tributed system whenever the corresponding con-
trolled characteristic system exhibits such motion
on the sliding surface. The given sliding manifold
must also qualify as a local integral manifold of
an ‘equivalent direction field’. The equivalent di-

rection field is the average controlled direction
field prescribed by the equivalent control method
on the characteristic system. The case of systems
described by implicit nonlinear partial differential
equations can also be treated from an entirely
geometrical viewpoint using the characteristic
surfaces defined by the standard contact structure
defined on the manifold of 1-jets of the solution
function of the nonlinear controlled PDE (see [1]).
Such research direction leads to a complete gen-
eralization of the results presented here. The geo-
metric theory of second order PDE’s could also be
taken as a starting point for the adequate treat-
ment of distributed sliding regimes in controlled
systems described by such dynamical models.
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