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Exact linearization in switched-mode DC-to-DC power converters

HEBERTT SIRA-RAMIREZ+ and MARIJA ILIC-SPONG1

Three popular DC-to-DC switched mode power converters—Buck, Boost, and
Buck-Boost—are shown to be in the same orbit of structural equivalence as a
second-order controllable circuit in Brunovsky canonical form. The equivalence is

* achievable under non-linear feedback and explicit local diffeomorphic state co-
ordinate transformations. The implications of local exact linearizability of this class
of systems in the design of Variable Structure Feedback Control laws or Pulse-
Width-Modulation strategies is thoroughly discussed.

1. Introduction

DC-to-DC switched mode power converters constitute simple yet efficient means
of DC power regulation by discontinuous feedback control action. Rather than
attempting a complete survey of such a vast field, the reader is referred to the multi-
volume series by Middlebrook and Cuk (1981), the books by Severns and Bloom
{1985), and by Czaki et al. (1983), where detailed background material can readily be
found.

The fundamental property of DC-to-DC power converters is their capability for
feedback regulation of the output voltage via abrupt topological changes commanded
by suitable switching arrangements utilizing diodes and transistors. Traditionally, the
feedback control of these circuits was designed by means of Pulse-Width-Modulation
(PWM) techniques and only more recently the theory of Variable Structure Systems
(VSS) and their associated sliding regimes (Utkin 1978) has been proposed for the
control of these systems (see Venkataramanan et al. 1985, Bilalovic et al. 1983,
Sanders et al. 1986, and Sira-Ramirez 1987, 1988). In the work by Sira-Ramirez (1988)
a general ideal equivalence has been found among Variable Structure Feedback
Control (VSFC) laws leading to sliding regimes and PWM control strategies.

Motivated by the exact linearization result given by Sanders et al. (1986), in
connection with the Buck-Boost converter, we study the equivalence of the Buck,
Boost, and Buck-Boost converter circuits under non-linear feedback and local
diffeomorphic state coordinate transformation. These circuits are shown to be in the
same structural orbit of a second-order controllable linear system in Brunovsky’s
canonical form. The local linearizability property and the basic limitations of the
linearization approach for feedback design of switched converters complete the work
started by Sanders et al. (1986) and establishes a definitive relationship among the
three circuits.

The implications of the exact linearization of the converter circuits is analysed in
the context of discontinuous feedback control design and some of the limitations of
the proposed scheme are discussed in detail.
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Section 2 is devoted to a brief presentation of the state space models of the three
converters. Section 3 presents general considerations about feedback linearization
closely following the work by Hunt et al. (1983) and Marino and Spong (1986), and
then presents the application of the results to the exact linearization of the three
converters. Section 4 is devoted to a careful consideration of the possibilities of using
the exact linearization results in the design of feedback control strategies for the
regulation of the power converters in the context of VSFC and PWM.

2. State space models of DC-to-DC switch mode power converters
2.1. Buck converter

Consider the Buck converter, shown in Fig. 1, with state variables defined as
x,=1L/L, x,=V./C, and parameters w, = l/ﬁ, w; =1/RC and b=E\/E.
The linear state space model of the controlled circuit is then

d
—;'ct‘— = —woXx, +ub
(2.1
9% W
dt = WoXy 1%2

where u is the control variable representing the switch position and taking values in
the discrete set U = {0, 1}.

Figure 1. Buck converter circuit,

It has been shown by Sira-Ramirez (1988) that the average response of a switched
controlled network to a PWM control strategy with constant duty ratio0 < u <1 (or
equivalently constant equivalent control u) can be obtained from the system
equations by formally replacing the control variable u by the constant value u. In
particular, the equilibrium point corresponding to such a control strategy is given by

Xz.ss=ﬂbw(;1’ xl.ss=ﬂbwlw(;2 (22)

The total steady-state stored energy corresponding to a constant duty ratio is

simply
b\? w\?
0-5{x2 ;, + x5 =0-5<—” ) [1+(~‘> ]
(et ) =05(E2) | 14 (22
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Eliminating the parameter u from (2.2) one demonstrates that the locus of equilibrium
points of the system is contained in the straight line

X255 = Wowl—l-xl,ss (23)

The steady state DC gain is defined as V,,/E = xzvss/\/EE = i, denoting the ‘step
down’ character of the Buck converter.

2.2. Boost converter

Consider now the Boost converter, shown in Fig. 2, where the state variables are
again defined as x, =I./L, x, = V\/E and the parameters wy = l/ﬁ, w, =1/RC
and b= E/\/Z. With u representing the switch position, taking values in U = {0, 1},
we obtain the following bilinear state-space model for the converter

dx,
I WX +uwgx, + b
(2.4)
dx, "
— S = WeX — WX, — UWgX
dt o1 142 ot

Figure 2. Boost converter circuit,

As before, the equilibrium point obtained from the systems response to a constant
duty ratio PWM feedback control (or constant equivalent control) of value 0 < u<l
is given by

Xy 55 =W b[(1 = p)Wo] ™% X34 =b[(1 — pwo]™? (2.5)

The total stored energy under such steady state conditions is given by

5 =0 = b o i " 2
OS{x%.ss‘*‘x%‘-‘S} —OSI:(_I—ﬂ)WOJ [1 + ((—1_ #)w(;> ]

Elimination of the parameter  in (2.5) leads to the locus of equilibrium points of the
controlled system, contained in this case by the parabola

xl.xs=(w1b_l)x%,ss (26)

The steady state DC gain is V,,/E = 1/(1 — p) indicating the ‘step-up’ character of
the Boost converter. In practice, infinite DC gains are precluded by the non-ideal
nature of sources, coils, and condensers.
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2.3. Buck-Boost converter

Using the same definitions for the state variables and parameters of the previous
cases, the dynamical system representing the Buck-Boost converter, shown in Fig. 3, is
given by the following bilinear system of differential equations:

7? =Wy X, + u(—Wox; + b)
2.7

dx,
dt

= —WgX; — W X; + UWpX,

U

-

Figure 3. Buck-Boost converter circuit.

The equilibrium point of the constant duty ratio controlled response is given by
X1= W b[(1=pwo] ™% Xae= —pb[(1 —pwo] ™! (2.8)

with 0 < u < 1 being the duty ratio.
The total stored energy in the steady state is given by

5 o fb 2 w, )
R LA R (=

As before, the locus of equilibrium points is contained in an arc of a parabola, given in
this case by

xl,ssz(wlb_l)(xz.ss—bW()—l)'xZ.ss (29)

Finally, the DC gain is given by — p/(1 — u) which shows that, modulo a polarity
reversal of the input source voltage, the Buck-Boost converter can ‘step down’ for
pe(0,0-5) and ‘steps up’ for p e (05, 1).

3. Exact feedback linearization of DC-to-DC converters
3.1. General results about exact linearization

Consider the non-linear smooth system defined over an open set X in R"
containing the origin of local coordinates

dx
7i;:f(x)+ug(x) (3.1)
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with f and g smooth (C®) vector fields locally defined in X with f(0) =0. The
following remarkable result is given by Hunt et al. (1983). In the following
developments we closely follow the work by Marino and Spong (1986).

Definition 1

System (3.1) is locally exactly linearizable, by non-linear feedback, in a neighbour-
hood of the origin if there exists a diffeomorphism T: X -» R"*! such that the change
of coordinates y;= T(x), v=T,,,(x,u) results in a linear controllable system in
Brunovsky canonical form

dy,

=" (3.2)

Sy, i=1,2,.,0—1,

Theorem 1 (Hunt et al. 1983, Marino and Spong 1986)

The necessary and sufficient conditions for (3.1) to be locally feedback linearizable
are as follows:

(a)sp{g,adfg,...,adf" g} =R"in X;
(b) sp {g, ad fg, ..., ad f"~ g} is an involutive set (Boothby 1975) of constant rank
in X;
where sp is the span of the involved vector fields over the field of smooth functions
defined in X

3 d . .
ad fg:= [é]f— [(—%—]g and adf'g:=adf(adf'"'g)

with ad f%:=g.

The required change of coordinates is determined from the (non-unique) solution
of the set of linear partial differential equations

L,Ti=0, L T;=0, .., Ly 2T,=0 (3.3)

which is guaranteed to exist in X by virtue of the involutivity condition (b) given
above (Boothby 1975). In general, L,s designates the ‘Lie derivative’ or directional
derivative of the smooth scalar function s in the direction of the vector field h. Once T;
is determined, the rest of the components of the transformation, T, ..., T,, T,,, are
obtained from the recursive relation

T () =L;T(x) i=12.,n—1 and T(xw)=Lr,T (34

The T, i=1,2,...,n, are independent functions of x satisfying T;(0) =0 while

T, . 1(x, u) is of the form a(x) + uB(x) with B(x) non-singular on X and «(0) = 0.
The class of systems (3.1) which are transformable to the same linear system in

Brunovsky’s canonical form is said to be in the same structural orbit or they are in the

same feedback equivalence class.

3.2. Exact linearization in DC-to-DC switch-mode power converters

In this section we shall apply the results of feedback linearization to the converter
circuits of §2. The linearizing transformations will be represented by local



516 H. Sira-Ramirez and M. Ilic-Spong

diffeomorphisms in which the new coordinates have the meaning of total stored
energy and rate of change of stored energy, respectively.

3.2.1. Transformation of the Buck converter model to canonical form. The Buck
converter differential equations are already linear and controllable, hence they are
trivially transformable to Brunovsky’s canonical form. For this, simply consider
f=col (—wgX;, WoX, — W, X;), g = col (b, 0). Over the field of smooth functions, the
set {g, [ f, g]}-—controilability matrix columns—constitutes a linearly independent
set of constant rank 2. Solving (3.3)

0T,

leads to T, = Ty(x,). A possible solution is then given by

Ti=x;, Th=wex; —wiX;

Ty =v=(w? — wd)x, — wow, x; + ubwg = —w, T, — w3 T; + ubw, (3.5)
hence
aty an, .
I (39

T(0) =0, i=1, 2, while T3(x,u) is of the form a(x) + f(x)u with B(x) = bw,, non-
singular, and «(0) = 0. In x,, x, coordinates, the set of points in the plane for which T,
= 0 coincides with the locus of equilibrium points (2.3) obtained with constant duty
ratio u in a PWM control scheme.

The above transformation is global but, in general, it is not unique. Indeed taking,
for instance, T, = 0-5x2, the stored energy in the capacitor T, results in the input
power minus the output power (or the rate of change of capacitor stored energy)

T, = 0:5wox, X5 — 05w, x3
and
Ty =[(2wi - wa)x3 — 3wow, x; X, ] + (bwo X3 )u
=203w} — w3) T, — 3Ty w, + bwo /2T, u
Here T; is of the form a(x) + f(x)u with f(x) singular along x, = 0. Notice that T,
defined this way, is not a global diffcomorphism since it is not globally one-to-one; T,
and T, fail to be functionally independent along x, =0 and the transformed system

becomes uncontroilable on this line. The use of this transformation makes the system
only locally equivalent to a Brunovsky canonical form on, say, the open set x, > 0.

3.2.2. Exact linearization of the Boost converter model. The vector field f(x) in (2.4)
does not satisfy the hypothesis of Theorem 1 by which f(0) is to be zero. Hence, a
previous linear change of coordinates is to be performed on the system equations

Zy =X, —w bwg?, zy=x,—bwg! (3.7

This transformation defines input current z, and output voltage z, measured relative
to the steady-state values of the input current and output voltage, respectively,
resulting from a fixed position of the switch at u = 0. The vector fields are now given
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by
f=col[—wqz;, wozy —w; 23]
g =col [wy(z, + bwg 1), —we(z, + w bwg ?)] (3.8)
with f(0) =0 as demanded by the theorem.
The set {g, [f, £]) is in this case
wo(zy + bwg 1) —w,wol(z, +bwy!)
—wolz, +w bwg?) —wywo(z, +w bwg?)— bwo]

{g, [f,g]}=[

which, over the field of smooth functions, is everywhere a linearly independent set of
rank 2, except on the straight lines z, = —bwg ' and z, = —w, bwg 2b/(2w,). Since {g}
is trivially involutive, the system is exactly linearizable by means of local dif-
feomorphic state coordinates transformation and non-linear feedback. The analysis of
the necessary and sufficient conditions for exact linearization reveals that the required
change of coordinates is not a global diffecomorphism but only a local one, hence
linearization is restricted to the open set where the conditions of Theorem | are
satisfied and therefore the lines specified above are to be excluded from our
considerations.

The state coordinate transformation 7, is obtained from (3.1) as a solution of the
partial differential equation

oT, ) o, B}
[Ezi]wo(22+bwo - [Eﬂ Wwo(zy +wibwg?) =0 (3.9)

Imposing the restriction that 7;(0) = 0 we obtain a solution of (3.9) as
T, = 0-5{[(z, + w bwg 2) + (2, + bwg )2 ] = bPwg 2(1 + wiwg 2)]  (3.10)
and using (3.4), T, is obtained as
T, =L, T, =bzy + w bwg ?) — w,(z, + bwg ')? (3.11)
Finally

oz
+2wi(zy + bwg ') + ulb + 2w, (z, + wy bwg 2)Twg(z; + bwg ') (3.12)

T,
Ty,=v= [— 2-:|(f+ ug) = bt — bwy(z, + bwg ') — 2w, wo(z, + w bwg ?)(z;, + bwg 1)

Here T, represents the total stored energy in the circuit, measured relative to the
steady-state value of the total stored energy when u = 0; T, represents the input power
minus the output power, or rate of change of the total stored energy. Furthermore, in
X, X, coordinates, the set of points in the plane for which T, = 0 coincides with the
locus of equilibrium points (2.6) obtained with constant duty ratio u in a PWM
control scheme. This is intuitively clear since in equilibrium, the average total stored
energy is to remain constant. Notice that this fact is independent of the value of the
duty ratio u. Notice also that Tj is of the form o(z) + f(z)u with f(z) singular over the
lines

1

zy= —w, bwy 2 —b(2w;) ! and z,= —bwg'

These lines have already been excluded from our considerations since on them the
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conditions of Theorem 1 are violated. On these lines the transformed system also
becomes uncontrollable and exact linearization cannot be achieved.

Figure 4 shows the level curves of 7, =0 and T, =0 and the region of exact
linearization. It is clear that T is not a global diffeomorphism since it is not one-to-
one. Due to the local character of the transformation we restrict our attention to the
open set

zy> —w bwy 2 —b(2w,) 7Y, z;> —bwg!

On this set the transformation (3.10) and (3.11) is locally invertible, i.e. it is a local
diffetomorphism.

X = -w b/wl - bMIe )
1 1 0 1

Figure 4. Boost converter curvilinear linearizing coordinates and region of existence of local
diffeomorphism.

The transformed system is in Brunovsky canonical form

dT, dT,
— =0, —==T= 3.13
dt 2> dt 3 v ( )
The equilibrium point (2.5) in new coordinates is represented by
K2 —p) bz[ w%( 1 >]
T‘ss='7‘4‘= 1+—{ 14+ ==
b (I_Au)2 W(z) W(z) (1-,1,)2 (314)

TZ,SS = 0

3.2.3. Exact linearization of the Buck-Boost converter model. In this case the vector
fields are represented by

b
f=col [wgx,, —wex, —wW;X,5], g=col[~w0<x2—:v~>,wox,] (3.15)
0
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The vector field f satisfies the condition f(0) = 0. Hence, a preliminary change of
coordinates is unnecessary in this case. As in the previous case, the necessary and
sufficient conditions for the existence of a linearizing transformation are not globally
satisfied. Indeed, the set {g, [ f, g]} is given by

b
—W0<X2—w: WoW; Xy
0

{g,[f,g]}= , (3.16)
Wo X,y w1w0<x1+w—l>
which is a linearly independent set of rank 2, everywhere except on the curve
(X3 —bwg ) (xy +bwi!) +x,x,=0 (3.17)

The set of points satisfying (3.17) represent a hyperbola with centre at the point
(=b(2w,) "1, b(2w,) ') and asymptotes given by the straight lines x; = —b(2w;) "},
x, = b(2w,) ™. Since {g} is a trivially involutive set, the system is exactly linearizable
by means of local diffeomorphic state coordinates transformation and non-linear
feedback.

The necessary and sufficient conditions for exact linearization leads to a required
change of coordinates which is not a global diffeomorphism but only a local one.
Linearization is thus restricted to an open set of the plane where the conditions of
Theorem 1 are satisfied. For this reason the curve specified in (3.17) is to be excluded
from our considerations.

The first component of the linearizing transformation T, is given by a solution of
the partial differential equation

oT, T,

LgT1=—wo(xz—bwgl)é}i»+woxlaz-=0 (3.18)
A solution satisfying T;(0) =0 is given by
T, = 0-5{x? + (x, — bwg *)* — b?wq ?} (3.19)
From (3.19) and (3.4) one immediately obtains T, as
T,=L,;T, =bx, —wyx,(x; —bwg ') (3.20)
Finally, T; is given by
Ty=Lyy, T = —(1 —wiwg 2)bwox, — bw, X, + 2w, woX, X, + 2wix3
+ul(x; —bwg D (x; +bwi') + x,x,] (3.21)

Here T, represents the total stored energy in the circuit, with the capacitor voltage
measured modulo its steady-state value when a duty ratio u = 0-5 is used in a PWM
control scheme; T, represents the corresponding rate of change of the total stored
energy. As before, the set of points in the plane for which T, =0 coincides with the
locus of equilibrium points (2.6) obtained with constant duty ratio y in a PWM
control scheme. This is intuitively clear since in equilibrium, the average total stored
energy is to remain constant. Notice that this fact is independent of the value of the
duty ratio p. Notice also that Ty is of the form a(z) + f(z)u with B(z) singular over the
curve (3.17). This curve has already been excluded from our considerations since on it
the conditions of Theorem 1 are violated. On this hyperbola the transformed system
also becomes uncontrollable and exact linearization cannot be achieved.
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Figure 5 shows the region of existence of exactly linearizing transformations and
some level curves for T, and T;. Here T is not a global diffecomorphism since it is not
one-to-one. Due to the local character of the transformation we restrict our attention
to the open set x; > —b(2w;) !, x, <b(2wy)~!. On this set, the state coordinate
transformation (3.19)—(3.21) is locally invertible, i.e. it is a local difffomorphism.

The transformed system is in Brunovksy canonical form

dT, ar, ..
Si=Ty S2=Ti=0 (3.22)
The equilibrium point (2.8) in new coordinates is represented by
w b [ A
T.ss:'* - (2—#)+<—> >
BT (1= w)? wh wo) (1—p)? (3.23)

Tz,ss =0

Figure 5. Buck-Boost converter curvilinear linearizing coordinates and region of existence of
local diffeomorphism.

4. Variable structure control of linearized converter models
4.1. Generalities about discontinuous control of linearized converters

The common model of the three basic converters we have studied is represented by
a simple double integrating plant with control input v. In this section we discuss the
basic limitations of using the linearized model for the design of feedback stabilizing
control strategies for the above class of switch-controlled structurally equivalent
systems.

In conventional non-linear controller design through feedback linearization
(Meyer and Cicolani 1980) the input v represents an independent control input which
can be used directly for the specification of a linear feedback control policy or as an
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outer loop robust feedback path (Spong and Sira-Ramirez 1986). Once this simple law
is synthesized on the basis of the Brunovsky model (by using either pole assignment or
optimal control considerations), then the inverse transformation of the control input
coordinates generates, in the original control coordinates, a non-linear stabilizing
feedback design. However, this is not, in general, the case in switched controlled
systems. The crucial observation is that the original non-linear system model assumes
that the control input u takes values in the finite set U = {0, 1} as it represents the
action of an ideal switching element. The control input transformation, specified by

T, =v=0(x) + uf(x)

severely restricts the new input v to take values only on a set of two possible non-linear
feedback functions: a(x) or a{x) + B(x). Hence all feedback control policies corre-
sponding to the simplified design carried on the basis of the models (3.6), (3.13) or
(3.22) have to be restricted merely to the specification of a switching logic among the
two fixed (non-linear) feedback paths represented by a(x) and «(x)+ B(x). In
transformed coordinates T,, T, this equally amounts to two (non-linear) feedback
paths of the form a(Ty, T;) and a(Ty, Ty) + b(T;, T,), where a and b are, respectively,
the composition of the functions « and p with the corresponding components of the
linearizing transformation T. This crucial limitation of the control input v is
responsible for the local nature of the sliding regime.

The specification of a feedback control law for the Brunovsky model (3.6),(3.13) or
(3.22) reduces then to find a switching logic among feedback paths a(7;, T;) and
a(T,, Ty) + b(T,, T,) such that the controlled trajectories, in transformed coordinates,
exhibit a desirable stable motion towards equilibrium. This can be accomplished
either by the specification of a duty ratio, in a PWM control strategy, or a sliding
surface with prescribed geometrical properties, within a Variable Structure Control
approach. Sira-Ramirez (1988) has shown that both approaches, PWM and VSC, are
generally equivalent. Integral manifolds of PWM controlled non-linear systems
qualify as sliding manifolds for VSC policies while the equivalent control, associated
with any VSC policy, coincides with the corresponding duty ratio which makes of
the sliding surface an integral manifold of the PWM controlled system. The
equivalence has rigorously been shown to hold true in general under the assumption
of high frequency switchings.

The necessary and sufficient conditions for the existence of a sliding regime
(equivalently for the existence of an integral manifold of the average PWM controlled
system) for the above transformed class of switched systems result, in general, in a
local sliding regime exclusively determined by the specification of the surface (or the
duty ratio). The computation of the region of existence is cumbersome, even in the
simplest example, and hence the simplifying nature of the exact linearization approach
is lost. In the next few paragraphs we consider in detail the sliding mode approach.
The corresponding considerations for the PWM control follow along similar lines.

4.2. VSC control of linearized converters
Consider the second-order Brunovsky model with non-linear feedback

dT, dT,
Etk=n7 _ZI_Z-=U’ U=a(’rl7T2)+ub(Tl’T2)’ ue{o’ I} (41)

Suppose a stable motion is to be induced on the above system such that a
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prespecified equilibrium point T  is to be reached asymptotically. If we let the sliding
surface be of the form

S={(T\, T):s=T,+m(T) — T, ;) = 0, m> 0} (42)
then under ideal sliding conditions (s = 0, ds/dt = 0) the governing equation of the
equivalent system (Utkin 1978) is

a1
dt

i.e. an asymptotically exponentially stable motion towards equilibrium is achieved for
the total stored energy of the system. The corresponding equivalent control, ideally
responsible for this motion, is obtained from the above ideal sliding conditions as

UEQ = mz(Tl - Tl .ss) (44)

The necessary and sufficient conditions for the existence of a sliding regime on S
(Utkin 1978) are simply that on s =0 we have

min {a(T,, T,), (T, T,) + (T}, T5)} <vgq= m* (T — Ty s)
=a(T}, T) + ugo(11, T5)
<max{a(T;, T,), a(Ty, T) + KTy, T,)}
(4.5)

=-m(T, - Ty s) (43)

or equivalently
0 <ugg=[m*(T; — Ty i) —a(Ty, )b (T}, T1)ls=0 <1 (4.6)

In original coordinates the regions of existence, along the non-linear sliding
manifold

S={xeR*:s=T(x) + mT;(x) =0, m> 0},
are represented by disjoint open sets given by
B(xy,x2) >0, ox) <m*[Ty(x) — T, ;] < [ax) + B(x)]
and

B(x1,x2) <O, afx) >m*[Ty(x) — Ty 5] > [a(x) + B(x)] (4.7)

The existence of a sliding mode is thus locally restricted to the region of validity of
the above inequalities which in turn must be intersected with the region of validity of
the linearizing transformations. In the case of the converters, physical reasons related
to the location of the point of equilibrium make one select the region f(x, x,) > 0 for
the Buck and Boost cases, while B(x,, x,) <0 for the Buck-Boost case.

The particular values of a(x), f(x) and the corresponding regions of existence of a
sliding motion along the stabilizing sliding curve containing the equilibrium point
T, ., can now be obtained from the form of the input coordinate space transformation
Ty(x) for each converter circuit, as given by formulas (3.5), (3.12), and (3.21).

5. Conclusions and suggestions for further research
The existence of linearizing locally diffeomorphic transformations of traditional
state-space coordinates for three basic DC-to-DC power supplies has been shown to
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render this class of systems as structurally equivalent to a second-order integrating
plant. In all cases the transformed coordinates T,, T, are consistently interpreted as
the total stored energy and the input minus the output power or rate of change of the
total stored energy. The transformation of the input coordinate space, represented by
a topological change of the circuit structure commanded by a controlled switch, leads
to a finite set of non-linear control laws. A switching logic for the ideal switch is to be
chosen in order to obtain a desirable stable motion of the transformed state-space
trajectory. The design problem can therefore be considered in a unified fashion for the
three converters by solving a discontinuous non-linear feedback control problem in
the linearized coordinates. The synthesis problem is thus restricted to finding the
appropriate switching law by means of either Variable Structure Systems theory (and
their associated sliding regimes) or Pulse Width Modulations control strategies. The
resulting design problem is conceptually simple but computationally cumbersome.
Aside from the local nature of the linearizing transformation, which can be fully
justified on physical grounds, the existence of a sliding motion is also local. Within this
context, we have examined the limitations of the exact feedback linearization
approach in the control of switched power supplies. Other bilinear converters, such as
the Cuk converter and their useful variations remain to be studied from this
viewpoint.
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