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Pseudolinearization in DC-to-DC power supplies

HEBERTT SIRA-RAMIREZ}

A method is proposed for designing regulating feedback control laws in switched-
mode DC-to-DC power supplies such as the boost converter. A physically
meaningful local state coordinate transformation is proposed on the average pulse-
width-modulated controlled converter which results in a perturbed linear tangent
model independent of the operating point. Such a model exhibits a linear structure
in Brunovsky’s canonical form. Conceptually, the feedback regulation scheme is thus
considerably simplified.

1. Introduction

Pulse-width-modulation (PWM) control techniques or, alternatively, variable
structure feedback (VSF) strategies constitute popular means of feedback regulation
for switched controlled bilinear networks (see Venkataramanan et al. 1985, Sira-
Ramirez 1987 a,b, Sanders et al. 1986, Sira-Ramirez and Ilic-Spong 1988, Severns and
Bloom 1985, Middlebrook and Cuk 1981).

In Sira-Ramirez (1987 b), a general relationship was established among average
PWM controlled responses and ideal VSF controlled trajectories. This equivalence
asserts that integral manifolds of average PWM controlled networks qualify as sliding
surfaces on which the corresponding equivalent control (Utkin 1978) coincides with
the duty ratio associated with the PWM control scheme. In general, average PWM
models are obtained from a non-linear system model simply by substituting the switch
position function by the duty ratio. Similarly, the ideal sliding dynamics are obtained
by replacing the same control function by the equivalent control. The underlying
assumption made in obtaining both average models is the high (infinite) frequency
switching assumption.

In this article, the feedback control of bilinear switched networks such as the Boost
DC-to-DC power converter is examined from the perspective of pseudolinearization
(Reboulet and Champetier, 1984). Pseudolinearization of the non-linear discon-
tinuous model is not possible, since the switch control function takes values on a
discrete set and its values cannot be perturbed. For this reason, the average PWM
controlled network is used and its tangential behaviour examined on a controllable
submanifold of stable operating points. A state coordinate transformation, expressible
in terms of average stored energy and average consumed power, is found which turns
the average perturbed model into a Brunovsky canonical form, independent of the
operating point. The specification of a stabilizing feedback loop, whose control action
regulates the duty ratio around its nominal operating value, is based on the linearized
tangent model. A similar, but conceptually different, approach was taken by Sanders
et al. (1986) for the variable structure control of the boost converter using feedback
linearization (see Hunt et al. 1983).
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Section 2 presents the pseudolinearization of the boost converter. Section 3
develops a feedback control method based on the linearized perturbed model. Section
4 contains the conclusions of the article.

2. Method of pseudolinearization

The following presentation closely follows that of Reboulet and Champetier
(1984).

Consider the bilinear single-input system

x=Ax+ vBx (2.1)

with xe R", Ax and Bx are smooth local vector ficlds defined on an open
neighbourhood X of R" and v is a, possibly discontinuous, scalar control function
v:R"— R. The set of stable operating points is expressed as

C...i={(xo, Vo) € R"* ! s.t. [A + vy B]x, = 0} (22)
with local projection on X given by
C,={xo€ R"s.t. 3vg s.t. [A + v B]x, = 0} (2.3)

In the neighbourhood of an operating pointe(xo, v, ), the dynamic behaviour of the
system is approximately linear and described by

6% = [A +voB] 6x + [Bxo] ov (2.4)

where dxe R" and Sve R. One assumes that for any (x,,ve)€ C,,, the pair
[A4 + vy B, Bx,] is controliable.

It was shown by Rebouliet and Champetier (1984) that, for a given v, the set of
operating points €, ,, in the neighbourhood of which the linear tangent model of
system (2.1) is controllable, constitutes a one-dimensional submanifold of R**!and it
is open in C, ,. %, denotes the projection of €, , on the x-state space. Evidently, € is
contained in C,. Notice that, necessarily, at every point (xo, vo) € %, .., the vector
Bx, #0.

Lemma 2.1 (Reboullet and Champetier 1984)
Let there exist a local C'-diffeomorphism ¢ = (¢, ..., ¢,)" from R" into R”" such

that %, , is given by ¢,(x) = ... = ¢,(x) =0, then for any i-form o given along €,
there locally exists a function T of class C' such that
a=dT}, (2.5)

i.e. the 1-form « is locally integrable along €, ..

Theorem 2.2 (Reboullet and Champetier 1984)

Let the non-linear system (2.1) have a controllable tangent model (2.4) along C, ,
and let %, , be given as in Lemma 2.1 for some C'-diffeomorphism ¢, then there exist
mappings z = T(x), v=T,,,(x, v) = «(x) + f(x)v, with f(x) #0 in €, such that the
tangent model of the transformed system in the z-state space

02, =0z;,,, i=1,2,..,n 1} (26)
0z, =0v

is independent of the operating point.
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To obtain the tangent model (2.6) the following equations must be locally satisfied
on C,,.

a;[A+voBY 'Bxo=0, i=12,...,n-1 (2.7)
=0, [A+voBY™!, i=23,..,n (2.8)
Oy v 1 =an[A+VOB9 BxO] (29)

The problem then becomes one of finding 1-forms «, ..., , (and «,, ) satisfying
equations (2.7)—(2.9) at any point of C, (and of C, ) such that there exist mappings
T:(x) (i=1,2,...,n) and T,, (x, v) for which

2, =dT)|c., i= 1,2,...,n}

Ayt g =dTn+1|(“

(2.10)

The procedure for finding the linearizing transformations consists of three basic
steps:

(i) choose any arbitrary covector «, along the direction determined by (2.7);
(il) compute «,, ..., o, from (2.8) and (2.9);

(iii) integrate «; (i=1,2,...,n) along C, and «,,, along C,, to obtain the
linearizing mappings T;, ..., T, 4 1.

3. Pseudolinearization of the boost converter model

In this section the problem is posed of obtaining a linear tangent model of the
average PWM controlled DC-to-DC switchmode power supply such as the boost
converter. This network is represented in state space by a bilinear dynamical model
(Wood 1974, Sira-Ramirez 1987 a). A linearized model, in Brunovsky canonical form,
is obtained for the boost converter that is independent of the operating point. The set
of equilibrium points C, ,, C, and the sets ¥, and %, are clearly identified and the
linearizing transformation is readily obtained following the procedure indicated in § 2.
These linearizing transformations turn out to have an interesting physical meaning in
terms of the total average stored energy and the total average consumed power.

Consider the boost converter model shown in Fig. 1

p, =b— woy, + uwyy
N 02 02 } 3.1

Va=0g) — WYy — U,

S 1 -
T T

— o 1 ¢ == T

Figure 1. Boost converter.
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where y, = \/Zi, Yy, = \/EV, b= E/ﬂ, Wy = l/ﬁ, ®; = 1/RC and u denotes the
switch position function, acting as a control input, and taking values in the discrete set
U={0,1}. The vector fields f and g are given by f=(b— wyy,)3/8y; +(Woy,
— W, y,)8/Cy,, g =wey,0/dy, — woy, 0/Cy, where &/dy, and &/Cy, are the unit
direction vectors in the tangent space of R2.

An idealized PWM control strategy, is defined as one in which the switchings to
the u = 1 position are assumed to occur at the beginning of each period known as the
duty cycle and turning to the u = 0 position once within the duty cycle according to a
switching policy determined by a smooth feedback function of the average state vector
x, known as the duty ratio, and denoted by v(x). The duty cycle is assumed to be
periodical with infinitesimally small period (i.e. infinitely large frequency) and the duty
ratio is the fraction of the duty cycle on which the switch position is at u = 1. Hence
0 <v(x) <1 (see Fig. 2). Under the high frequency assumption, it was rigorously
demonstrated by Sira-Ramirez (1987 b) that the average model is given by the non-
linear model

%1 = b—[1—(x)]wox; } (32)

X =[1=v(x)Jowox; —w X,

u ‘ l‘-v(X)T —"

1

«— T —+e— T —+
Figure 2. Typical duty cycle and duty ratio.

If an equilibrium point x, exists then v, = ¥(x,) is a constant scalar satisfying
0 < vy < 1. The equilibrium point of (3.2), if it exists for the given v(x), is given by

X0 =@ b[wo(1=v6)]172,  x30=blwo(l —ve)]™" (3.3)

Then, eliminating v, in (2.13), it follows from the definitions of § 2 that the sets C, ,
and C, are given by

Cov=1{(x0,vo) ER*:x1o = b7 "x36,0 < vy < 1} (3.4)
C.={xoeR*:3vge(0,1) in Rs.t.x;p=w, b 'x30} (3.5)
while the sets
€. ={(x0, Vo) ER*:x ;9= b 'x}p, 0, bwg > < xy4< %
bwg! < x35<c;0< vy <1} (3.6)
6, ={xoeR*:3vy€(0,1) in Rs.t. x;0=0w,b"'x},
W hwy? < X0 < o0, bog ' < xy0 < o} (3.7)

These sets are all shown in Fig. 3.
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Figure 3. Submanifold of controllable stable operating points in R? and its projections in R?
for the boost converter.

In the neighbourhood of an operating point (x4, vo) the dynamic behaviour of the
average system (3.2) may be considered as linear in the form (2.4) with

0 —(1 —vgy)wg

Wo  Xa0
A+vyB=

(3.8)
(1 —vo)wyg —Wy

) xO:
—Woy Xy

The pair [4 + vy B, Bx,] is controllable everywhere in R? except on x, =0 and
x; = —b(2w,) — 1. None of these uncontrollability sets intersects €,. Notice that,
from (3.5), C, and %, are contained by the level set ¢,(x) =0 with ¢, being a local
C!-diffeomorphism given by

$2(x) = bx, —w,x3=0 (39)
Hence any 1-form « given along %, is integrable.
Let o; be 1-forms over €, «;=dT|,, i=1,2. To obtain a linear tangent model,

independent of the operating point the «; must satisfy, on €, ,, equations (2.7)-(2.9).
According to (2.7), a; g(x) = 0 on €,. This results in a; = x;4 dx; + x5, dx, from
where

z, = T, (x) = 0-5(x2 + x2) (3.10)

Using (2.8) and the expression (3.8) we obtain after some manipulations involving
the expressions for the equilibrium points (3.3) that the 1-form o, =a;[A4 + voB]
=bdx, — 2w, x5, dx,. Integrating this expression along C, we obtain T, as

z, = Ty(x) = bx, —w, x3 (3.11)

Finally, wusing (29) ay;=0,[A+veB, Bxg]=--2(1 —vy)wow,x,q dx; +
[=b{1 = vg)wg + 203 x50 1 dx; + [bwg X, + 20, We X 0X20] dv, oOne cbtains after
integration and further straightforward manipulations

v=2z,=Ty(z,v) = (b® — bwyx, — 20, wo X, X, + 20} x3)
+ (bwox, + 20, wg x| x,)v=:a(x) + B(x)v (3.12)

The transformation T;(x) represents the total average stored energy by the circuit
while its rate of change, T,(x), is simply the average input power minus the average
output power, which we term the ‘total average consumed power’. Tj is then the rate of
change of the total average consumed power.
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Evidently
T'=T,, Thy=Ty=v or Z,=z,, Z,=z3=0 (3.13)

Le. the system is in Brunovsky’s controllable canonical form. The tangent model to
(3.13) is thus independent of the operating point, and in z-state space such model is
expressed as

0z, =0z,, 0Z,=0z3=0v 3.14)

The inverse transformation x= T~ !(z) does not globally exist in R3, thus
indicating the local character of the diffeomorphism T. However, in the region of
interest, ¢, T is indeed a local difftomorphism with inverse computed as

X, =b2w ) [+ (2w, b ) T2z, + wi tz,)]M?
x={P2wH) T[T+ 2w b7 ) 722z + wi ' 2) ] — 1} —wi iz, 2 (B15)

Notice that in the z-state space a controller design for stabilization around a
desirable transformed equilibrium point (z¥, z%) is very simple. First of all, under
steady state conditions z3 =0. Secondly, for a given set point z¥, the required
feedback control law for (3.13) is v(z) = —m,(z, — z¥) — m,z, with m;, m, > 0. The
closed-loop system z, =z,, z,= —m,(z, — z}¥) — m,z,, is made asymptotically ex-
ponentially stable towards (z¥, 0) due to freely assignable stable eigenvalues. Once the
suitable control law ©(z) is designed then the required controller v is obtained from
(3.12) as

r=3"1)[u2) —a(x)]lx=T " '(2) =BT (2 [v(2) ~ T '(2))] (3.16)

4. Regulation via the average pseudolinearized model

A control scheme, based on the method of dynamic inverses (Meyer and Cicolani
1980), is proposed in this section for the feedback control of DC-to-DC power
converters of the boost type. Using the pseudolinearization results of § 3, a simplified
regulator is specified which generates a corrective control in a servo-model-following
scheme. The comparison among the linearized plant, as seen through the ‘trimmap’,
and the servo-model driven by an external reference input, or setpoint, defines a set of
error signals which drive the simplified linear regulator and obtains the required
correction term.

The feedback regulation scheme of Fig. 4 synthesizes, after appropriate inversion,
a desirable duty ratio geared to achieve desirable steady state stability of the
equilibrium point of the average model. The obtained smooth duty ratio is translated
then into an appropriate sequence of on-off pulses by means of a PWM. The observed
state variables of the plant are processed through a low pass filter to obtain the
average (i.e. chattering-free), smooth values of the state functions. The actual states of
the regulated plant undergo small, high frequency oscillations around the regulated
equilibrium point.

Figure 4 shows the control scheme (see Meyer and Cicolani 1980) for the boost
converter. Here x¥ represents a desirable average value for the steady state input
current acting as a set point. Notice that for a given average steady state input current
x¥, the corresponding capacitor voltage x3¥ is fixed through (3.5) or (3.7). The
steady state set point in x-state space must be translated, by means of T(x), to a
corresponding one in z-state space where the component z¥ is invariably zero
according to (3.9) and (3.11).
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Figure 4. Feedback control scheme for the boost converter.

5. Conclusions and suggestions for further research

A pseudolinearization approach has been applied for the regulator design of DC-
to-DC switchmode power supplies of a bilinear nature such as the boost converter.
The integration of appropriately chosen t-forms along smooth one-dimensional
controllable steady state submanifolds of the average PWM controlled converter
leads to the specification of a local linearizing diffecomorphic state coordinate
transformation. This transformation, besides being physically meaningful in terms of
total average stored energy and total average consumed power, yields a controllable
tangent model in Brunovsky’s canonical form. The independency of the tangent model
with respect to the average operating point allows the design of a general, smooth
feedback control scheme specifying the desirable duty ratio. Such a duty ratio is
computed accordingly to an externally specified set point value for the steady state
input current (or, equivalently, steady state output voitage). The practical implement-
ation of the ideas reported here are thus far encouraging. They will be fully reported
elsewhere.
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