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Switched Control of Bilinear Converters
Via Pseudolinearization

HEBERTT J. SIRA-RAMIREZ, SENIOR MEMBER, IEEE

Abstract —In this paper a new method is proposed for designing regulat-
ing feedback control laws in bilinear networks such as the boost and the
buck-boost dc-to-dc power supplics. A pseudoli ization approach is
taken on the average pulsewidth modulated controlled model with physi-
cally meaningful local state coordinate transformations. For such transfor-
mations, the perturbed average model is independent of the operating point
and exhibits a linear structure in Brunovsky’s canonical form. The feed-
back regulation scheme is thus considerably simplified from the conceptual
viewpoint.

Keywords — DC-to-DC power converters, pseudolinearization, nonlin-
ear circuits.

I. INTRODUCTION

EEDBACK regulation of switched-controlled bilinear
networks is accomplished by means of pulsewidth-
modulation (PWM) control technigues or, equivalently, by
means of variable structure feedback (VSF) strategies in-
ducing stabilizing sliding regimes (see [1}-[7)).

In [8] a general relationship is established among aver-
_ age PWM-controlled responses and ideal VSF controlled
trajectories. This equivalence asserts that integral mani-
folds of average PWM-controlled networks qualify as slid-
ing surfaces on which the corresponding equivalent control
(9] coincides with the duty ratio associated with the PWM
control scheme. In general, average PWM models are
obtained from a nonlinear system model simply by substi-
tuting the switch position function by the duty ratio fune-
tion, Similarly, the ideal sliding dynamics is obtained by
replacing the discontinuous control function by the smooth
equivalent control. The underlying assumption made in
obtaining both average models is the high (infinite) fre-
quency switching assumption.

In this article, a new approach is presented for the
feedback control of bilinear switched networks such as the
boost and buck-boost de-to-dc power converters. The
method is based on pseudolinearization [10] of the average
PWM-controlled network on a controllable submanifold of
stable operating points. A physically meaningful local dif-
feomorphic state coordinate transformation, expressible in
terms of stored energy and consumed power, is found
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which turns the average perturbed model into a Brunovsky
canonical form independent of the operating point. The
linearized model is then used for the specification of a
stabilizing feedback loop whose control action regulates
the duty ratio around its nominal operating value. A
similar, but conceptually different, approach was taken in
[4] for the variable structure control of the boost converter
using feedback linearization (see Hunt et al. [11]).

Section II presents the pseudolinearization of the boost
and buck-boost converters. Section III develops a feed-
back control method based on the linearized perturbed
model. Section IV contains the conclusions of the article.

II. PSEUDOLINEARIZATION OF CONVERTER MODELS

2.1. The Pseudolinearization Method

The following presentation closely follows that of
Reboulet and Champetier [10].
Consider the nonlinear single-input system:

dx/dt = f(x)+vg(x) (2.1)

with x € R", f and g smooth local vector fields defined on
an open neighborhood X of R" and v is a, possibly
discontinuous, scalar control function »: R" - R. The set
of stable operating points is expressed as

Cov= {(x0.75) € R"™ 1V st f(x5) + 9o8(x0) =0} (2.2)
with local projection on X given by
Co={x,€ R"s.t. Ing s.t. f(x0) +we8(xy) =0). (2.3)

Let F(x,).G(x,), respectively, denote the Jacobian ma-
trices, df/dx and dg/dx, of f and g evaluated at x,,.
Then, in the neighborhood of an operating point (x,, ¥,),
the dynamic behavior of the system is approximately linear
and described by

d(8x)/dr = F(x,,v,) 8x + g(x,) 8» (2.4)

where F(xg,v5) = F(xg)+ »G(x,) while 8xe& R", ‘and
d» € R. One assumes that for any (x,, »,) €C, ,, the pair
[F(xg, ¥5), 8(x,)) is controllable.

It was shown in [10] that, for a given », the set of
operating points €, ,, in the neighborhood of which the
linear tangent model of system (2.1) is controllable, consti-
tutes a one-dimensional submanifold of R”*! and it is
open in C_,. €, denotes the projection of %, , on the
x-state space. Evidently, %, is contained in C,. Notice
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that, necessarily, at every point (x,, ¥,) € €, ,, the vector

(xg) #0. .

Lemma 2.1 [10]: Let there exist a local C!-diffeomor-
phism ¢ = (¢, -, ¢,)7 from R" into R" such that €, , is
given by ¢,(x) = -+ =¢,(x) =0, then for any 1-form a
given along €, , there locally exists a function T of class

! such that

a=dT|, 2.5)

2, the 1-form a is locally integrable along ¢, ,. O

Theorem 2.2 [10]: Let the nonlinear system (2.1) have a
controllable tangent model (2.4) along C, , and let €, , be
given as in Lemma 2.1 for some %!-diffeomorphism ¢,
then there exist mappings z=T(x), v=T,,,(x,v) = a(x)

B(x)», with B(x) # 0 in €,, such that the tangent model
in the transformed system in the z-state space:

d(&z,)/dt-=82,+1, i=12,-:,n-1
d(8z,)/dr=8v

is independent of the operating point. 0
To obtain the tangent model (2.6) the following equa-
tions must be locally satisfied on C, ,:

o F " (xo,v0)8(xe) =0, i=1,2,---,n-1 (2.7)
a;=a,F'"Y(x4,9), (2.8)
“n+1’=“n[F(xo»”o)»8(xo)]- (2.9)

The problem then becomes one of finding 1-forms

a, --,a, (and a,,,) satisfying (2.7)—(2.9) at any point of
. (and of C,,) such that there exist mappings 7;(x)
=1,2,---,n) and T,,,(x, ») such that

(2.6)

i=23,:-,n

a=dlyc, =12 n

a, =dl, e, .. (2.10)

The procedure for finding the appropriate transforma-
tions consists of three basic steps: i) choose any arbitrary
covector «, along the direction determined by (2.7), ii)
compute a,,- -, a, from (2.8) and (2.9), and iii) integrate

. (i=1,2,---,n) along C, and a,,, along C, , to obtain
one mappings Ty, -+, T, ;.

Remark 1: The pseudolinearization method constitutes
in extension of the results on global feedback linearization

[1]. This extension allows one to find locally diffeomor-
phic state coordinate transformations leading to dynamical
systems, not necesarily linear, whose tangent models are
controllable and independent of the operating point. Evi-
dently, if the system is globally feedback linearizable, the
transformations obtained by pseudolinearization may be
made to conincide with those of exact feedback lineariza-
tion developed by Hunt, Su, and Meyer [11]} (see [10] for
some examples). In such a case, the tangent model corre-
sponding to the linearized system is, itself, independent of
the operating point and describable in Brunovsky-control-
able canonical form. It is in this respect that the pseudo-
tinearization method contains that of feedback lineariza-
tion.
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Fig. 1. Boost converter.

For systems in which the exact linearization conditions
of [11] fail, and therefore the system is not globally feed-
back linearizable, the pseudolinearization method allows
for a clear and straightforward identification of the region
where a local diffeomorphic state coordinate transforma-
tion exists which produces a system with a tangent model
in Brunovsky-controllable canonical form (i.e., indepen-
dent of the coordinates of the operating point located on
an equally clearly identified manifold of stable and con-
trollable operating points). A linear design method secking
stabilization around any of the operating points results in
no need of “gain scheduling” as long as the system trajec-
tories remain close to the manifold of operating points and
within the region of validity of the pseudolinearization
method (i.e., in the region of controllability of the tangent
model). O

In the next section the pseudolinearization method is
applied to obtain a feedback control method for the regu-
lation of bilinear switchmode power converters. This class
of circuits is, generally speaking, not globally feedback
linearizable.

2.2. Pseudolinearization of Average PWM-Controlled
Switchmode Power Supplies

In this section the problem is posed of obtaining tangent
models of average PWM-controlled systems, representing
de-to-dc switchmode power supplies, which are control-
lable and independent of the operating point. Such net-
works are represented, in their traditional state space, by
bilinear dynamical models (Wood [13], Sira-Ramirez (2]).
The boost (“up”) and the buck-boost (“up-down”) con-
verters are treated and a linearized model in Brunovsky
canonical form is obtained. which is trivially independent
of the operating point. The set of controllable equilibrium
points C, ,, C, and the sets €, , and €, are clearly identi-
fied and linearizing transformations are readily obtained
following the procedure indicated in the last section. These
transformations, aside from leading to locally exactly lin-

“earized models, turn out to have an interesting physical

meaning in terms of the total stored energy and the con-
sumed power.
Boost Converter )
Consider the boost converter model shown in Fig. 1:
dy;/dt = b= wyy, + uwyy,
dyy /dt = wo Y — w1y, — U P (2.11)
where y1=\/fi, y2=\/a;, b=E/\/Z, wo=1/y/Z_C-, W=
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Fig. 2. Typical duty cycle and duty ratio.

1/RC, and u denotes the switch position function, acting
as a control input, and taking values in the discrete set
U= {0,1}. The vector fields f and g are given by f=
(b= we ;)3 /3y +(woy)— w1 ,)8/0y;; 8 =wy»,8/3y,—
woy,8 /3y, where /3y, and 3/dy, are the unit direction
vectors in the tangent space of R%.

An idealized PWM control strategy is defined as one in
which the switchings to the ¥ =1 position are assumed to
occur at the beginning of each period known as the duty
cycle and turning to the uw =0 position once within the
duty cycle according to a switching policy determined by a
smooth, or possibly continuous piecewise smooth, feed-
back function of the average state vector x, known as the
duty ratio, and denoted by »(x). The duty cycle is assumed
to be periodical with infinitesimally small period (i.e.,
infinitely large frequency) and the duty ratio is the fraction
of the duty cycle on which the switch position is at u =1.
Hence 0 <»(x) <1 (see Fig. 2). Under the high frequency
assumption, it was rigorously demonstrated in {3] that the
average PWM model is given by the nonlinear model:

dx,/dt = b —[1-»(x)] wyx,
dx,/dt = [1—p(x)] wyx, — @ x,. (2.12)

If an equilibrium point x, exists then vy = v(x,) is a
constant scalar satisfying 0 < v, <1. The equilibrium point
of (2.12), if it exists for the given v(x), is given by

X0 = b[“’o(l - "o)] o
(2.13)

X10 ™= ‘*’11’[“’0(1 - "o)] ~2?

Then, eliminating v, in (2.13), it follows from the defini-
tions of Section 2.1 that the sets C, , and C, are given by
Co={(x0, %) E R x;9= b7 'x%,0 <y <1} (2.14)

C.={x,€R:35,€(0,1)in R, s.t. x;o= w5 x5}
(2.15)

while the set of operating points where (2.12) has control-
lable tangent models, is of the form:

¥

O {(XOv ¥y) € RY: x1p=wb7 x5,

wbwy? < x40 < 00, by ' <xy <00;0 <y, <1} (2.16)
while its projection on X is given by

€, = {xo€ R € (0,1) in R, 5.t x;0= wyh ™ 'x},,

wbwy? < xg<00, by <xy <0} (2.17)
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Fig. 3. Submanifold of controllable state operating points in R and its
projection on RZ, for the boost converter.

These sets are all shown in Fig. 3.

In the neighborhood of an operating point (x,, »,) the
dynamic behavior of the average system (2.12) may be
considered as linear in the form (2.4) with

0 —(1-y) g
F(xy,v) =
(¥0. o) (1) e, Wy
Wo X0

. (2.18)

X10

8(x0) | - i

The pair [ F(x,, ¥5), g(xo)] is controllable everywhere in
R? except on x, =0 and x, = — b(2w,)”". None of these
uncontrollability sets intersects €,. Notice that, from (2.15),
C, and €, are contained by the level set ¢,(x) =0 with ¢,
being a local C!-diffeomorphism given by

&,(x) = bx; — w,;x3=0. (2.19)
Hence any 1-form a given along €, is integrable.

Let «, be 1-forms over €,, a, = dT}|,, i =1,2. To obtain
a tangent model, independent of the operating point the
a;'s must satisfy, on €, ,, equations (2.7)-(2.9).

According to (2.7), a,8(x,) = 0 on ¥,. This results, after
integration of the corresponding partial differential equa-
tion, in a; = x,4dx, + x50 dx, from where

zy=Ty(x) =0.5(x? + x3). (2.20)

Using (2.8) and (2.18) we obtain after some manipula-
tions involving the expressions for the equilibrium points
(2.13) that the l-form a, is: a, = a)F(x,,¥,) = bdx;~
2w, x,,dx,. Integrating this expression along C, we obtain
T, as

2, =T,(x) = bx; ~ w;x}. (2.21)

Finally, using (2.9),

a; = az[F(xm ¥o)s 8()‘0)]
= =21 - vp) wowy x50 dxy
+[ = b(1=9p) wp +203x ] dx,
+ {bwpxgg + 20,W0eX 10X 2] dV
and after further straightforward manipulations involving
. J
(2.13), one obtains
v=z2,=Ty(x,v) = (b = bwyx, — 2w,0o%, %, +2w3x})
+ (bwyx, +2wwgx,Xx,) v

=a{x)+ B(x)v. (2.22)
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The transformation T)(x) represents the total average
stored energy by the circuit while its rate of change, T,(x),
is simply the average input power minus the average
output power, which we term the “total average consumed
power.” T; is then the rate of change of the total average
consumed power.

Evidently,

dT,/dt =Ty, dT,/dt=Ty=v

or

dz,/dt = 2, dz, /dt = 2= v (2.23)
i.e., the transformed system is already in Brunovsky-con-
trollable canonical form. The tangent model to (2.23) is

thus trivially independent of the operating point, and in
z-state space such model is expressed as

d(8z))/dt =8z,; d(8z,)/dt=58z;=6v. (2.24)

The inverse transformation x =77!(z) does not glob- .

ally exist in R, thus indicating the local character of the
diffeormorphism 7. However, in the region of interest, %,
T is indeed a local diffeomorphism with inverse computed
as

x = b(2w1)'1[1 + (2w1b'1)—2(2vz1 + wl’lzz)] v

2= {bz(zwlz)-l{[l +(2mb™Y) (22, + w{‘z:)]m— 1}

172
- w2
L 22) -

Notice, that in the z-state space a controller design for
stabilization of the transformed system (2.23) around a
desirable transformed equilibrium point (z;*, z3) is very
simple. Firstly, under steady-state conditions z3 =0 and
for a given desirable set point z*, the required feedback
control law for (2.23) is v(z) = — m(z) — z{* )~ m,z, with
m,, m, >0 producing desired stable closed-loop eigenval-
ues. The required nonlinear controller » is obtained from
(2.22) as

=B (x)[v(2) = a(x)]lemr-1r)
=T 2))[o(2) - a(T7H(2))].  (2.26)

In Section IV a control scheme, based on the above
regulation scheme and on that of the “method of dynamic
inverses,” (see [12]), are proposed for the feedback regula-
tion of dc-to-dc power converters.

(2.25)

Buck - Boost Converter
" Consider the buck-boost converter model shown in
Fig. 4: ]

dy, /dt = wyy; + u(b — wyy,)

dyy /dt = = wopy — w1y + Uy (2.27)

where y, =VLi, y,=VCV, b=E/VL, w,=1/VLC, &, =
1/RC, and u denotes the switch position function, acting
as a control input, and taking values in the discrete
-set U={0,1). The vector fields f and g are given
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Fig. 4.

by f=wy, 8/3y +(—woy ~wy,) 3/3py; g= (b~
woy,) 8/0y, + wyy, 3/3y, where 8/3y, and 3/dy, are the
unit direction vectors in the tangent space of R%.

The average PWM model, with duty ratio »(x) obtained
as a smooth feedback function of the average state vector
x, is given by the nonlinear system:

dx,/dt = [1-»(x)] wgx, + br(x)
dx,/dt == [1—v(x)] wex, = wyx,. (2.28)

1f an equilibrium point x, exists then »y=p(x,) is a
constant scalar satisfying 0 < », <1. The equilibrium point

. of (2.28), if it exists for the given v(x), is given by

X10= wleo[‘*’o(l - ';0)] -
xzo“*b”o[“’o(l""‘o)]-l~ (2.29)

Then, eliminating vy in (2.29), it follows from the defini-
tions of Section 2.1 that the sets C, , and C, are given by

C

x,»

= {(xm %) € R xy9=w,b ™y (x50 — buog?),

0<y,<1} (2.30)
C,= {x,€ R} 3y, € (0,1) in R,
St Xyo = w,h ™ g (x50 = bug')} (2.31)

while the set of operating points where (2.27) has control-
lable tangent models, is given by

€., = {(Xo‘ %) € R3: xp9=w,b” bxg( X0 — beg ),
0<xp<00,~ 00 <Xy <0;0<p<1} (2.32)
and its projection on the x-state space is
€ = {x,€ R 35,€(0,1) in R,
St Xy = b xpe{ X0 — big ),
0<x10<oo,—oo<x20<0}‘ (2.33)

These sets are all shown in Fig. 5.

In the neighborhood of an operating point (x,, ¥;) the
dynamic behavior of the average system (2.27) may be
considered as linear in the form (2.4) with

0 (1=vp)wg
VF(XO,V0)= —(1=»p)w, - W
« | worm (2.39)
8(xo) woXso | c
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Fig. 5. Submanifold of controllable stable operating points in R%, and
its projection on R*, for the buck- t converter.

The pair [F(x,, ¥y), 8(x,)] is controllable everywhere in
R? except on x, =0 and x;= — b(2w;) . None of these
uncontrollability sets intersects €,. Notice that, from (2.31),
C, and €, are contained by the level set ¢,(x) = 0 with ¢,
being a local C'-diffeomorphism given by

¢y (x) = bx; — w,x,(x, — bug!) =0.

Hence any one-form « given along €, is integrable.

Let a, be one-forms over €, a;=dT}|g, i=1,2,---,T.
To obtain a tangent model, independent of the operating
point the a;’s must satisfy, on €, ,, equations (2.7)-(2.9).

According to (2.7), a;8(x,) =0 on €,. This results in
o = x,0dx, +(X30-bwg *) dx, from where :

n=Ty(x) =05[x7+(x,~ bg ). (2.36)

Using (2.8) and the expression (2.34) we obtain after
some manipulations involving the expressions for the equi-
librium points (2.29) that the 1-form a, is given by

(2.35)

ay = o, F(xq, 1) = bdx, — [20,x59 — bwywqy ] dx,.
Integrating this expression along C, we obtain T, as
Xy =Ty(x) = bx; ~ w0 xy(x, ~ buwg?).  (2.37)
Finally, using (2.9),
ay=ay[ F(xo, %), 8(x,)]
= 2(1 — vy) wow, X 3 dx,
+[ = b(1=vp) wp +203x5] dx,
+ [b2 = bwgxyp — 2w 00X 19X 90 bwlxw] dv.
Integrating this expression along ¥, one obtains after
further manipulations involving (2.29):
Ty(x,v) = [(1 - wlog?) bwex, = buyx,x
+20,0p%, %, +203x3]
+ [b2 = buwgX, — 200X, Xy + beyxy |v. (2.38)

The transformation Ti(x) represents the total average
stored energy by the circuit with capacitor voltage mea-
sured with respect to its average steady-state value when
»(x) = 0.5. The rate of change of the total average stored
energy, T,(x), is, similarly, the average input power minus
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the average output power with capacitor voltage measured
relative to its steady-state value when »(x) = 0.5.
As before,

dT\/dt =T,;
dz,/dt = z,; (2.39)

i.e., the transformed system is already in Brunovsky-con-
trollable canonical form. The tangent model to (2.39) is
thus independent of the- operating point, and in z-state
space such model is expressed as

d(8z,)/dt = 8z,; d(8z,)/dt =8z, 8v. (2.40)

The inverse transformation x =7T"(z) does not globally
exist in R3, thus indicating the local character of the
diffeormorphism 7. As in the previous case, in the region
of interest, ¥, T is indeed a local diffeomorphism. The
computation of the inverse transformation is cumbersome
in this case as a full fourth-order polynomial equation
must be solved. This, however, does not have any substan-
tial bearing on the specification of a feedback control loop
for the buck-boost converter as x-variables can always be
used as part of a nonlinear regulating feedback loop (com-

dT, /dt =T, = v,
dzy/dt=z;80

or,

" pare Figs. 6 and 7).

In the z-state space a controller design for stabilization
around a desirable transformed equilibrium point (z*, z¥)
is again very simple. Under steady-state conditions z3 = 0,
and for a desirable set point z*, the required feedback
control law for (2.39) is v(z) = — m(z, — 2;* )~ m,z, with
m,, m, > 0, chosen according to a desirable asymptotically
exponentially stable dynamics of the transformed system,
described in z coordinates, towards the chosen equilibrium
point.

N

IV. FEEDBACK REGULATION ON THE BASIS OF THE
AVERAGE LINEARIZED MODEL

A control scheme based on the method of dynamic
inverses (Meyer and Cicolani [12}) is proposed for the
feedback control of dc-to-dc power converters. Using the
pseudolinearization results of Section III a simplified regu-
lator is specified which generates a corrective control to
the linearized plant, as seen through the “trimmap”, in a
servo-model-following scheme (see Figs. 6 and 7).

For the converters presented above, the system in trans-
formed variables is to be controlled asymptotically to-
wards the operating point (z;*,0) by means of a suitable
regulator. An ideal reference model, or command genera-
tor model, with state variables z{, zJ, is proposed’ which
asymptotically exponentially converges towards the de-
sired equilibrium point in transformed coordinates. This
“model servo” is governed by

dzl/dt =z

$ dzf/dt=0"= ~my(2) - 2) ~ my2}

(2.41)
where v° is the “model control law” guaranteeing asymp-
totic stability towards (z*,0) whenever m,, m, are chosen

as suitable positive constants. Error signals e, e, are gen-
erated by comparison of the servo model reference state



SQIRA-RAMIREZ: BILINEAR CONVERTERS

863

e + Z -
A Low
L]
zl m J’ !
K PASS
¥ y 29 FILTER
~ Mz
e - - +
s 12
) K2
e I w,
M1
LY
+ PWM o
L ] +
Xy v v Lo
—— v v 1 v v v
Sei Point Servomode)l  Regulotor Trimmap Smoothing Boost Converter
Generator Da-smoolhing
Circults
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Fig. 7. Fecdback control scheme for the buck-boost converter.

trajectories with the corresponding transformed states of
the linearized system z;, z,, i.e.,

(2.42)
The error state vector [e;, e,]” thus evolves according to
de /dt =e,; de,/dt=0v—0"=8v(e). (2.43)

The regulator design is hence reduced to specifying a
control law, 8v(e), for the error system (2.43). This may be
accomplished by a simple pole assignment scheme, such as

dv(e) = _klel—k282=k1(zl—z?)_ k2(22~zg)
(2.44)

e =2z-20 e;=z,—23.

with k, and k,> 0 rendering desired stable closed-loop
eigenvalues. Setting of the initial states of the servo model
to be nearly equal to those of the transformed system,
makes the error components e,,e,— 0 asymptotically.
This, in turn, guarantees exact tracking of the model servo

states by the transformed plant variables. Once the per-
turbed control law 8v is designed, one obtains the linear
controller from (2.43) as

v=00+80=(k,—m) 20+ (ky—m;)z

+ iz —kiz — kyz, (2.45)
The required corresponding nonlinear controller, », for the
average PWM system is obtained from v as in (2.26).
Remark 2: The regulated error system (2.43), (2.44) can
be assigned any arbitrary stable closed-loop dynamics. The
only possible limitation ifl the converters case is consti-
tuted by the nonglobal “character of the linearization
scheme. This determines the need to obtain closed-loop
state trajectories, of the transformed system, bounded away
from the transformed uncontrollability region of the lin-
earized model (see comments following (2.18), (2.34)).
Hence, closed-loop eigenvalues leading to highly oscilla-
tory responses are not desirable, particularly if the initial
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error vector components have large amplitudes. A combi-
nation of sufficiently damped dynamics and suitable initial
states setting of the servo model guarantee fast regulation
properties of the closed-loop converter (see Sira-Ramirez
and Ilic-Spong [5] for further justification of desirable time
scale separation properties of VSF closed-loop converters).

a

The feedback regulation scheme synthesizes, after ap-
propriate inversion, a desirable duty ratio geared to achieve
steady state stability towards the equilibrium point of the
average model. The obtained smooth duty ratio is trans-
lated then into the appropriate sequence of on-off pulses
by means of a pulsewidth modulator. The observed state
variables of the plant are processed through a low pass
filter to obtain the average (i.e., chattering-free), smooth,
values of the state functions. The actual states of the
regulated plant undergo small high-frequency oscillations
around the regulated equilibrium point.

Figs. 6 and 7 show the control schemes for the boost
and buck—boost converters, respectively. Here x;* repre-
sents a desirable average value for the steady-state input
current acting as a set point. Notice that for a given
average steady-state input current x*, the corresponding
steady-state capacitor voltage x} is fixed by the manifold
conditions (2.15) or (2.31). The steady-state set points, in
x-state space, must be translated, by means of T(x), to
corresponding steady-state values z*, z} in z-state space.
In fact, z} is invariably zero, in the converters case,
according to (2.19), (2.21), and (2.35), (2.37), respectively.

If in (2.45) one designs the perturbed system regulator
by choosing k; =m, and k, = m, the linear model follow-
ing regulation scheme reduces to

(2.46)

In this case the servo model is completely replaced by a
direct stabilizing controller guaranteeing the asymptotic
stability of the linearized plant towards (z*,0). Under the
same general limitations pointed out in the previous re-
mark, this scheme obviates the model servo construction
and hence the dependence of the control scheme on its
initial states. Fig. 8 shows a block diagram of this alterna-
tive regulation scheme.

Remark 3: 1t should be stressed that the feedback ap-
proach presented in this article is widely different to the
regulation scheme presented in [5]. In {5], by appropriate’
design of the system components, a time scale separation <
property was induced among the state variables describing

v(z)=—m(z,~ 2}*)—m,z,.
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the average PWM-controlled system. The slow manifold
corresponding to the average PWM-controlled system with
known, prescribed, constant duty ratio, was used as a
sliding surface for the nonlinear converters. On that slow
sliding manifold, the resulting controlled state variables
ideally behaved linearly and decoupled, with arbitrarily
chosen exponential decay. The sliding motion was shown
not to be global and the region of sliding mode existence
was clearly identified. The technique proposed in [5] estab-
lished a Variable Structure Control alternative, with equiv-
alent properties, to the traditional, and heuristicaily
designed, PWM feedback control schemes for de-to-dc
converters.

In the pseudolinearization approach, the duty ratio is
assumed to be any arbitrary stabilizing nonlinear feedback
function for the average PWM system in a family of such
control laws. The duty ratio, evidently, becomes constant
after the trajectories have converged to a controllable
equilibrium point of the nonlinear average system. On the
manifold of controllable equilibrium points, the pseudolin-
earization method applies and a simplified smooth feed-
back regulation loop is designed on the basis of the new
state coordinates. The manifold of equilibrium points is
here explicitly identified. This manifold, incidentally, has
no relationship whatsoever with the slow sliding manifold
used in [5], except that, in general, they have a point in
common; an operating equilibrium point. The resulting
scheme, based in pseudolinearization, is totally indepen-
dent of the particular equilibrium point achieved by the
system (a property evidently not sheared by the scheme in
[5]). It should be obvious that locally stabilizing pseudolin-
earization-based feedback control laws do not, necessarily,
demand for sliding mode control considerations. O

V. CONCLUSIONS AND SUGGESTIONS
FOR FURTHER RESEARCH

A pseudolinearization approach has been applied for the
regulator design of dc-to-dc switchmode power supplies of
bilinear nature such as the boost and the buck—boost
converters. The integration of appropriately chosen one-
forms along smooth one-dimensional controllable steady-
state submanifolds of the average PWM-controlled con-
verter leads to the specification of local linearizing diffeo-
morphic state coordinate transformations. These transfor-
mations, besides being physically meaningful in terms of
total average stored energy and total average consumed
power, yield a controllable tangent model expressible in
Brunovsky’s canonical form. The independency of the
tangent model, with respect to the average operating point,
allows the design of a generally smooth feedback control
scheme specifying the desirable duty ratio, computed ac-
cording to an externally specified set point value for the
steady-state input current (or, equivalently, steady-state
output voltage). The practical aspects of the implementa-
tion of the ideas presented in this paper will be fully
reported elsewhere.

As topics for further research, the reader is invited to
explore applications of the proposed method on the well-
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known Cuk converter, and some of its most popular modi-
fications. Also, detailed studies and practical limitations of
the proposed technique on more realistic models of actual
converters, including, for instance, inductor resistence, hard
nonlinearities such as inductor current limitations, and
parasitics in the switching elements, constitute an interest-
ing topic for further work.
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