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Global sliding motions on compact manifolds

HEBERTT SIRA-RAMIREZ?

Within the context of non-linear variable-structure controlled systems, a general
geometric characterization is introduced for the global existence of sliding motions
on compact manifolds. As a necessary condition for the existence of global sliding
motions, sign conditions are derived for the volume integrals of the divergence of the
available feedback controlled vector fields. The ideal sliding dynamics are character-
ized in terms of a volume preserving flow or, equivalently, by a total zero-divergence
smoothly controlled vector field. Several illustrative examples are given throughout
the article.

1. Introduction

The flow map associated with a vector field defining a smooth non-linear
dynamical system continuously transforms compact regions of the state-space into
equally compact regions of a rather complicated nature. However, at each instant of
time, the rate of change of volume of such an evolving region is equal to the volume
integral over the transformed region of the divergence of the vector field. Such a
fundamental result (Arnold 1985, p. 198) constitutes a stronger version of Liouville’s
theorem for linear systems by which the determinant of the transition matrix equals
the integral of the trace of the infinitesimal generator (Arnold 1985, p. 195)—see also
Arnold (1978, p. 69, Lemma 1). Using this fundamental result, a general geometric
characterization of global sliding regimes is proposed, in this article, for non-linear
variable structure systems (VSS), defined in R" (Utkin 1978, Itkis 1976), which adopt
smooth manifolds bounding compact regions of R as sliding surfaces (henceforth
such manifolds are called ‘compact manifolds’). For general background on VSS,
readers are referred to De Carlo et al. (1988), Utkin {1987), or Sira-Ramirez (1988).

The necessary and sufficient conditions for the existence of a sliding regime on a
compact manifold are translated into set inclusion conditions on the set-valued flow
map generated by each possible structure of the controlled vector field. A simple
necessary condition for the global existence of a sliding regime is derived from this
alternative, but particular, characterization. The condition involves a difference in
sign of the rate of change of the controlled volume for each available feedback
structure, ie. a difference in sign of the volume integral of the divergence of the
controlled vector field for each possible feedback structure. Smooth responses
obtained from formal application of the equivalent control (Utkin 1978) to the
original controlled dynamics results in having the flow map, associated with the ideal
sliding dynamics, preserve the volume of the compact region.

Section 2 contains some background definitions and general results about sliding
motions on compact manifolds. Illustrative examples are given throughout the
section. Section 3 contains the conclusions of the paper.
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2. Basic definitions and main results
2.1. Background results
Consider a non-linear dynamical system, defined on R” by

d

d—’: = X(x, u) (2.1)
with u = u(x) a scalar, possibly discontinuous, feedback control function and X being
a smooth vector field for each given smooth u.

Definition 1

Let u be a given control function, the ‘flow’ generated by the controlled vector field
X(x, u) is the one-parameter group of transformations g of R" such that g4 x(0)
— x(t), where x(¢) is a solution at time t of (2.1) for the given u. The vector field X(x, u)
is called the ‘generating field” of gi.

Example 1

Consider dx, /dt = x,,dx, /dt = —x, + u. With u = 0, the flow g, generated by the
uncontrolled vector field x, 8/x, — x, 6/6x,, is constituted by the group So(2) of
rigid clockwise rotations in R%.

Example 2
Consider dx,/dt =1, x,, dx,/dt=2A,x, +u, with i, +1,=0 and 4;#0, for
i=1,2. For u=0, the flow g}, in R? is represented by the area preserving mapping

g6 =diag [exp (4,1t), exp (4,1)]

Definition 2
Let D be a compact subset of R”. Then, for a given u, the image at time ¢ of D under
the flow of X, gt (D) is defined as

g4(D) = {x e R": x = g\ x,, for some x, € D} (2.2)

Example 3

It is easy to see that the flow g¢, of Example 2 continuously deforms circles centred
at the origin into ellipses of equivalent area, i.c. the image, at time ¢, of a circle D under
the flow g4 is an ellipse of the same area.

Definition 3
Let u be a fixed control function, the ‘divergence’ of the vector field X(x, u) is
defined as

X

. oX L]
div X(x, u) = Trace [Ex ] = .'; o (2.3

e

Example 4
In Example 1, the divergence of the uncontrolled vector field is zero (this means
the area invariance under the flow map of the evolution of the compact regions in the
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plane—see Arnold (1978, p. 69), Theorem 2, Arnold (1985, p. 198) Corollary 1). In
Example 2, the divergence of the uncontrolled vector field is also zero.

Theorem 1

This is a stronger version of Liouville’s Theorem (Arnold 1985, p. 198). Let D be a
compact region in R” with volume ¥(0). If V() denotes the volume of gl(D) (:= D(1)),
for some given u, then at any time 1

av
(@)
Proof

The proof of Theorem 1 was given by Arnold (1978, p. 69).

= J div X(x, u) (2.4)
D(t)

T

Let D be a compact region of R* whose boundary, denoted by éD, is a smooth
(n — 1)-dimensional submanifold of R”, characterized by

oD ={x e R":s(x) =0} 2.5)

where s:R"— R is a smooth function with non-zero gradient vector, ds/dx, almost
everywhere on dD. We assume that 8D is oriented in such a way that s(x) <0 describes
the bounded interior of D, while s(x) > 0 is the open unbounded complement of D.
The vector field ds denotes the unit outer normal vector field of dD, ie. ds/0x
= ||ds/dx|| ds.

Theorem 2: The Divergence Theorem (Warner 1971, p. 151)

J div X(x, u) = f (ds, X(x, u)> (2.6)
D éD

where ¢ ¢, * > denotes the inner product.

Definition 4

The flow map g, is locally a ‘contraction’ on a given compact region D if there
exists a small positive scalar ¢ such that D = g'(D) for all 0 < t <¢. Conversely, gL is
locally an ‘expansion’ on D if g, *, the inverse map of g, is a contraction on D
(ie. D > g, (D), or, equivalently, g,(D) > D).

Example S
Consider a disc D of radius r in R2. The flow g/ generated by the vector field

0 0
[, =3 (3 xd =] 4 [ x = xa(xd + 33— w5
6x1 0x2

with u = a® = constant < r2, is locally a contraction on D. On the other hand, g, is
locally an expansion on D for u = b? = constant > r? (see Figs 1(a) and 1 (b)).

Example 6
The flows of Examples 1 and 2 are neither locally an expansion nor locally a
contraction.
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Figure 1. (a) Local contraction on D; (b) local expansion on D.

Theorem 3

Let X(x,u) be the generating field of gi. Then, g, is locally a contraction
(expansion) on D if and only if for all x € dD, {ds, X(x, u)> <0 (>0).

Proof

We shall only prove the expansion part in Theorem 3. The contraction part
follows by similar arguments.

Let g/, be locally an expansion on D, then for each x € 0D, the inner product

(ds, ga(x) = x> >0
for any arbitrarily small &. Substituting gZ(x) by its series expansion about x:
£5(x) = x + eX(x, u) + high-order terms

one finds that e{ds, X(x, u)> + o(¢?) > 0, which holds true for,an arbitrarily small ¢ if
and only if {ds, X(x, u)> > 0. To prove the sufficiency, let {ds, X(x, u)) >0 for all
x € 0D, but suppose that g' (D) does not entirely contain D, i.e. g, is not an expansion.
Then there exists at least one open region of éD that has an empty intersection with
g.(D) (see Fig. 2). Take any x on such an open region. For a sufficiently small ¢ > 0,

»
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Figure 2. The proof by contradiction of Theorem 3.

(ds, g5(x) — x> < 0. Again using g&(x) = x + £X(x, u) + high-order terms in the inner
product, one concludes that e{ds, X(x, ) + o(e?) < 0,i.e.{ds, X(x, u)> <Oonanopen
region of ¢D. This is a contradiction. 0

The proof of the following corollary is an immediate consequence of Theorem 3
and the Divergence Theorem 2 above.

Corollary 1
Let g! be locally a contraction (expansion) on D. Then, dV/dt|,-, <0 (>0), ie.

j (ds,X(x,u)>=J div X(x,u) <0 (>0 O
aD D
Example 7
Consider
dx dx
dTl = —x}+ux, (1 +x}), T: =(2u—1)x,

with u taking values in the discrete set {0, 1}. Let D be a circle of radius r. For u=1,
the map g.-,(x,, X,) = col [exp (£)x,, exp (£)x,] is evidently an expansion. Since
div X(x, 1) =2 then

J div X(x, 1) =2nr* >0
D

For u =0, the map
gh—o(xy,x;) =col [x;(1+2x3) 712, exp(—1) x;]

is evidently a contradiction for ¢ > 0. In this case, div X(x, 0) = —-3x2—-1<0, and
hence

. ) 3r?
div X(x,0)= —nr?{ 1+ — -] <0 O
D 4
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2.2. Conditions for global existence of sliding motions on compact manifolds
Definition 5

A ‘variable structure control law’ with discontinuity surface éD is a specification of
a feedback control policy u(x) on (2.1), according to

{u*(x) for s(x) >0
u(x) =

t#uT (2.7)
u (x) fors(x)<0

where one may assume without loss of generality that, pointwise in x, u™* (x) <u™(x).

Definition 6

A ‘global sliding regime’ (i.e. one existing everywhere except, possibly, on a set of
measure zero) is said to exist on dD if and only if at every point x € 4D, the variable
structure control law (2.7) acting on (2.1) is such that

lim Ly, ,+s<0< lim {ds, X(x,u¥)><0

s=++0 s—+0 (28)
lim Lyy,-,5>0< lim ds, X(x,u")>>0
s=+-0 s=-0

where Ly denotes the Lie derivative (directional derivative) of the scalar function s
with respect to the controlled vector field X.

Theorem 4

A sliding motion globally exists on 8D if and only if g.. is a local contraction on D
and g, - is a local expansion on D, ie. given a sufficiently small posttive ¢, for all
O<t<e,

Dog,.(D) and g.-(D)>D (2.9

Proof

Suppose a sliding regime exists globally on 8D, then conditions (2.8) hold true.
From Theorem 3 the set-inclusions (2.9) are then true. Suppose now that (2.9) holds
true. Then, using the results of Theorem 2, one obtains on éD,

ds, X(x, ut (x))D|ceap= lim {ds, X(x,u™(x))> <0
s—=+0
On the other hand,
ds, X(x,u” (x))D|xeop= lim <{ds, X(x,u (x))>>0

s+-0

Hence conditions (2.8) hold true and a sliding motion exists globally on éD. g

Example 8
Consider the disc D and the dynamical system of Example 5. A global sliding
motion exists on the circumference 8D when the switching logic

u=u(x)=a’><r?, forx}+x3—r*>0
and
u=u (x)=b2>r?, forx}+x3—-r’<0

is used (see Fig. 3).
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Figure 3. Periodic sliding motions in R2.

Corollary 2
If a sliding regime exists globally on 4D then

f div X(x,u*(x)) <0 and f div X(x,u"(x)) >0 (2.10)
D D

Proof
Suppose a sliding regime exists globally on 8D, then from (2.8), for all x e oD,
(ds, X(x,u™ (x))> <0 and dds, X(x,x (x))>>0

hold valid. Taking the surface integral over D of the inner product and using
Theorem 2 on each case, conditions (2.10) follow. O

Example 9
Consider a DC to DC power converter of the Buck-Boost type, shown in Fig. 4
(Sira-Ramirez 1987):

d
% =woX; + u(b — wgx,) = X,(x, u)
(2.11)
dx,
7, T TWoXi T wix, +uwyx; = X,(x, u)
1 0
— - g / o
+

e v

Figure 4. Buck-Boost converter.
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where x, = \/ZI, Xy = \/EV, b= E/ﬁ, Wo = l/\/ﬁ, w, = 1/RC, and u denotes the
switch position function (acting as a control input) that takes values in the discrete set
U=1{0,1}. We wish to know whether or not, using a suitable switching policy,
harmonic motions are possible for the Buck—Boost converter responses (DC to AC
conversion), i.c. D is taken as a disc of radius r, centred at the origin, and 4D is the
bounding circumference. An evaluation of the necessary conditions (2.10) leads to

D

j div X(x, 1) = —nr’w, <0 and J div X(x,0) = —nr?w, <0 (2.12)
D

which readily reveals that a global sliding motion does not exist on JD for the
available control inputs in the discrete set U. As a matter of fact, a sliding motion does
not exist on any non-trivial circumference in R%.

The fact that (2.10) is only a necessary, but not sufficient, condition for the
existence of a global sliding regime on the boundary dD of a compact manifold is
illustrated by the following example in R

Example 10
Consider the controlled system
dx
Thl' =(2u—1)x,
dx
dftz = —xy—u(l —2x;)
ue{0,1}

Let D be a circle of radius r, centred at the origin, with 0 < r < 1. It is easy to verify that
for u =0, the flow g% _o(x,, X,) = col [exp (—)x;, x, ], while for u = 1, the flow map
gl _1(xy, x,) =col [exp (t)x,, exp (t}(x, — 1)]. Moreover,

gl-o(D) = {x e R%:x} + x} <exp (—20)r?}
and
gL _1(D) = {x e R¥:x} + (x, + exp (21))> <exp (20r?}

Hence
d 1 d 2 2
E(area gu=0(DMi=0= E(Zﬂ exp (—20r*) =0 = —4nr* <0
and therefore
j div X(x,0) <0
D

On the other hand

d d
g (area gu=1 (D)= = 7 (2mexp (20)r?)|,=o = 4nr* >0
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and hence
j div X(x,1)>0
D
Thus, conditions (2.12) hold valid. However, a sliding motion does not globally exist

on the circumference D bounding D, as can be easily inferred from Figs 5 (a), 5 (b)
and 5 (¢).

(b)

/— Region of Nonexistence
of a Sliding Motion

Region of Existence
of a Stiding Motion

(0)

Figure 5. (a) Controlled vector field for u = 1; () controlled vector field for u = 0; () region of
non-existence of sliding motion.

2.3. Characterization of ideal sliding dynamics and equivalent control

Definition 7 (Hale 1969, p. 266)
Let s(x) = 0 be a smooth manifold in R". We say that s(x) =0 is a ‘global integral
manifold’ for the controlled system (2.1) if, for certain smooth control function u(x),
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the state trajectories that start anywhere on s(x) =0 remain on s(x) =0 for all the
time, i.e. for each x € 6D, gi(x) € D for all t > 0.

Theorem 5

The compact manifold 4D is an integral manifold of (2.1), for a given smooth y, if
and only if gi(éD) = 0D for all t > 0.

Proof

If @D is an integral manifold of (2.1) for some smooth u, then, by definition of
integral manifold for each x € 8D and all t, gi(x) € D, ie. dD > g,(0D) for all t.
Suppose now that g%(0D) does not contain dD for some ¢, then there exist open sets in
4D that have an empty intersection with gi(dD). Taking any x on such an open set,
one concludes that g'(x) ¢ 8D, i.e. dD is not a global integral manifold for (2.1). This is
a contradition. Hence, g.(D) > 8D for all t. From the double inclusion shown, it
follows that g (6D) = éD. The sufficiency is obvious. O

If a global sliding motion exists on D then the average trajectories of (2.1) can be
defined as ideally constrained to 8D under the action of a certain smooth control
function known as the equivalent control (Utkin 1978), and denoted by uF?(x) with
x € 6D. The equivalent control associated to a sliding regime is thus defined as a
smooth state feedback control function, uE?(x), for which the global sliding manifold
0D becomes an integral manifold of (2.1). The tangency of the average trajectories to
oD is characterized by the following manifold invariance condition, satisfied by the
ideally smoothly controlled vector field X(x, u®?(x)):

LX(x,MEQ(x))s =0 ons=0
ie. (2.13)
<ds, X(x, uP¥(x)) )]s =0

If an equivalent control satisfying (2.13) is known, the ideal sliding dynamics is
obtained by formally substituting u by uF%(x) in (2.1). One obtains

Z—f = X(x, u*x)), xedéD (2.14)

as the idealized description of the average trajectories of the variable structure
controlled system on dD. This is the basis of the method of the equivalent control
(Utkin 1978, Chapter 2).

By definition of the equivalent control and Theorem 5, it follows that for all ¢,

guea(0D) = 6D (2.15)

In general, for controlled vector fields of the form X(x, u), (2.13) or (2.15) do not
uniquely define the equivalent control (this topic is considered at length by Utkin
(1978, pp. 64-66)) except in some special cases (typically when the controlled vector
field is of the linear-in-the-control form: X(x, u) = f(x) + ug(x), provided the transver-
sality condition {ds, g)> # 0 is satisfied: see Sira-Ramirez (1988)).
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Remark

It has been shown for the linear-in-the-control case that a necessary and sufficient
condition for the existence of a sliding regime on s(x) = 0-—see Utkin (1978, p. 119)
and Sira-Ramirez (1988)—is the existence and uniqueness of the equivalent control,
pointwise bounded within the extreme feedback laws, i.e. u* (x) < uFe(x) <u~(x). In
the general case, the same condition holds for isolated solutions of (2.13) if they exist.

The invariance conditions (2.13) and (2.15) are easily seen to imply an invariance
condition on the evolution of the volume of gjeq (D) for all &

av
dt

= J div X(x, uF?(x)) =0 (2.16)
t=t D(v)

The existence of a smooth feedback control uF?(x), such that the volume
invariance condition (2.16) is satisfied, constitutes only a necessary, but not sufficient,
condition for the existence of an equivalent control associated to a sliding regime on
OD. This is established in the next corollary.

Corollary 3

If an equivalent control exists globally on 6D then (2.16) holds true, i.e. the volume
of D remains constant under glso.

Proof

From the definition of equivalent control, {ds, X(x, u¥?(x))> =0 at all times.
From Theorem 1, the Divergence Theorem 2, Corollary 3, and the fact that, for any
720, the boundary of gi(D) equals the image of the boundary of D under g, ie.
d[gi(D)] = gi(8D), it then follows that for any 7 >0,

a div X(x, u=%(x))
dt t=rt I s
giea{D)
.
= {ds, X(x, uFx))>
Y dlgiea(D)]
= (ds, X(x, uF%(x)))
v gtea(dD)
.
= {ds, X(x, uFx))> =0 (2.17)
Jop

O

The equivalent control forces the flow map gleq(x) to preserve the volume of the
region D. A sufficient condition to make (2.17) valid is that the subintegral quantity
becomes zero, i.e. div X(x, uF%(x)) = 0. This leads to a first-order quasi-linear partial
differential equation of the form

v [0X(x, ut?) 0Xi(x, uP®) ] (ouP\)
,,; {_ v [“ ouFQ ﬁ] (73;)} =0 (2.18)

from where an equivalent control candidate, uF?(x), may be found.
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Example 11
In Example 5 an equivalent control may be obtained, using (2.18), as a solution of

EQ EQ
div X(x, w0(x)) = — 403 + x3) 4 2uee 4 T I X O,
0x, 0x,

It is easily verified that u?(x) = x? + x3 is such a solution, and hence

uEQ(x)lxeaD = X% + x% = r2 o

The following example confirms the fact that, in general, the qualification of the
sliding manifold as an invariant manifold for some appropriate smooth feedback
control is merely a necessary, but not sufficient, condition for the existence of a sliding
regime on such a manifold— Sira-Ramirez (1988). In other words, condition (2.16)
may be satisfied by a smooth feedback control u(x) defined on 4D, without a sliding
regime necesssarily existing on such a manifold.

Example 12

Consider the problem of finding a control u(x) that satisfies (2.16) for the case of
Example 9. This control must cause smooth oscillatory responses of an harmonic
nature for (2.11). Consider therefore the sliding surface candidate D = {x € R2:s(x) =
x} 4 x3—r?=0}. Then

f div X(x, u(x))=J {(bw(;‘-xz)l:a—ujl+x1|:2u—:|—w,w51}dx1 dx, =0
D D 0x, dx,

(2.19)

A sufficient condition for (2.19) to be valid is that the sub-integral quantity
becomes zero. Hence, the following partial differential equation is satisfied by u(x):

0
(bwg ' —x5) | - | +x, Gu ™ (2.20)
0x, 0x, Wo
Equation (2.20) has the following solution:

u(xg, x3) = |:‘::—1:| tan ! Dﬁ(bwo—1 —x;)7 ']
0

A smooth feedback control u(x) thus exists, which satisfies the invariance condition
(2.16). However, as shown in (2.12), a sliding motion does not exist globally on éD.
Hence, the smooth control u(x) found above does not qualify as an equivalent control
associated to a sliding regime on 0D.

A corollary to Liouville’s theorem (Arnold 1978, p. 69, and Arnold 1985, p. 198)
explicitly states that the flow maps generated by hamiltonian vector fields preserve the
volume of compact regions. The ideal sliding dynamics dx/dt = X(x, uFQ(x)) enjoys
the same property, as established by Corollary 3, when applied to the particular
region D bounded by the compact sliding manifold 8D. Notice, however, that this does
not mean that the ideal sliding dynamics of VSS undergoing sliding motions on
compact manifolds are represented by hamiltonian systems. The corollary to
Liouville’s theorem is a necessary, but not sufficient, condition for a system to be
hamiltonian.
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3. Conclusions

A general geometric characterization for the existence of sliding regimes on
compact manifolds for non-linear variable structure feedback systems is given. The
characterization involves set-theoretic inclusion conditions generated by the control-
dependent flow map when applied to the compact region contained by the sliding
manifold. Sign conditions on the volume integral of the divergence of the available
feedback controlled vector fields are derived as necessary, but not sufficient,
conditions for the existence of a sliding motion. The invariance condition, or ideal
sliding condition, is characterized in terms of a volume-preserving evolution gen-
erated by the flow map associated with the ideal sliding dynamics. An application of
the general results to periodic sliding motions in R? is illustrated using several simple
examples. An extension of the obtained results to the case of non-compact manifolds
is by no means trivial, and constitutes an area for further research. The results
presented here are also applicable to the characterization of quasi-sliding motions on
compact manifolds for non-linear discrete-time systems.
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