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V. CONCLUSIONS

" The conventional dynamic programming procedure has becn extended
in this note for 2-D discrete systems. Although the generalization is
illustrated on the basis of the 2-D Roesser state-space equation, the
method is also applicable for other linear and nonlinear equations with
constant and variable coefficients. The cost functions may also be
nonlinear.

The results of the present contribution may also be considered as a basis
for generalization of the 1-D dynamic programming method for optimal
estimation problems of 2-D noisy images [18}, [25], [26].
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A Geometric Approach to Pulse-Width Modulated
Control in Nonlinear Dynamical Systems

HEBERTT SIRA-RAMIREZ

Abstract—This note demonstrates, under the assumption of high-
frequency control switchings, the existence of an ideal equivalence among
sliding regimes of variable structure fecdback (VSF) control and pulse-
width modulated (PWM) control responses in nonlinear dynamical

 systems. This equivalence constitutes the basis for a geometric approach

to PWM control loops design. An illustrative example of energy
conversion in a lossless switched-controlled bilinear network is presented.

I. INTRODUCTION

In this note, the most salient features of sliding regimes [1] associated
to variable structure fecdback (VSF) control, and the specification of
PWM control loops [2], [3], are examined from a unified geometric
viewpoint. An ideal equivalence is obtained among both approaches under
the assumption of high-frequency control switchings. PWM controlled
responses are shown to locally sustain sliding motions on an integral
manifold associated with a suitably defined ideal average system. As an
ideal fecdback law, the equivalent control associated with the correspond-
ing ideal sliding motion coincides with the prescribed duty ratio.
Conversely, a given discontinuity surface locally qualifics as an integral
manifold of a PWM controlled system provided a local sliding motion
exists with an associated equivalent control coincident with the duty ratio.
This equivalence is exploitable in PWM design problems by replacing the
synthesis of duty ratios (as feedback laws) by simpler switching laws
leading to the equivalent sliding mode behavior on the suitable manifold.

Scction II briefly summarizes a geometric framework for the study of
sliding regimes in nonlinear systems of variable structure. Section II
analyzes nonlinear systems controlled by means of a PWM fecdback loop
and obtains an ideal equivalence among PWM control strategies and VSF
control options. A simple energy transfer problem is considered for a
bilinear switched network.

1I. BACKGROUND RESULTS ABOUT SLIDING MOTIONS OF VARIABLE
STRUCTURE SYSTEMS

Consider the smooth nonlincar system

dx/dt=f(x)+g(x)u 2.1
where x € X, an open set of R”, the scalar control function u:R" = R is
a (possibly discontinuous) feedback control function, while f and g are
smooath, local, vector fields defined on X. Let s denote a smooth real-
valued function of x defined by s:X — R. The level set S, = {x €
R™:s(x) = 0} =: s 0), defines a smooth n — 1 dimensional, locally
regular manifold of constant rank, i.e., locally integrable [4], addressed
as the sliding manifold or discontinuity surface. The gradient of s(x),
denoted by ds, is hence assumed to be nonzero in X except, possibly, on a
set of measure zero. S, is oriented in such a way that ds points from the
region where s(x) < 0 towards that where s(x) > 0. Let X be an open set
of R containing zero. The regularity assumptions about s(x) induce a
local regular foliation of X into disjoint locally integrable manifolds of the
form: S, = {x:s5(x) = k, for k € K} =: s~!(k). Such manifolds are
called leaves of the foliation.
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All results in this note are of local nature, restricted to an open
neighborhood X of R” which has nonempty intersection with S.

Without loss of generality, a VSF control law is obtained by letting the
control function u take one of two possible values in U := {0, 1},
according to the sign of s(x), as defined by

u—l
“lo

Let L,s denote the directional derivative of the scalar function s with
respect to the vector field A. Lys is also denoted as a differential 1-form,
{ds, h), acting linearly on 7,.R" and taking values in R. (See {5, p.
1741.) By Ker ds is meant { h:{ds, h) =0}. A sliding regime is said to
exist locally on Sy, if and only if, as a result of the control policy (2.2), the
state trajectories of (2.1) satisfy [1] '

for s(x)>0

for s(x)<0. R

lim Ly, ,s=lim (ds, f+g)<0 2.3)
§-40 5440
lim Lps=lim (ds, f)>0. 2.9
s~ -0 50

Lemma 2.1 [6]: If a sliding regime locally exists on Sp, then, .

necessarily, the transversality condition L,s = (ds, g} <0 is locally
satisfied on the manifold S,.

Definition 2.2: Let (ds, g) and (ds, f) be nonidentically zero on X. Sp
is said to be a local integral manifold for (2.1), with u(x) a given smooth
control function, if S, is locally integrable and

{ds, f+gu(x)}=0,

ie, f+gu(x) € Kerds . (2.5)

is pointwise satisfied.
Notice that this definition simply entitles the local pointwise tangency
of the smooth controlled vector field f + gu(x) to be manifold S;.
Theorem 2.3 [6]: A necessary and sufficient condition for the local
existence of a sliding mode on S, is that there exists, locally on S, a
smooth‘ control function ugy(x), which turns Sy into local integral
manifold for (2.1), such that )

O<ug(x)<1. (2.6)

" The above theorem actually provides a definition of the ideal (average)
sliding motion on the manifold Sy, known as the ideal sliding dynamics.
The smooth control function ugg(x) is called the equivalent control and
according to its definition and (2.5) it satisfies {(ds, f + gugo(x)) =0,
ie., -

ugo(x)= —(ds, f)/{ds, q)= — L;s/L,s. 2.7
The transversality condition of Lemma 2.1 is therefore justified on the
grounds of existence of the equivalent control. Thus, existence of the
equivalent control is also a necessary condition for the existence of a
sliding regime [6]. Notice that if (ds, g) =0 on an open set of X, then a
sliding motion may still exist on a proper integrablc submanifold of Sy,
provided (ds, f) =0 locally in X. Such sliding motions are termed
singular [1].
From (2.7) it follows upon formal substitution in (2.1) that the motions
starting on Sy, due to the equivalent control (ideal sliding dynamics) are
governed by ’

dx/dt = f+gugp(x)={f-gl{ds, f)/(ds, q}1. 2.8)
This procedure constitutes the method of the equivalent control [1].
If the output of a variable structure controlled system is taken, in local
coordinates, as the surface coordinate function, i.e., dx/dt = f(x) +
g()u; y = s(x) -denoted by (f, g, 5)-, the resulting controlled system
has a very simple structure at infinity (sec [7] and [8]). In particular, the
transversality condition of Lemma 2.1 implics the existence of a zero at
infinity of multiplicity one.! The system (f, g, s) is then said to have
relative degree one [18]. For all initial states located on the leaf s~'(0) the
equivalent control, ugg = — Lys/L,s, zeros the output y in the region of

. ' A nonlincar system (f, g, §) has a zero at infinity of multiplicity v., when such an
integer is the first onc for which L, L, — 15 # 0.
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existence of the sliding regime. Hence, the coordinate-frec description of
the ideal sliding dynamics (2.8) actually corresponds to the zero dynamics
[8], associated with the output function y = s(x). This simple structure
at infinity is also responsible for locally making the order v, of the infinite
zero dynamics? [8] equal to n — 1 (i.e., the multiplicity of the finite zeros
is n — 1). It follows that the maximal (f, g)-invariant distribution,
contained in Ker ds, actually coincides with Ker ds itself, i.e., with the
distribution tangent to the leaves Si. It is then easy to sec that, for any
x(0) € S, (k # 0), the equivalent control (2.7) would make the controlled
system trajectory locally evolve on the leaf ;. Due to the uniquencss of
the equivalent control and (2.6), for arbitrarily small k, where the
transversality condition is still valid, the effect of an appropriate control
input, u = Qor ¥ = 1 according to (2.2), is to pull the state trajectory out
of the leaf s~!(k) to make it approach s~1(0).

Til. A GEOMETRIC APPROACH TO PWM CONTROL

In a PWM control option for system (2.1), the scalar control u, taking
values in U = {0, 1}, is switched once within a duty cycle of fixed small
duration A. The instants of time at which the switchings occur are
determined by the sample value of the state vector at the beginning of each

-duty cycle. The fraction of the duty cycle on which the control holds the

fixed value, say 1, is known as the duty ratio and it is denoted by D{(x(¢)).
The duty ratio is usually specified as a smooth function of the state vector
x. The duty ratio evidently satisfies 0 < D(x) < 1.

On a typical duty cycle interval, the control input u is defined as (see

Fig. 1)
‘ )1 for t=7<t+D(x(1)A
u= {0 for 1+ D(xX(1)AS7<t+A. e
1t follows then that, génerally
N 1+ D(x(HA 1+4
s+ =x+ | U raomdrs | pxoy dr.

i 1+ D(x()A

The ideal average model of the. PWM controlled system response is
obtained by allowing the duty cycle frequency to tend to infinity with the
duty cycle length A approach zero. In the limit, the above relation yields

tim {x(£+ A)—x(1))/A=lim [ S'Mf(x(r)) dr
A-0 4-0 t

£+ D(x()A
+ S 2(x(7)) dr] /A,

ie., 5

dx/dt=£(x)+g(x)D(x). .62
As the duty cycle frequency tends to infinity, the ideal average behavior
of the PWM controlled system is represented by the smooth response of
the system (2.1) to the smooth control function constituted by the duty
ratio D(x). The duty ratio D(x) replaces the discrete function « in (2.1) in
the same manner as the equivalent control ugg(x), of the VSF scheme,
replaces u in (2.1) to obtain (2.9).
We refer to (3.2) as the average PWM controlled system.
Lemma 3.1: Let 35 = {x € R™o(x) = 0} =: 07}(0) bc a local
integral manifold for the average PWM controlled system (3.4), then
0<D(x)= —{do, f)/{da, g)<1. 3.3)
Proof: The inequalities are obvious from the definition of duty ratio.
The expression for D(x) is obtained from the fact that if T, is an integral
manifold of (3.2), then from Definition 2.2 (do, f + gD(x)) = 0, locally
on Z,. From here (3.3) follows immediately. [
_ Notice that {dg, g) =0, on an open set of X, makes D(x) unbounded
unless (do, f) is also zero, in which case 2 is an integral manifold of
(3.2) for any conceivable D(x). To avoid this, we assume, without loss of

2 ]t is easy to show that v, + v = n (sec [8)).
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u
1 p——
A —————»
*—D(X)Af’
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. t t +D(x)A . t+a
Fig. 1. Typica'l duty cycle and duty ratio in PWM control.

generality, that (do, g) < 0locally on Z, (the system with output y = o(x)
has relative degree one). Notice that if (dg, g) > 0, and I, is an integral
manifold of (3.2), then, redefining Z, as {x € R":0/(x) = 0} with g,(x)
= —o(x), one obtains (da), g) < 0 and the assumption would nbw be
valid. : B

Lemma 3.2 If £, is a local mtegral manifold for (3.2), and (da, g) <
0, then, in the region of interest, D(x) is unique.

Proof: Suppose Dy(x) # D(x) are duty ratios for which T, is a local
integral manifold of (2.1). It fdllows from Definition 2.3 that, locally on
2y,(do, f + D(x)g) = Y(do, f + Dy{x)g) =0. From this equality it
follows that (do, (D(x) — Dy(x))g) = (D(x) — Dy(x))de, g} =0.
Since by hypothesis {do, g) <0 then, necessarily, D(x) = Dj(x) locally
on Z,. This is a contradiction. (m]

Theorem 3.3: Suppose the transversality condition {do, g) <0 holds
locally true on Z,, then a necessary and sufficient condition for T, to bc a
local integral manifold of (3.2) is that locally on 2,

(do, f+£)<0  and (do, f)>0. (3.4

Proof: Let I, be a local mtegral manifold for (3.2), then using the

hypothesis that (do, g} < 0, it follows from the righi-hand side of (3.3)

that —(do f) > {(do, g) and therefore (da, f + &) < 0. On the other

hand, using the first inequality of (3.3), it follows that — (da, f) <0, i.e.,
{da, f) > 0.

To prove sufficiency, suppose (3.4) holds true locally on Z,. Then,
there exists strictly positive smooth functions a(x) and b(x) such that on
the region of interest a(x) (do, f + g) + b(x) (do, f) =0. Rearranging
the above expression (do, f + [a(x)/(a(x) + b(x))Ig) =0, i.e., there
exists a smooth contro] function 0 < D(x) = a(x)/[a(x) + b(x)] < 1
such that, locally on 2o, {(do, f + D(x)g) =0. In other words, in X, %, is
a local integral manifold of (3.2). O

Theorem 3.4: A sliding regime of (2.1) locally exists on an integrable
manifold %, if and only if Z; is a locally integral manifold of an average
PWM controlled system whose duty ratio coincides with the equivalent
control. .

Proof: ‘Suppose I, is an mtegral manifold for the average PWM
cortrolled system (3.2), then Theorem 3.3 applies and (3.4) holds true. Tt
follows that locally on Zo:(do, f + g) =lims. .o (do, f+ g) <0 and
(do, J} = lim,._o (do, f) >0, i.e., the variable structure control law u
= 1foro{x) > Oand u = O for a(x) < 0 applied on system (2.1) creates
a sliding mode locally on X, Then, necessarily the transversality
condition {do, g) < 0 holds, according to Lemma 2.1 The corresponding
equivalent oonf | up(x) satisfies (do, f + gueo(x)) = 0 and because,
by hypothesis, T, is an integral manifold of (3.4), (ds, f + gD(x)) =
also holds locally. It follows that (ugo(x) ~ D(x)) (do, g) = 0, i.e.,
ugo(x) = D(x).

Suppose now that a sliding motion locally exists on Iy, then (2.3) and

. (2.4) hold true locally on Zy. Therefore, the hypothesis of Theorem 3.3 is
also valid. Hence, Z, qualifies as a local integral manifold on the average
PWM controlled system (3.2) for some D(x). Notice that from Theorem
2.3,0 < ugp(x) < 1 s satisfied in the region of interest. By definition,
the equivalent control uEQ(x) also turns Xy into a local integral mamfold in
the region of existence of a sliding regime. By virtue of the uniqueness of
the duty ratio of Lemma 3.2, the duty ratio D(x) ¢oincides with the
equivalent control uEQ(x) as a smooth feedback function of the state
vector. ]

Due to the above equivalence, the same remarks about the structure at
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3n

Fig. 2. Switched controlled bilinear lossless nctwork.

infinity made for the case of ideal sliding dynamics, in VSF systems also
apply to average PWM controlled systems of the form (f, g, 9), i.e., with
output function y taken as the integral manifold coordinate function o(x).

Example 3.5: Consider the lossless circuit shown in Fig. 2, also treated
by Wood [10] in a different context. In this circuit, energy stored in the
inductor L; can be transferred to L, using appropriate switchings of the
capacitor branch. If u denotes the switch position function, taking values
in the discrete set {0, 1}, the equations describing this network are

0 -w 0 [} wy 0

X=1w 0 O |[x+u|-w, 0 -w|x
0 0 0 0 w, 0

with x; = INL;fori = 1,3 and x; = VWG, wy = INL,Coy wy = 1/
VL;Cs.

It is casy to show that the total stored energy E = 0.5x7x is an invariant
quantity. For unit norm initial conditions, the state of the system evolves
on S2 (the unit sphere in R?). The vector fields corresponding to (2. 1) are
given, in differential operator notation [4], by f = — wxd/9x; +
wix18/9x; and g = wixpd/0x; — (W + Wax;)d/0x; + wax,d/0x;.

Foru = Oand u = 1 the family of trajectories is characterized by x; =
constant and x, = constant, respectively, on the unit sphere (see Fig. 3).
An encrgy transfer from L, to Ly is accomplished by making the state

trajectory evolve from the initial state (1, 0, 0)7 to the final state (0, 0,

1)7. This can be done by switching ]ust once on the point (0, 1, 0) as
depicted in Fig. 4. An energy conversion can also take place, howeéver, by
means of a PWM control design while kecping the capacitor voltage
ideally constant. Using the equivalence between PWM and VSF control of
Theorem 3.4, a sliding motion created on the submanifold Sy = {x €
Sts=x - K=0,0 < K < 1, K = constant}, by means of the
variable structure control law 4 = 0.5(1 + sign s), achieves the energy
transfer as depicted in Fig. 4. This is accomplished provided the switch is
set fixed at & = 1 once x, becomes 0. In this case the necessary duty ratio
(equivalent control) is obtained from the local integral manifold condition }
of the proposed switching line on the sphere {(ds, f + gD(x)) =0, or
equivalently, f + gD(x) € Ker'ds = span {—x:8/0x; + x,8/9%;}.
Using the expressions for the vector fields f and g, given above, the
nonlinear duty ratio is D(x) = wix;/(wix; + wpxs). Notice that it is not
necessary to synthesize such a nonfinear fecdback law since using the
sliding' mode equivalence such fecdback action is automatically synthe-
sized, on the average, by performing fast switchings about the appropri-
ately identified sliding line So. The control decisions are taken on the basis
of the sign of s (i.e., one bit of data). The local character of the sliding
motions results from the fact that the transversality condition (ds, g) =
—(wix; + waxs) < 0js not globaily satisfied along S, on S2. The sliding
motion only exists on the first orthant. Hence, the duty ratio locally
satisfies 0 < D(x) < 1. The dual circuit to this example is treated, via
sliding regimes, in [11] without reference to PWM control.

IV. CONCLUSIONS

A coordinate free methodology in sliding regime analysis and design is
not only conceptually beneficial for the understanding of known features
about sliding modes and their idealized features. It also provides the right
mathematical tools for the investigation of new connections with areas
such as PWM control. The equivalence established in this note constitutes
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Fig. 3. Controlled trajectories on the sphere.

Fig. 4. Energy transfer via PWM (sliding mode) control.

a step towards the systematic treatment of PWM control design via shiding
regimes. The advantage of such an equivalence results in the automatic
synthesis of prescribed feedback duty ratios by means of on-the-average
equivalent variable structure fecdback strategies defined on an appropriate
sliding surface. Additional benefits are also drawn from hardware
simplicity, characteristic of the equivalent sliding mode approach. From a
purely theoretical viewpoint, this unified treatment also reveals interesting
connections with the frequency domain package for nonlinear systems and
the inherent simplicity of the structure at infinity shared by VSF and
PWM controlled systems.
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Linear Stable Unity-'Feedback System: Necessary and
Sufficient Conditions for Stability Under Nonlinear
Plant Perturbations

C. A. DESOER AND M. G. KABULI

Abstract—We consider a linear (not necessarily time-invariant) stable
unity-feedback system, where the plant and the compensator have
normalized right-coprime factorizations; we study two cases of nonlinear
plant perturbations (additive and feedback), with four subeases resulting
from: 1) allowing exogenous imput to AP or not; 2) allowing the
observation of the output of AP or not. The plant perturbation AP is not
required to be stable, Using the factorization approach, we obtain
necessary and sufficient conditions for all cases in terms of two pairs of
nonlinear pseudostate maps. Simple physical considerations explain the
form of these necessary and sufficient conditions. Finally, we obtain the
characterization of all perturbations AP for which the perturbed system
remains stable.

INTRODUCTION

Robust stability of fecdback systems under unstructured perturbations
of the plant model has been studied extensively. In the nonlinear case, the
small gain theorem [23], [6] gives a sufficiency condition for robust
stability of a stable system under nonlinear stable additive perturbations.
Sufficient robust stability conditions were also obtained in [1], [5], [8],
[10], [15), [16], and [18]. In the linear time-invariant case, necessary and
sufficient conditions for robust stability for a certain class of possibly
unstable plant perturbations have becn obtained in [9] and references
therein, [3); for a general class of possibly unstable perturbations, the
factorization approach yields necessary and sufficient conditions for
robust stability of the fecdback system under fractional perturbations of
the subsystems [4]. Furthermore, necessary and sufficient conditions for
the existence of a controller for plants with additive or multiplicative
uncertainty are given in [19].

For lincar time-invariant stable unity-feedback systems with nonlinear
additive plant perturbations, necessary and sufficient conditions have
been obtained in two cases: i) the additive perturbation has an independent
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