IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35. NO. 12. DECEMBER 1990 1373

Dynamical Discontinuous Feedback Control of
Nonlinear Systems

HEBERTT SIRA-RAMIREZ ano
PABLO LISCHINSKY-ARENAS

Abstract—1In this note, 8 technique is presented for the analysis of
discontinuous dynamical feedback regulation of i systems. A
pulse width dulation feedback inter i h with general
duty ratio function. Is shown to bé easily analyzable in terms of an
average model which captures the essential features of the discontinu-
ously feedback controlled system.
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1. INTRODUCTION

Discontinuous feedback control of dynamical systems has been tradi-
tionally addressed under the assumption of Static (or memoryless)
JSeedback (see [1] and {2]). Variable structure sysiems (VSS) and other
representatives of discontinuous control schemes. such as pulse width
modulation (PWM) and pulse frequency modulation achemes have been
restricied to classes of syatems in which output signals. output errors, or
states. are instantancously and directly pulsed. usually through a unity
feedback loop. imo the controlled system. The static characier of the
proposed discontinuous feedback strategies is also refiected in the
synthesis of the command signals for the feedback enabling switch,
Typically. in VSS the switch position is regulated by the sliding surface
coordinate function. or products of this function with the measured state
- variables. The more realistic and general situation, within a discontinu-
ous ‘fesdback scherne. calis. however, for dvnamical feedback. or
imercannection of the plant and the feedback subsystems constituted by
state estimators, controllers, sensors. and actuators whose dynamics
cannot be entirely neglected. Similarly. signals cor ding the switch-
ing can also be generated by means of dynamical subsystems including
P-1 and P-1-D control schemes excited by output or stale errors.

This nole addresses. in full generality, the problem of analyzing
dynamical discontinuous feedback nonlinear controlled plants. The dis-
continuous feedback scheme is assumed to be constituted by a dynamical
feedback plant. of nonlinear nature, and a controlied switch obeying a
PWM type of switching strategy with sufficiently high sampling rate, It
is found that the actual closed-loop controlied responses of the system
exhibil chattering motions constituting nonideal sliding regimes which
converge continuously toward cerain average manifolds as the sam-
pling frequency is increased. These manifolds are immersed in the
regions of the composite state space where the dury ratio function is
not acting under saturation conditions. In fact. such manifolds are the
integral man{folds of 8 suilable average svsiem described in the
{augmented) state space of the closed-loop system. The average system
is simply obtained by an infinite sampling frequency assumption on the
PWM process. This note constitutes an extension. to nonstatic discontin-
uous feedback. of the work in {3]-(5)

Scction 11 presenmis gencral results about PWM interconnection of
dynamica! systems in a fecdback arrangement. Scction 111 is devoted to
two illustrative examples of discontinuous dynamical feedback schemes
for nonlinear systems. Section IV contains the conclusions of the note.
The necessary background on PWM control is presented in the Ap-
pendix. '

5
11. DEFINITIONS AND MAIN RESULTS

Consider the switched controlied interconnected system shown in Fig.
1. Such a system is described as follows:

dx
o9 = f(x) + g(x)e,

Yy = h(x)
& =Y, + U,

d:
‘—1; = o(2) +y(2)e,
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y2=1(2)
& = U =y

v = PWM [o(1,)]
(1) = s[ey(r). ex(1)] (2.1)

where f. g, ¢, and v are smooth vector fields, x and 2 are smooth
coordinate functions of R” and R ”, respectively, the functions A and »
are, in general, smooth vector functions of their arguments. The signal
a(1) is to be gencrated by cither a dynamical system or by a memoryless
function. The signals u, and w, are assumed to be either éxternal
reference control inputs or external disturbances. The PWM operator is
defined as follows:

pwM [o(14)] = 1 fort,<tsi,+r[o(n)]T
0 fore+r[o(t)]T<is+T

(22)

where 7 is a fixed (i.e., constant) sampling interval length, known as
the duty cycle, and r{a(1,)] is a piecewise smooth function, known as
the duty ratio function which takes values in the closed interval [0,1].
The duty ratio function represents the fractional length of the sampling
interval in which the feedback interconnections are simultaneously
enabled, before they are switched off for the rest of the sampling
interval. The notation o(1,) actualiy stands for s|e,(7,). es(1,)] when s
is a memoryless operation. or it stands for sie (7). e.(1))(¢;) when s
represents the output of a dynamical subsystem. If during a certain open
interval of time the duty ratio function exhibits either the value O or |,
the PWM controller is said to be saturated, or acting under saturation
conditions.

The analysis of (2.1) and (2.2) is quite difficult if one uses the
discrete-time approximation scheme by which PWM systems have been
traditionally analyzed. This is so. even in the case of a linear dynamical
plant interconnected to a static feedback system (see, for instance (6, p.
5913 Rather than using this route. we resort o a recent averaging
technique, proposed in [3]-]5). used for studying nonlinear discontinu-
ously controlled systems under static (memoryless) feedback. The essen-
tial features of this technique which are spplicable to system (2.1) are
summarized in the Appendix of this note.

Definition 2.]: We definc the average system of (2.1) as the
following dynamical interconnected sysiem;

dx
— = J(x) +&(x)e,

» = h(x)

&=y + U
dz
ar

ya=n(2)
€)= Uy = Wy,

W= f[a(l)]
o(t) = s[e,(1). e(1)]. (2.3)

The averagé sysiem (2.3) exhibits exactly the same structure as the
original controlled system except for the fact that the feedback enabling
switch, previously represented by the function v, is now substituted by
the duty ratio function #{o()]. It will be shown in the Appendix that
such a substitution process is justified by leiting the sampling frequency,
of the pulse modulator, reach an arbitrarily large rate. In other words,
the sverage model (2.3) can be obtained from the original system (2.1)
by allowing an infinite sampling frequency assumption on the PWM
block. The advantage of the average model lies, precisely, on the
smooth character of the controlled response. Such a response, inciden-
wlly, - entirely coincides with that of the real PWM system in the
saturation regions of the PWM operator and it is, moreover, arbitrarily
close to the response of the real PWM system in the nonsaturation
regions, for large sampling frequencies. The nature of the approxima-

=a(2) +y(2)e
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tion. on such regions of nonsaturation, is characterized by the existence
of a nonideal sliding regime approximating the average responses, or,
more precisely, by a real sliding regime which continuously converges
toward integral manifolds of the average model (see (3]-[5]) as the
sampling frequency grows to infinity.

The following theorem constitutes an extension of the main result
presented in the Appendix.

Theorem 2.1: For identical initial conditions. the responses of system
(2.1) entirely coincide with those of the average system (2.3) in the

regions of the state space where the duty ratio function acts under .

saturation conditions. On the regions of nonsaturation {i.e., where the
duty ratio function takes vaiues in the open interval (0.1)]. the response
of the actual PWM controlled system exhibits a nonideal sliding motion
which converges toward an integral manifold of the average system
(2.3). containing the initial condition prescribed for (2.1), as the sam-
pling frequency grows to infinity.

Proof: The first part of the theorem is obvious. Consider the
system described by (2.1) in the augmented state space with coordinate
functions (x. 2)

d oy J(x) g(x) 0 |fu
E[zla[m(:)+v(z)h(x)]+[ 0 7(:)”“3]

+[3(X)n(z))v
0

» h{x)
= 24
[)’:] [ﬂ( 2) 24
which we shall express as
d.
:]—I xe = folx.) + Gy (x)u, + 82(( X, )y
Yo m he(xr) (2.5)

with x, = col(x. 2) and the vector fields: /,. g,. the columns of
G),. and the function 4, are trivially defined from the expression (2.4)
of the closed-loop system. The system (2.5) is of the same form (A.2),
(A.3). with discontinuous input function » governed by the PWM
operator (2.2). The result of Theorem A.! immediately applies and the
resuit follows. ]

Remark: Notice that in the event of a prescribed constant duty ratio
function 0 < 7 < 1. the sliding motion described by Theorem 2.1
occurs globally in the augmented state space of the closed-loop system.
This result should be clear since. in such a case, the saturation condition
is never reached for the feedback switching device.

ML ILLUSTRATIVE EXAMPLES

Example | -~ Dynamic Discontinuous Feedback Control of a dc-
to-dc Power Converter: Consider the following bilincar model of a
de-to-de power converter of the buck-boost type, described in normal-
ized state-space coordinates [7):

dx,
—— SwpX; - UwpXy + ub
dr
dXI
Zi D WXy T @iy +uwgXy.  y=x, (3.1)

where x, and x, are, respectively, the normalized input current and
output voitage variables and b is the normalized external input voltage.
assumed here to be a negative quantity (so that the average equilibrium
voltage for x, is postiver. The parameters w, = I/~/'LLC and w, =
17 RC represent. respectively. the input circuit natural oscillating fre-
quency and the output circuit time constant. The switch position func-
ton is denoted by u, and it takes values in the discrete set {0.! }.

I the switch position is changed according 10 2 PWM policy of the
following form:

1 fort, <ts it +r(t)T

32
] forty + r(1)T<ts5t,+T (3:2)

W=
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Actual and aversge PWM controlled output voltage response of the
buck-boost converter.

Fig. 2.

then, the average PWM model of the converter is simply obtained by
substituting, in (3.1), a continuous piccewise smooth duty ratio function
(1) in place of the discontinuous control u. The average PWM system
is then repr d by a bili controlled dynamical system with
continuous piccewise smooth control input r(+) bounded between 0 and
1. The equilibrium point of the average PWM system, for a constant
value U of the duty ratio function 7, is obtained as foliows:

) blw, i o -bU
r= X,(U) = ——[wé(l - U)z] -XI( )= T—rwo(l T .

(3.3)

Using the method of extended linearization a nonlinear dynamical
controller of the proportional integral (P-) type (see [8)) can be
proposed which regulates the average PWM trajectories around the
equilibrium point (3.3). Such a nonlinear controller is specified by the
following:

' 1
aty [0 rory 1+ =)

ar ax (5150 «(t)
0. - 2
F(1) = (1) + [%ﬂ]e(l)

e(t) = Xy(U) - x, (3.4)

r(¢) = sup {O. inf {1. 7(¢)}}.

It is easy to reinterpret system (3.1), and the dynamical feedback loop
(3.4), synthesizing the duty ratio function r(t), in the framework of the
interconnection scheme proposed in (2.1). Fig. 2 shows simulated -
average and actual PWM controlled responses for the output voltage x,
of a buck-boost converter with parameter values C = 20 uF, L = 20
mH, R =30 Q.and E= bvVL = |S V. The constant operating value
for the duty ratio was set at U = 0.75. for which the corresponding
state equilibrium point is X(0.75) = -0.8482, X,(0.75) = 0.2012.
The sampling frequency is | KHz. To further approximate the actual
PWM responses to those of the designed average PWM system. a
suitable low-pass filter was placed at the output of the converter.

Remark: The PWM controlled state trajectories exhibit a chattering
behavior which can be brought arbitrarily close to an integral manifold
of the average PWM controlled system. The analytical expression of
such a manifold is usually very difficult to obtain in an explicit manner.
Its calculation entitles solving a linear partial differential equation
initialized on a smooth submanifold of the augmented state space
representing a whole family of arbitrary initial conditions. The crucial
advantage of using the average model approach for PWM controller
design, over an equivalent variable structure sliding mode control
strategy, is that the explicit expression of such a manifoid need not be
computed at ail. This is also illustrated in the next example.
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Example 2 - Dy jcal Disconti dback Control for a
Single-Axis Spacecrafi Reorientation Maneuver: Consider a single
axis jet-controlled spacecraft provided with a pair of opposing torque
generators of modulated magnitude », The orientation is defined in
terms of the Cayley-Rodrigues attitude parameter x. defined around a
known skewed axis (sce [9)). The angular velocity about the principal
axis s represented by w and J denotes the correspanding moment of
inertia

K,
s F

dx . dw -
?7-0,5(14-;')@. 7 J

(3.5)

The system can be driven towsrd a final desirable attitude x4 by
means of the following smooth observer-based stabilizing nonlinear
feedback control strategy:

um ~4Jee;[tan” ! (x) - an~' (x,)] - 2J[e, + ;] (3.6)

with —¢, and ~e, representing real stable eigenvalues of the closed-loop
linearized system and & is an estimate of the angular velocity, generated
by the reduced-order nonli asymptotic observer

y=Xx.

gi = - 2 -1 S ~ -1
dl. kE - 2k4an (y) + J e cwt+2kan(y)

(3.7

with k£ > 0 being a design constant specifying the exponential decay of
the estimation ertor,

Suppose now that one could pulse, through a switch located in the
feedback path of (3.5)-(3.7). the dynamically gencrated feedback con-
trol action . given in (3.6) and (3.7). by commanding the switch
positions by means of a PWM control strategy. We would then have the
following model:

dx du

—- 2 D = S by

R 0.5(1 + x*)w: A J™ (3.8)
with » taking values in the discrete set {0.1}.

Furthermore, suppose the PWM strategy specifying » is such that the
duty ratio function is constrained to be a constant u satisfying 0 < x < 1.
We would like to recover the qualitative features of the continuous
c;n;ed-loop system (3.5)-(3.7) in the discontinuously controlled mode!
(3.8).

In such a case, the average PWM model of (3.8) would be obtained
by simply replacing » by x. Obviously. the abiained smooth clased-loop
design (3.5)-(3.7) coincides with the average madei of (3.8 If and only
if the feedback signal w is replaced by the scaled feedback signal ) u.
The closed-loop PWM controlled system equations. whose average
behavior is given by (3.5)-(3.7). are then constituted by (3.7). (3.8).
and the following:

' ~4Jeieyftan! (x) = an~' (x,)] - 2J[e, + ;)0

V-{

Simulations were run for a spacecraft with J = 90 kg°, el = ¢2 =
025" xym 0.15rad. k = 2 5™, using a sampling frequency 1/ 7
of 0.5 Hz. In Fig. 3. the acrual PWM controlied phase response of
(3.7)-(3.9) is seen to chanter about the corresponding average PWM
controtied phase response of (3.5)-(3.7). A real sliding motion thus
takes place in the augmented state space of the average closed-loop
interconnected system (3.5)-(3.7) about a cerain integral manifold of

average system whose analytic expression is unimportant.

fori, <t st +uT

3.
_ elsewhere. £5)

IV, ConcLUSIONS

An averaging technique has been introduced for the accurate descrip-
tion of discontinuous feedback interconnected systems under a pulse
width modulation scheme for the switching element. The averaging
process is based on an infinite swilching frequency assumption on the
feedback enabling device. The proposed average model was shown to
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entirely capture the main qualitative and quantitative features of the
actual finite frequency switched controlled system. The existence of a
sliding motion in the sugmented state space of the closed-loop pulsed-
controlled system. which closely follows the average trajectories, makes
the approximation scheme amenable to arbitrary improvement under
increased switching frequency specifications for the actual controlled
systern. This entirely obviates the need for cumbersome approximation
schemes, based on traditional discrete-time considerations and the tech-
nical difficulties associated with the unbounded character of the PWM
operator (se¢ {10]). Such sliding regimes occur in the vicinity of integral
manifolds of the average system immersed in regions of the state space
where the duty ratio function. associated to the controlied switch,
exhibits & nonsaturation condition. In the other regions of the state
space. the trajeciorics of the actual and the average system just coincide
for identical initial conditions. Nontrivial illustrative examples were
presented.

APPENDIX

Let a(1,) denote a(x(1,)). a given scalar function of a state vector
x. Consider. then. the nonlinear discontinuously controlled system,
described by the following:

dx S(x) 4 G(x)u+go(x)forr, <51, +1[o(0)]T
dr S(x)+ Gxufort, + tfoft)]T<is1,+ T
(A1)

where the vector field f(x). the columns of G,(x). and g4(x) are
smooth vector fields defined on R”. The 1,'s represent reguiarly spaced
instants of time where an ideal sampling process takes place. At each of
these instants the value of the duty ratio function 7io(x(1,)) =
fo(r,)} is determined in correspandence with the value of the scalar
function o(x). at the sampled value of the state vector x(/,). The
sampling period 7 is assumed to be sufficiently small. as compared to
the time constants associated with the dynamics of the system. Unless
otherwise stated. it will be d that our considerations are restricted
10 & region of the state space where the duty ratio function rla(x)) is
not saturated, i.¢.. 7[o(x)] takes values in the open interval (0,1).

In terms of an ideal switching function », taking values in the discrete
set {0,1}. the aforementioned system can be equivalently represented as
the following:

% w o[ f(x) + G(x)u+ g(x)] + (1 = ) [S(x) + GI(X)”];

i.e.,
dx
7 =f(x) + Gy(x)u + vgy(x) (A2)
with v obeying a switching policy of the form
1 fort, <t s 1, + )T
. ort, <15 1, + t[a( k)] (A3)

0 for 1, + r[a(t,)]T<t1s 4, + T
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The following lemma is a straightforward consequence of the funda-
mental theorem of calculus.
Lemma A.l: Let f be a smooth vector field and let

()= /o'f(x(s))ds.

Then, for any continuous piccewise smooth, strictly positive, function

w(x)

Iim,_o""__’[ I(t + “[x(l,;?] T) = 1,(1s)

= W[ X(D)S(x(N). (A9)

The next theorem determines the nature of the infinite-frequency
average dynamics of (A.2), (A.3) under nonsaturation conditions.

Theorem A.l: Consider a region where the PWM controller is not
saturated. Then, as the sampling frequency [/ T tends to infinity in
system (A.2), (A.3), the discontinuously controlled system coincides
with Filippov's average model

d.
-a% - u(x)[f(x) +G(x)u +32(x)]
+(1 = w(0)[S(x) + G\(x)u]
= f(x) + G (x)u+ pu(x)g,y(x) 'fav("'u') (A.5)

with a corresponding convex combination function, u( x). exactly repre-
sented by the duty ratio function £ .x). Moreover, in such a region. a
nonideal sliding regime is exhibited by the actual PWM controlled
system (A.2), {A.3) which converges toward an integral manifold A of
(A.SY as the sampling frequency tends to infinity.

Proof: Let [fi(x.uy = f(x) + GX)u + g,(x) and
Salxau) = flx) + G(x)u, and. as before, let a(7,) denote a( x(t,)).
From (A.2) and (A.J), the state x at time ¢, + T is exactly computed
as the following:

(1, + T)=x(t,) + /’k"'mk)lrj,(x(s). u{s))ds
1

+//k+r Sao(x(s).u(s))ds

Tt riotighT
tx*rlotig)T

= x(t,) + / filx(s). u(s))ds

'k

+/'“sz(x(s>. u(s))ds
'k
} /'U:‘”""k)lrfz(x(s)- u(s))ds
e

assuming that r(a(x)) is neither O or | in the region of interest, and
using the resuit of Lemma A. 1, one has the following:

- x(te + T) - x(1)
T - Imr-"llk"! T

/u,nmunrfl( x(s) ' u(:))ds

) 1
=liMrag 7 x(t) +
T

+/’“r/:(x(5)' G
t
—/,*+rlo(lk)|7fz(x(3).u(-’))d‘,]
tk

= r[a()] £(x(1). u(r))
+(1 = [a(O]) 2 x(0). u(n)
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or
dx
i r[a(x)]f.(x‘u) +(1- r[a(x)])/z(x.u)
=/(x) + Gi(x)u + 1(x)82(x) = fo,(x.u), (A.6)
i.e.. the infinite frequency model of (A.2), (A.3) coincides with Filip-
pov's geometric average model in which the convex combination
Junction u(x) defining the average controlled vecior field £, (x.u), is
precisely taken as the duty ratio function r[a(x)). It is clear that for a
given reference control input w, on an integral manifold of (A.6)

described by, say, M = {xeR":m(x) = 0}, the controlled vector
field of (A.6) is pointwise orthogonal to the gradient of m(x), i.e..

%?[f(x)+0.(x)u+r(x)gz(x)] =0 onm(x)=0.

(A.7)

The duty ratio function admits. then, a geometrically based definition as
follows:

[ 1(0) + G(0u]

[
T ()]

From known results about the relation between Filippov's average
dynamics and sliding regimes (1], and the assumption that the duty ratio
function is locally bounded in the open interval (0.1), it follows that an
ideal sliding regime exists locally on the manifold M for the variabie
structure system (A.2). (A.3). The equivaient control »£9(x). associ-

r(x) = - onm(x) =0. (A.8)

-ated with such a sliding mode. is simply obtained from the invariance

conditions (1], {11] of the ideal sliding mode taking place on the
integral manifold M = {x:m(x) = 0} of the average system, i.e.,
from the conditions

dm/dt = 0
In local coordinates, one obtains the following:

d a
-d-’:l - 7';1 (vE9x) s (x.u) + (1 - vEQ( %)) f2( x.u)]

[
= v89(x) 5 [ACea] + (1 - vE2(20) I [ ()]

‘= 0.
The corresponding equivalent control #59(x) is then obtained as fol-
lows:

onm = 0.

3
VAL

vEQ(x) = - 5
T e = fi(ew)]

a
35 L7100 + G0l

vEQ(x) = (A.9)

am
Ix [82(*‘)]

It follows from (A.8), (A.9) and the uniqueness of the equivalent
control [11], that
veg(x) = 7(x). (A.10)
i.e.. the equivalent control of the sliding motion associated with (A.2)
and (A.3) is then precisely constituted by the duty rario associated to
the proposed PWM control scheme. The cotresponding ideal sliding
dynamics is then represented by the following:

= v80(x) £y (x.) + (1 = vEO()) o5t
< (N (2.0) + [1 = 7(0)] Soxoa)

=S(x) + Gi(x)u + g2(x)7(x)

which is just the average PWM model (A.6).
It was shown in [11) that the region of existence of a sliding motion is
determined by the region on M where r(o(x)) satisfies the following
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conditions:
0< r[a(x)] =»EQ(x) < 1.

By definition of the duty ratio. the aforementioned conditions are
evidently satisfied along the integral manifold M. in all regions of the
state space where the PWM controller is not saturated.

To show continuity of solutions with respect to the sampling fre-
quency one rewrites the controlied equation (A.2). (A.3) and the
average system (A.5) as the following inregral equations for any
sampling interval:

x(1, + T) = x(1,) + /'Hr[f(x(s)) + G\ (x(s))u(s)]ds
"

+/lk”““.rgz(x(:))ds (A1)
I

e+ T
x(tp+ T) mx(,) + / [S(x()) + G\ (x(5))u(s)]ds
Yo

+/’k+rg,(x(:))r(s)ds. (A.12)

U3

It is quite easy to see. using a Taylor series expansion of the last
integral terms in (A.11). (A.12) about 7, that (A.1)) is a reguiar
perturbation of (A.12) in terms which are, at least. second order in T
fi.e.. o(T?)]. The theory of regular perturbations of integral equations
(see |12, pp. 273-285)) guarantees continuity of the solutions of (A.1])
with respect to (A, 12) as 7 goes to zero. o=
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Generalization of Strong Kharitonov Theorems to
the Left Sector

Y. C.SOH anp Y. K. FOO

Abstract—In this nole, we examine the zero locations of interval
polynomials. In particular, we shall show that a family of interval
polynomials will have only zeros in 8 certain class of left sector if and
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only if & finite ber of specially ch vertex polynomials have only
zeros in the left sector. This finite number of vertex polynomials is
dependent on the damping margins of the left sector but is independent
of the orders of the polynomials.

1. INTRODUCTION

Stability anaiysis of polynomials are fundamental to the analysis of
many control problems, For example. the stability or instability of a
given system will be determined by the roots of its characteristic
polynomial. If the coefficients of the polynomial are known exactly.
then its stability can be readily checked by well-known methods. The
difficulty arises when the coefficients are not known exactly. This
inevitably will be the case for any real sysiem since approximations.
linearizations. and simplifications arc often used in the process of
deriving a tractable model for the system. Thus. the real problem is to
determine the stability of a family of polynomials. One such family of
polynomials is the interval poiynomials, i.c..

(1.1)

where o, s 1,5 8, i=0.1.-+-, n. Jtis, of course, not practical to
check the stability of each and every member of (1.1). Thus. our
problem is to determinc if the stability of (1.1) can be determined from
a simple subset of (1.1). If we are only interested in the Hurwitz
property. then we have the seminal result due to Kharitonov [ 1] which
states that the stability of four veniex polynomials is both necessary and
sufficient for the stability of the whole family of imerval polynomials.
The importance of the Kharitonov result lies with the great reduction in
computation cost associated with checking the stability of interval
polynomials. Thus. there is a motivation to extend the Kharitonov result
10 a more general class of stability regions where the Kharitonov-like
theorem holds [21-]4]. A Kharitonov region is defined as a stability
region where the zero locations of the emire family of interval polyno-
mials within that region can be inferred from ali its vertex polynomials.
Note. however, that the concept of a Kharitonov region is only applica-
ble 10 interval potynomials. For more general polylopes of polynomials.
we would have to check all the edge polynomials {5i-16].

The cost associated with checking all the veriex polvnomials can still
be great sincc. in general, we have to check 27* polvnomials. In this
note, we shall show that in order to determinc the stability of interval
polynomiais with respect ta the left secior, it is necessary and sufficient
to check a finite subset of the venex polynomials. The exact number of
vertex polynomials to be checked will depend on the damping margins.,
but it will be independent of the orders of the polynomials.

P(S) =04 1, 8" 4 oy

1. PRELIMINARIES
Let S” denote the family of real interval polynomiais defined by

(2.1)

where 0 <o, 57,58, i=0.1.---.n Let F denote the set of all
nth-order polynomials which have only zeros in the left sector as shown
in Fig. 1. If p(s)eS” belongs to F,. then from thc Argument
Principle. the phase advance of p(2) as 2 traverses the contour of the
left sector once in the coumerclockwise direction must be equal 10 2nx
rad. However, the polar plot of p(2). as z traverses the upper half of
the left sector, will be the mirror image of the polar plot of p(2) as 2
traverses the lower half of the left sector. Thus. in order to ensure that
an nth-order real polynomial p(s) has only zeros within the left sector,
it is necessary and sufficiem 1o check if p(z) has gone through a net
phase advance of nr rad as z traverses the upper half of the left sector.

The upper contour of the left sector is given by the following two
segments:

p(S) = lnsn + ’""Sn-l + +/h

sé< T,

] 2

s; el xe[0.7). r = oo

S.: limreM o sy< T
oo

For any real polynomial p(s) € S”. its polar plot on segment s, is given

0018-9286/90/1200-1378501.00 € 1990 IEEE



