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Structure at infinity, zero dynamics and normal forms of systems
undergoing sliding motions

HEBERTT SIRA-RAMIREZY

In this article we examine the structure at infinity of non-linear closed-loop systems
locally undergoing sliding regimes about a smooth surface defined in state space.
By using a locally diffeomorphic state coordinate transformation, associated with
the relative degrec of the system, one obtains a normal form exhibiting the basic
internal dynamic structure of the controlled system. It is found that the local exist-
ence of sliding motions demands a considerably simple local structure at infinity of
the original non-linear system. The ideal sliding dynamics in local sliding surface
coordinates is shown to coincide precisely with the zero dynamics. The stability
properties of this internal behaviour model are studied. Several illustrative examples
are presented.

1. Introduction

The structure at infinity of non-linear systems plays a fundamental role in the
understanding of non-linear dynamics and has allowed the extension to a non-linear
setting of many basic control problems originally defined for linear time-invariant
systems. Among such problems one finds local and global feedback stabilization,
disturbance decoupling, interaction decoupling, exact linearization and systems
invertibility, as well as many other important implications in two-time-scale systems
design and non-linear adaptive control (Bynes and Isidori 1984, Isidori 1985, 1987).

Intimately associated with the structure at infinity of a non-linear system is the
possibility of expressing the system in special coordinates called ‘normal form’ coord-
inates (Isidori 1987). In such a coordinate system, the underlying input—state—output
structure of the system is clearly exhibited and its dynamic properties are easily
established., At the heart of such a state coordinate transformation is the notion of
the ‘relative degree’ of the system, a fundamental concept that in recent times has
allowed a far-reaching understanding of non-linear controlled dynamics.

In this paper we examine the relevance of the relative degree concept, its associated
transformation to normal form coordinates and the role of the zero dynamics in non-
linear smooth sytems undergoing local sliding regimes (Utkin 1978) on prescribed
smooth manifolds locally defined on open sets of R".

It is found that a very simple structure at infinity must be exhibited by a non-
linear system whose non-linear scalar output function is used as a feedback signal
feeding a variable structure controller devised to create a sliding motion. Namely, for
a sliding regime to exist locally on the leaf representing the zero level set of the output
function, the system must locally have relative degree one. The corresponding (n — 1)
dimensional zero dynamics precisely portrays the ideal sliding dynamics (Utkin 1978)
in local surface coordinates. The stability properties of the ideal sliding dynamics are
determined by the nature of the autonomous zero dynamics equations constrained
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to the sliding leaf. Locally, the dimensions of the centre, stable or unstable manifolds
associated with the zero dynamics prescribe the minimum or non-minimum phase
properties of the ideal sliding dynamics. The problem of inducing sliding regimes on
systems which do not exhibit such a simple structure at infinity is also analysed.
Several illustrative examples from various application areas are presented.

In § 2 we present all the basic results about relative degree, normal forms and
zero dynamics for non-linear single-input single-output (SISO) systems. The exposi-
tion follows very closely that of Isidori (1987). The main results about sliding regimes
and their relationships with the previously named concepts is also established in this
section. Section 3 is devoted to some simple but illustrative examples, and § 4 contains
the conclusions and suggestions for further work.

2. Background and main results

2.1. Relative degree, normal forms and zero dynamics
Consider non-linear smooth systems of the form

dx/dt =f(x) + g(x)u (2.1)

y = h(x)

where x € M, an open set in R*, u:R" " R is a (possibly discontinuous) scalar input
function, and f'and g represent locally smooth vector fields defined on M. The output
function h:M — R is a locally smooth ‘scalar function of the state. We frequently
refer to (2.1) as the triple (f, g, h). The level set h™1(0):= {x € R":h(x) = 0}, defines a
smooth (n— 1)-dimensional, locally regular manifold of constant rank, i.e. locally
integrable (Boothby 1975), referred to as the sliding manifold or sliding leaf. The
gradient of h(x), denoted dh, is hence assumed to be non-zero in M except, possibly,
on a set of measure zero, h~*(0) is oriented in such a way that dh locally points from
the region where h(x) <0, towards that where h(x) > 0. All results in this paper are
of local nature, restricted to an open neighbourhood M of R* which has non-empty
intersection with k™ 1(0).

The regularity assumptions about h(x) induce a local regular foliation (Boothby
1975) of M into disjoint locally integrable manifolds of the form h~!(k) := {x:h(x) =
k, for k e K}. Such manifolds are called leaves of the foliation. We denote the Lie
derivative of a scalar function ¢(x), with respect to a smooth vector field f, by L, ¢(x).
Orie recursively defines, for any positive integer k

Lié(x) = L[L} " $(x)]

Definition 1
System (2.1) has, locally around x°, a zero at infinity of multiplicity » if » is the
smallest integer for which L L}~ 'h(x) #0, for all x in a neighbourhood of x°.

Remark 1

The integer  is also called the local relative degree of the system at x°. Assuming
that, at some time t°, x(t°) = x°, the relative degree of the system is interpreted as the
minimum number of times that the output y(¢) has to be differentiated at time t° in
order to have the input u(t®) appearing explicitly in the derivative. For (SISO), causal,
linear, time-invariant systems the relative degree is precisely the difference between
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the degree of the numerator and denominator polynomials in the system transfer
function. If a system has finite relative degree r, then r is not larger than n, the
dimension of the state.

Let Ker dh (x) denote the set of vector fields defined at x such that
{&(x): Ly h(x) =1 {dh, {(x)> = O}

Ker dh (x) is a proper subspace of the tangent space TR of M at x, and hence, Ker
dh is a locally smooth distribution (Isidori 1985) tangent to the leaves of the foliation.

Definition 2 (Byrnes and Isidori 1984)

Let A* be the maximal (f, g)-invariant distribution contained in Ker dh. Let [, *]
stand for the Lie bracket of the involved vector fields. A distribution A is said to be
locally (f, g)-invariant if [ f;, A] and [g,, A] are properly locally contained in A,
where f(x) =f(x) + a(x)g(x) and g,(x) = f(x)g(x), for some functions a(x) and B(x).
[, Al ={y:¢ =[¢, 6], 6 € A}. Then, the system (2.1) is said to have zero dynamics
of order v, provided v, = dim A* (dimension taken generically).

It is easy to prove that if (2.1) has relative degree r, then v, =n —r (Byrnes and
Isidori 1984). ’

Proposition 1 (Isidori 1987)

Let (2.1) have local relative degree r around x°. Set ¢(x)=L}"'h(x) for i=
1,2, ..., r, while the functions ¥, , ;(x),j = 1,2, ..., n —r, are chosen to be functionally
independent of the first » functions, with the only additional requirement that, locally
around x°, Ly, ;(x)=0,forj=1,2,...,n—r. Define new z coordinates as z = P(x)
with ®(x):=col [¢,(x), ..., P.(x)] a local diffeomorphism around x°. Then system (2.1)
is locally expressed, around z® = ®(x?), as

dz;jdt=z,,,, i=12,..,r—1
dz,/dt = b(z) + a(2)u (2.2)
dz,, ;jdt=g(z); j=1,2,...,n—r

y=2z

where b(z) = L} h(®~!(2)) and a(z) = L, L, 'h(®~!(2)). a(z) # 0 locally around z°, by
definition of the relative degree. g(z) is an n — r-dimensional vector function of all
local coordinates z.

System (2.2) is said to be in normal form coordinates.

Denote by &:= col (z,, ..., z,) and by n:=col (z,, ..., z,) and let x° be any point on
the leaf h=(0), i.e. h(x®) =0 and let z° = ®(x®). It then follows that the components
of the vector & are all zero on z° and points on the leaf A~(0) have local normal
coordinates (0, ). From (2.2), the unique control that locally constrains the evolution
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of the system to the leaf h~1(0) is expressed as
u=— b0, n)/a(0, n) 2.3)
or, in original coordinates around x°
u = L} h(x)/L L "h(x) (2.4)

For any initial point, on A~ *(0), the dynamics governing the system, with control
action (2.3), stay locally constrained to the leaf h~'(0), and its expression in local
normal coordinates is

dn/dt = q(0, n)=:qo(n) 2.5

The dynamics described by (2.5) are referred to as the zero dynamics. The zero
dynamics correspond to the dynamics of the ‘internal’ behaviour of the system when
initial conditions and control actions of the form (2.3) or (2.4), constrain the evolution
of the state trajectories to maintain locally a zero output value.

Definition 3 (Byrnes and Isidori 1984)

Let zo = (0, n,) be an equilibrium point of (2.1) on the leaf A~ 1(0). Denote by Q¢ (11,)
the jacobian of the vector function go(n), with respect to the last (n — r) components of
the vector z, evaluated at z,. System (2.1) is said to have s left half-plane zeros, u right
half-plane zeros, and ¢ purely imaginary zeros, whenever the linear approximation to
qo(no) represented by Qq(n,) has s eigenvalues with negative real parts, u eigenvalues
with positive real parts and ¢ eigenvalues with zero real parts. The associated (general-
ized) eigenspaces constitute local smooth distributions on the tangent space M.
The corresponding local integral manifolds of these distributions are the stable mani-
folds W, the unstable manifold W* and the centre manifold W*. Although the stable
and unstable manifolds are unique, there may be many centre manifolds (Gucken-
heimer and Holmes 1983). The dimensions of these tangent subspaces are, respect-
ively, s, u and ¢, where s+ u+c=v,.

The system (2.1) is said to be minimum-phase if and only if locally around z, the
dimension of the stable manifold is precisely v,. If the system is minimum-phase and
the zero dynamics is globally asymptotically stable, the system is said to be globally
minimum-phase (Byrnes and Isidori 1984). '

2.3. Generalities about local sliding regimes

A variable structure feedback control law is obtained by letting the control func-
tion u take one of two possible feedback function values in the set of allowable
feedback laws U = {u*(x), u~(x)}, with u*(x) > u~(x) locally on M, according to the
sign of the scalar output function h(x), as defined by

_ ‘{u (x) for h(x)>0 26
u (x) for h(x)<O

A sliding regime is said to exist locally on A~ 1(0) if, as a result of the control policy
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(2.6), the state trajectories of (2.1) locally satisfy
lim L;,,.h<0, lim L,,,-h>0 2.7

s—=+0 s—=>-0

(Utkin 1978, Sira-Ramirez 1988).

Lemma 1
If a sliding regime locally exists on h~!(0), then necessarily the system (f; g, h)
locally has relative degree 1.

Proof
If a sliding regime locally exists on the leaf = *(0) then, subtracting the expressions
(2.7) at any point x on the leaf, we have

Ly (xy + gom* ) — Loy + gm0 M%) = L+ () - u- ot AX)
= [u™(x) — 4~ (x)] Ly h(x) <0

ie. L,h <0 locally around x.

Remark 2

The above lemma establishes that if the output of the variable structure control
system is taken in local coordinates as the sliding surface coordinate function h(x),
the resulting controlled triple (f, g, h), under local sliding regime conditions on the
leaf A~ (0), has a very simple ‘structure at infinity’ and it only exhibits one zero at
infinity. The finite zero dynamics are necessarily of order v, = n— 1. The condition
Ly,h <0 is also known as the transversality condition (Sira-Ramirez 1988).

For all initial states located on the sliding leaf h~1(0) the unique control locaily
zeroing the output y = h(x) in the region of existence of the sliding motions is known
as the equivalent control (Utkin 1978), ugq = — L h/L,h. When the initial conditions
of (2.1) are set on the sliding leaf and the equivalent control is formally used, the
resulting dynamics are the ideal sliding dynamics. A description of such dynamics is

dx/dt = f(x) — g(x)[Lyh/Lh] 238)

which, by definition, evidently corresponds to a coordinate-free description of the
finite zero dynamics associated with the output function y = k(x). On the other hand,
the zero dynamics (2.5) represents the description in local normal form coordinates
of the (n — 1)-dimensional ideal sliding dynamics taking place on the sliding manifold.
The simple nature of the structure at infinity results in the fact that A*, the
maximal (f, g)l-invariant distribution contained in Ker dh, actually coincides with
Ker dh itself, i.c. with the distribution tangent to the leaves h~*(k). It is then easy to
see that for any initial state x € h~ (k) sufficiently close to the sliding leaf h~*(0) (i.e.
for k a non-zero arbitrarily small constant) the equivalent control would also make
the controlled system trajectory locally evolve on the leaf h™!(k). Owing to the
uniqueness of the equivalent control and the nature of the transversality condition,
the effect of an appropriate control input, according to (2.6), is to pull this ideal
trajectory out of the leaf h~!(k) to make it approach the sliding manifold h~*(0).
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Theorem 1

A necessary and sufficient condition for the local existence of a sliding regime on
the leaf h™!(0) is that locally where L h(x) <0 is valid

u™(x) < — Ly R(x)/Lgh(x) < u*(x) 2.9)

Proof
For the proof, see Sira-Ramirez (1988, 1989).

2.4. Sliding regimes in variable structure systems with relative degree higher than one

If for the proposed output function y = h(x) the system locally exhibits relative
degree r higher than 1, then an alternative to create a sliding motion which eventually
reaches h~1(0) is to use the auxiliary output function (see Isidori 1987 for the original
ideas related to local feedback stabilization).

w=k(x) =L} 'h(x) + ¢,_, L7 h(x) + ... + ¢; L h(x) + coh(x) (2.10)
or, in normal form coordinates
W=Z,+C,_22,_1+ 000 +C122+Cozl (2]1)

Evidently, L k(x) = L,L; ™ 'h(x) # 0, i.e. the system (f; g, w) has relative degree one,
and a local sliding motion may now be created on k~!(0). If such a motion exists,
thenideallyw=0and z, = —¢,_,z,_, — ... —¢{z5 —¢oz,. Under sliding mode con-
ditions on k™ 1(0), the system

dZi/dt=zi+l, i=1, 2, ceey r_2

-

dz, y=2,= —¢ 2%,y — ... =C1Z3—CoZ;
dzr+j/dt= q(zla 225 o+05 Zr—1, _(Cr—er—l + ..tz +COZI)9 'I) ~ (2]2)

j=1L2,...,n-r

y=1z
w=0

clearly corresponds to the ideal sliding dynamics (zero dynamics) associated with the
new sliding surface k~1(0). It is easy to see that by suitable choice of the parameters
Co, Cy5 ---, Cr—2, an asymptotically stable motion towards zero is obtained for the
first (r — 1) coordinates, z, through z, _, (and hence for z, too). Thus, while a sliding
motion is taking place on k™ 1(0), the original output y and its first (r — 1) derivatives
asymptotically approach zero (i.e. the state vector of the original system apporaches
h~10)).
The corresponding equivalent control is now given, in original coordinates, as

upo(x) = — L k(x)/Lok(x)
= — [Lh(x) + ¢ o Ly Th(x) + ...
+ ¢, L2h(x) + co L h()]/L L' *h(x) (2.13)

Note that when h~1(0) is reached by the sliding controlled trajectory, the equivalent
control locally becomes ugq(x) = — [Lfh(x)]/L, L}~ 'h(x).
The use of the auxiliary output w = k(x) implies the possibility of either being able
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to completely measure the original state variables and proceed to use (2.10), or else
being able to generate (r — 1) derivatives of the original output function y when the
state is not available. This last possibility is usually accomplished by means of a high
gain ‘post-processor’ (Isidori 1987) fed by the output signal y(t). The transfer function
of such a post-processor is given by

_K
T TZ?)-T @.14)

with T sufficiently small, K sufficiently large, with locally the same sign of L L}~ ' h(x),
and n(s) a stable polynomial built as

ms)=s"14c¢ 8 3+ ... 45+

3. Some illustrative examples

Example 1
Consider the linear time-invariant system described by dx/dt = Ax + bu, y = cx,

ie. f(x) = Ax, g(x) = b and h(x) = cx. Hence, L,h = cb, L;h = cAx. If a sliding motion
exists on y = 0, then necessarily L,h = cb # 0, which is a well-known necessary condi-
tion (Utkin 1978). Assume, without loss of generality, that the pair (4, b) is originally
set in controllable canonical form. Choosing normal form coordinates
2y =y =CoX1 +C1X3+ oo +CaorXpoy + X,
Zy =Xy
23 = X35 o0o5 Zp = Xp—q
The (n — 1)-dimensional zero dynamics are expressed as
dz;jdt=2z,,,, i=2,3,...,n—1
dz,jdt = —coz3 —C123— ... —Cp_22,

The ideal sliding dynamics are independent of the coefficients of 4 and are entirely
governed by the chosen output coefficients ¢,, ¢y, ..., ¢, ». These coefficients are also
the coefficients of the numerator polynomial in the transfer function of the original
system. In other words, the ideal sliding dynamics are governed by the finite trans-
mission zeros of the system (4, b, ¢). If the system is minimum-phase, all the zeros lie
in the left half of the complex plane and the ideal sliding dynamics is asymptotically
stable to the origin.

Example 2
Consider the controlled Van der Pol oscillator

dx/d * +°
t =
x 2081 — px3)x, — w?x; 1 “

with output function
y=hx)= (<} + 32 —r

Loh(x) = x,(x2 + x3)™'12, Lyh(x) = [(1 — 0)x,X; + 20&(1 — px})x3}(x] + x3) 712
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The system has relative degree 1 everywhere on the plane except on the line x, =0,
i.e. a sliding motion may exist everywhere on the circle of radius .—The oscillator
ideally behaves as a perfect sinusoidal oscillator (Sira-Ramirez 1987 g)—except on
arbitrarily small neighbourhoods of the intersection points of the circle with the line
X, =0 (the equivalent control becomes unbounded at these points). Defining the
locally diffeomorphic state coordinate transformation

di(x)=z,= (x% + x%)llz -
¢2(X) =Z=X;

(note that the transformation is everywhere a difftomorphism except on the line
x, = 0), one obtains the normal form description of the system:

dz,/dt = (1 — 0?)(z, + 1) €OS 2, sin z, + 20E[1 — p(z, +r)? cos 2z, ]
X (z4 + 1) sin 2z, + u sin 2,
dz,/dt = (z, +r) sin 2,
y=2z
The ideal sliding dynamics are obtained by using
ugq = — L h(® *(2))/LH(® ()
= — (1 — wd)r cos z, — 20E[1 — pr? cos 2z,]r sin z,
on points located on z, =0 and it evidently results in
dz,/dt =r sin z,
In original coordinates one obtains that the ideal sliding motions are described by
dx,/dt = x,
dx,/dt = — x,

and there are no equilibrium points on the sliding manifold.

Example 3

Consider the kinematic and dynamic model of a single-axis externally controlled
spacecraft whose orientation is given in terms of the Cayley—Rodrigues representation
of the attitude parameter &. The angular velocity is represented by w.

dé/dt =051 + Ew, dwfdt=1""u

where I represents the moment of inertia and u is the applied torque, usually con-
strained to the compact set [— Tmax, Tmax)- Let the output function be given by y=h
(&, w)=w— 241 + £?)71¢, with A <0. In this case one finds

Loh= —22%(1 - &)1 + &2
Lh=I""

The system globally has relative degree one and a sliding motion may exist on
y=0 by use of the appropriate discontinuous control laws (Dwyer and Sira-
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Ramirez 1988). The equivalent control is obtained as wugq= — L h/L,h=
2A21E(1 — E3)(1 + £%) 2 From Theorem 1, it follows that a sliding motion exists on
the region |E(1 — £2)|(1 + £2)™2 < Tyae/24%L. By proper choice of 7,,,, and 1 one can
easily make the sliding surface bounded away from the forbidden region

[E1 = EH|(1 4 E2) 72 > 1,00/20%

Evidently, the ideal sliding dynamics is governed by the asymptotically stable linear
equation d&/dt = A¢. A global diffeomorphic state coordinate transformation given
by

z =& w) =0 241+
2, =¢y(¢, w)y=¢
transforms the system into normal form.
dzyfdt= —Az,(1 —23)(1 +23) 1 = 22%2,(1 = 22)(1 + 23) ">+ [ 'u
dzy/dt = 0-5z,(1 + z2) + Az,

y=2z
The equivalent control, in local coordinates is given by ugg= — L h/Lh=
24%Iz,(1 —z2)(1 4 z2)~? and the ideal sliding dynamics is simply obtained as the
linear asymptotically stable dynamics dz,/dt = Az,.

Example 4

Recently, sliding regimes have been proposed as a means of explaining and design-
ing classical and modern analogue signal encoding circuits of the ‘delay modulation’
type (Steele 1975, Sira-Ramirez 1987 b). One such circuit is constituted by the double
integration delta modulation system whose encoder portion is described by

dx /dt =x,, dx,/dt=u, u=Vsigny

y=hixy, x2)=[a(t) — x,]

where a(t) in the analogue signal to be encoded by the circuit, Vis the quantization
voltage, and the arrangement of cascaded integrators is called the local decoder. The
fast switching sequence u (assumed to be detectable by a suitable device) is transmitted
over a transmission channel and remotely decoded by two cascaded integrators. In
this case L,h=0and L, L h = — 1. The relative degree of the system is 2 and a sliding
regime does not exist on y = 0 (i.e. x; does not follow aft) in a sliding mode fashion).
An auxiliary output may be devised:

w =L h(x)+ coh(x) = — x; + colalt) - x,]

and we now have L,w = L}h(x) + coL h(x) = — cox,, Lyw= —1+#0, ie. the new
system has relative degree one. Under ideal sliding conditions on w =0, one has x, =
cola(t) — x,] and the associated zero dynamics are dx, /dt = — co[x; — a(t)]. Choosing

co as a positive constant, the ideal sliding dynamics on w=0 drives x, to follow
asymptotically a(?). For the existence of a sliding regime on w = 0, the corresponding
equivalent control ugo = L, w/L,w = cox, = c§[a(t) — x;] must satisfy

— V/e§ < [a(t) = x;]1 < V/c§

which is a modified tracking error overload condition (Steele 1975).
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4. Conclusions and suggestions for further research

The relative degree of the system has been shown to play a fundamental role in
the investigation of the local existence of sliding regimes on regular sthooth manifolds
defined in state space by zero level sets of non-linear scalar output equations. The
local existence of a sliding regime demands the existence of just one local zero at
infinity for the non-linear controlled system. The transformation of the system to
normal form coordinates clearly shows the minimum, or non-minimum, phase prop-
erties of the zero dynamics. This is intimately related to the qualitative properties of
the ideal sliding dynamics. When the system locally exhibits relative degree higher
than one, a method based on the ideas of Isidori (1987) was established to accomplish
the zeroing of the original output function via the creation of a sliding regime on an
auxiliary sliding surface. This was defined on the basis of an extra output function
obtained by suitable ‘original output post-processing’ (Isidori 1987). This new sliding
motion was shown to be always capable of asymptotically converging towards the leaf
corresponding to the zero level set of the original output function. Several illustrative
examples were presented.

The concept of relative degree has been also extended to multivariable non-linear
systems by Isidori (1987). An area for further research is the investigation of the role
of this important extended concept in determining the exlstence of sliding regimes in
multi-input non-linear variable structure systems.
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