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Sliding Mode Controlled Relaxation Oscillations
HEBRETT SIRA-RAMIREZ,

Abstract —The possibility of inducing controlled relaxation oscillations
in second order systems is explored from the sliding mode control view-
point. Applications to the design of triangular and square wave oscillators
are presented.

Keywords —relaxation oscillations, sliding mode control, nonlinear sys-
tems.

I. INTRODUCTION

Relaxation oscillations have becn the object of detailed studies
since the fundamental work of Cartan and Cartan [1] and Van
der Pol [2] in the 1920's. Non-forced second-order nonlinear
differential equations which lead to relaxation oscillations have
been shown 1o posses intriguing and interesting properties. For
an extensive treatment of the many aspects related to second-order
dynamical systems exhibiting this kind of behavior, the reader is
referred to the work of LaSalle [3], Nayfeh [4], Pacheco de
Figuciredo [5), and also Guckenheimer and Holmes [6).

In this paper we explore the possibilities of synthesizing a
controlled relaxation oscillator using the theory of variable struc-
ture systems undergoing sliding mode behavior (sec Utkin [7]).
This theory was used by Sira-Ramirez [8] to obtain harmonic
periodic motions in controlled Van der Pol oscillators and it was
also used, by the same author, in [9] to study the controlled
energy transfer in bilinear networks and dc to dc power supplies.

It is also shown that a relaxation oscillator can be synthesized
by a second-order system which periodically exhibits a sliding
motion on a suitable “slow manifold” defined in the state space
of the system. On such manifold, the sliding mode existence
conditions are suddenly lost and the controlled trajectory “falls”
through a “fast relaxation manifold” to meet a second portion of
the same slow manifold where it sustains a new controlled sliding
motion which evolves in the symmetrically opposed direction of
the first one. By reasons of symmetry, the sliding mode con-
trolled trajectory subsequently loses again the sliding mode
existence properties and quickly reaches the first portion of the
sliding manifold. A periodical motion is then obtained, character-
ized by slow sliding and fast relaxation. By appropriately choos-
ing the parameters defining the sliding surface, it is shown that
arbitrary amplitude and frequency characteristics can be imposed
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Fig. 1. Sliding surface leading to a relaxation oscillation.

on the obtained periodic motions which generate either a triangu-
lar or a square wave.

Section II contains the main results and presents applications
of the sliding mode controlled relaxation oscillator to the synthe-
sis of triangular and square wave oscillators with arbitrarily
chosen amplitude and frequency characteristics. The Appendix
contains the needed background material about sliding regimes
in general nonlinear smooth dynamical systems.

II. MAIN RESULTS
2.1. A General Sliding Mode controlled Periodic Oscillator

Consider the second-order controlled system, written in state
space form:

dx, /dt = xy; € dx, /dt = u; u=sign( y)
(21)

where a, k, and € are positive constants while m>1, is an odd
integer. In reference to the notation in the Appendix and {11}, the
vector fields f and g are given by f=x,3/9x;;g= € /3x,,
while 4t (x)=+1and u™ (x)=-1.

Notice that the manifold k~%(0) is represented by a smooth
curve that intersects the x, axis only three times in the state
coordinate plane (see Fig 1). These intersections are located at

y=h{x)=—x; + kx, —ax3

X =0, xy=+[k/a}¥" P, and xy=—[k/a]" 0.

22
The same curve presents a local maximum characterized by

=a(m—-1)[k/am]™" "V at Xy = [k/am]/" D

(23)

and a local minimum, symmetrically opposite to the maximum,
specified by

X1 max

Ym-1)
(24

It is easy to see, from Theorem A1, and the fact that L h=
€ 2(k — amx*"1), that if a sliding regime locally exists on 4~ (0),
then it must necessarily exists on the region |x,| > (k /am)!/tm 1.
The equivalent control that would locally sustain the trajectories

=a(1-m)[k/am]™"" " at x, = - (k/am)

X1 min
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Fig. 2. A sliding mode controlled periodic oscillation.

b«

2

4

0

Fig. 3. Phase portrait of an ideal triangular and square wave oscillator.

ideally constrained to 4~ !(0) is formally obtained as
ufe(x) =—L/h/Lgh=(2x2/[k—umxi"'ll‘ x€h™Y(0).
(2.5)

The region of existence of a sliding motion is thus specified,
according to Theorem A.2, by the pair of inequalities:

—1<e, /[k - amxp1] <1.

(26)

Notice that (2.6) is equivalent, for any e, to: [k — amx}™ ][>
€2|x,|. In other words, the sliding mode existence conditions are
lost within a small vicinity of the points where the sliding surface
exhibits the local maxima and minima, ie., around x,=
+(k/am)¢"~ 1 Hence, a sliding motion can be sustained on
the nearly horizontal branches of the sliding manifold and relax-
ation occurs at the local extremals where the controlled trajectory
“falls”, through an arc of a parabola, towards the horizontal
branch of the surface. The parameter ¢ governs the velocity of the
state trajectories along the “relaxation manifold”.

Remark: From Remarks A.1 and A2 in the Appendix, it is
clear that a sliding motion is also possible-in the band |x,] <
(k /am) /"D for the reversed switching logic (u = —sign(y)).
For this reason, the necessary and sufficient conditions (2.6) do
not fail on the entire band, but only on a small vicinity of the
focal extremal points. For the fixed switching logic, u = sign(y),
the transversality condition (A.3), necessary for the existence of a
sliding regime (Sira-Ramirez [10]), is satisfied everywhere along
y =0 except in the band |x,| < (k/am)'/"~D, where the con-
trolled motions are constituted by the parabolic arcs. [m]

Fig. 2 depicts a simulated state space controlled trajectories of
system (2.1) for the parameters: ¢ =1,e =1, k=m= 3.

2.2. Applications to Synthesis of Triangt)[ar and Square Wave
Oscillators

Fig. 3 depicts the state portrait of an ideal second-order
relaxation oscillator generating triangular, and square, periodic
waves. Notice that the time response of the x; coordinate is a
triangular periodic signal with peak to peak amplitude given by 2
v and frequency f = S/(4 V) (ideally, the fast trajectories along



Fig. 4. Decpendence on m of the sliding manifold x; = ax; + kx3"

the vertical lines x, = + V, have infinite speed). S represents the
amplitude of the square wave or, equivalently, the slope of the
ascending branch of the triangular wave. The time response of
the x, coordinate is then a perfect square wave with peak to peak
amplitude 25 and frequency also equal to S/(4 V).

Fig. 4 depicts the dependence of the sliding manifold on the
parameter m for fixed values of a and k (a=k =1). It is clear
that as m grows, the portions transversal to x, tend to become
horizontal. This is mathematically proved in the next proposition
together with the possibilities of emulating the ideal phase por-
trait.

Proposition 2.1: As m and 1/¢ tend to infinity, the phase
portrait of system (2.1) tends to that of an ideal triangular wave
oscillator.

Proof: It should be obvious that when ¢ tends to zero, the
relaxation manifold tends to be a vertical line in the phase space.
This is clearly seen because the relaxation time, easily computed
from (2.1), is given by: 4e2(k /a)'/¢™~1 which tends to zero as ¢
tends to zero, independently of m. To see that the branches
transversal to the x, axis of the sliding curve tend to become
horizontal as m tends to infinity, consider the slope of these
branches at the crossings of the x,-axis (x, = +[k /a]l/("~ D),
This slope is given by

dx; /dx, = k(1—m). 2.7)
From (2.7), it is clear that the limit: lim,, , , ., dx; /dx; = — o0,
i.e., the sliding branch of the manifold tends to be parallel to the
x, axes as m grows. This fact can also be verified by noting that
the difference the points x, in (2.2) and (2.3) tends to zero as m
tends to infinity. o
Triangular Wave Oscillator: From the above proposition, the
ideal characteristics of the triangular oscillator, and (2.2)-(2.4), it
follows that— for finite but large m -—a desired [requency f and
a desired amplitude V, of a triangular wave oscillation, may be
approximated by the expressions:

V=a(k/am)™"" Y(m-1)
s=aVf=(k/a)/" D, (2.8)

Solving this set of equations with respect to ¢ and k one
obtains

a=v(@av) " [mm/ D (m —l)'l
k=alavf]” " =[a(m 1) f] tmmsomn,

(2.9)
(2.10)
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Phase portrait of sliding mode designed triangular wave oscillator.
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Fig. 6. State trajectory of sliding-mode generated triangular wave oscillation.

The parameters € and m must be chosen to satisfy the follow-
ing two requirements, respectively: 1) negligible relaxation time
of the controlled trajectory, and 2) the required “flatness™ of the
“slow” portion of the sliding manifold.

Square Wave Oscillator: For a required amplitude s and fre-
quency f of a square wave oscillation, it follows, from (2.9),
(2.10). and the ideal relation s = 4/, that

a=(s/4f)s~m[mm/ =0 (m ~1) 7! (2.11)

k=as"""=[4(m-1)f]" mm/im=-1), (2.12)

Thus, modulo high frequency chatterings exhibited in the slid-
ing portions of the phase portrait (which can be conveniently
eliminated by cascading the chosen output x, or x, of the
proposed oscillator with a low pass filter), a nearly square wave
or triangular wave oscillator can be synthesized on the basis of
sliding mode induced relaxation oscillations.

Figs. 5 and 6 show the phase portrait and the time response of
a computer simulated sliding-mode triangular wave oscillator
with required amplitude ¥ = 0.25 V, and frequency f =1 Hz. The
computed values of the required parameters were a = k = 0.2947.
The values of m and € were arbitrarily chosen to be m =27 and
€= 0.05.

III. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

Relaxation oscillations were shown to be entirely possible in
simple controlled second order variable structure dynamical sys-
tems undergoing sliding motions on appropriate nonlinear mani-
folds. The basic feature of such manifolds is that they do not
guarantec global existence conditions for the sliding regime and
allow the relaxed trajectory to periodically, and symmetrically,
meet a different portion of the same manifold where the sliding
conditions are recovered. The result allows for the conceptually
feasible design, demonstrated only through computer simula-
tions, of a simple class of oscillators with arbitrarily specified
output wave amplitude and [requency characteristics.

The result is related, in higher dimensional cases, to the possi-
bilitics of sliding mode induced catastrophes in a number of
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intellectually stimulating examples. This research topic may be
further pursued in the future.

APPENDIX

Consider the smooth (C*) nonlinear dynamical system
dx/dt=f(x)+ g(x)u
y=h(x) (A1)
with f and g locally defined smooth vector fields and h a C*
function. Equation (A.1) is referred as the triple ( f,g, &). The set
h10) = (x: y=h(x)=0)} is assumed to be a locally regular
integrable manifold (Boothby [11]). Ly denotes the Lie deriva-
tive (directional derivative {11]) of the smooth function 7 in the
direction of the vector field ¢.
Definition A.1 {7]: A variable structure feedback control law:
{u*(x), for y >0
u=

A2
for y<0 (a2)

u (x),
is said to locally create a sliding regime on h~1(0) if and only if

+h<0 and  lim L, -h>0 (A3)
y—= -0

y l—l-nlo Ly gu
where u* (x) and «™ (x) are given smooth scalar feedback con-
trol functions. Without loss of generality we assume that, locally,

ut(x)>u" (x).
Theorem A.1 [10]: If a sliding regime locally exists on &~ '(0)
then, necessarily, the transversality condition:

Lh<0 (A4)

is locally valid on A~ '(0).

Remurk A.1: Notice that by changing i(x) by — h(x), the
sliding manifold is not altered. However, in such case (A.4)
would be necessarily of the form Lok >0 and to locally create a
sliding regime, the switching law (A.3) should be reversed. For
this reason, one may say, in general, that the transversality
condition is represented by L h # 0. In such a case, however, the
inequality sign of (A.4) would be intimately related to the adopted
switching logic. Therefore, we shall assume that the feedback law
(A.2) is fixed from the outset and that it can not be reversed.
Hence, if a sliding motion is known to exist, then, as a function
of ., the expression L h <0 represents an open set containing
the region of existence of such sliding motions. a

The sliding mode controlled trajectories locally evolve around
h™Y0) in a chattering fashion. Ideally one may assume that the
controlled state trajectories adopt h~!(0) as a local integral
manifold. One may then formally assume that the constrained
trajectories are being controlled by a smooth scalar feedback
control function uFQ(x), known as the equivalent control {7]. The
equivalent control satisfies, on y = 0:

Ly ot =0ie., uB(x) = — Loh/Lh,

1+ gu xeh™1(0).

(A5)

The region of existence of a sliding regime on the manifold

h~(0) is specified by the following theorem. (See also [12] for a

more general case.)

Theorem A.2 [10]: A sliding regime locally exists on &~ 1(0) if
and only if locally on A '(0):

u (x)y <uBx)y=—Lh/Lh<u*(x). (A.6)

Remark A.2: Condition (A.6) is somewhat independent of the

switching logic (A.2), ie., it does not distinguish whether u=
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u* (x) is being used for y > 0 or for y < 0. It only asserts that as
long as the equivalent control is locally intermediate among the
extreme feedback laws u* and u«~, a sliding regime may be
created on such region. If the switching logic is fixed at the outset
—as we have assumed — then the sliding region is included in the
set represented by (A.6) but a larger portion is also included,
namely; the one where the reversed switching logic also creates a
sliding regime. For this reason, the combination of the transver-
sality condition (A.3) and (A.6) is the appropriate way to estab-
lish the region of existence of a sliding mode, for a fixed
switching logic, in a nonlinear dynamical system. a
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