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Design of P-1 controllers for DC-to-DC power supplies via extended
linearization

HEBERTT SIRA-RAMIREZ+}

In this article, the method of ‘extended linearization’ is used for designing stabilizing
non-linear proportional-integral (P-I) controllers which regulate to a constant
value either the average output voltage or the average input current of PWM
controlled DC-to-DC power converters such as the boost, the buck—boost and the
Cuk converters. The design is carried out on the basis of the Ziegler—Nichols P-I
controller design method applied to a family of linearized transfer function models of
converters parametrized by constant operating equilibrium points of the average
PWM controlled circuit.

1. Introduction

The regulation of switch-mode DC-to-DC power converters is usually accom-
plished by means of finite sampling frequency pulse-width-modulation (PWM)
control schemes in various arrangements with regulators whose design is based on
approximate linear incremental models of either a discrete or continuous-time nature
(see Severns and Bloom 1985, Middlebrook and Cuk 1981, Csaki et al. 1983, etc.).
Recently, non-linear control schemes have been proposed that do not resort to
incremental models or to discrete-time approximation schemes, but exploit the
properties of non-linear continuous average models obtained by an infinite sampling
frequency assumption. Among such schemes one finds:

(a) variable structure control and its associated ‘sliding mode’ control strategies
with switching surfaces designed on the basis of the ‘ideal sliding dynamics’
properties (Venkataramanan et al. 1983, Sira-Ramirez 1987);

(b) discontinuous control methods, such as PWM, based on considerations about
the time-scale separation properties of the converters average responses and
their associated slow manifold (such as in the work of Sira-Ramirez and Ilic
1988 and Sira-Ramirez 1988 a);

(c) pseudolinearization techniques applied on the non-linear continuous average
PWM converter model (Sira-Ramirez 1989 b); and

(d) control schemes based on exact linearization of the average PWM circuit
model (Sira-Ramirez and Ilic-Spong 1989).

In this article, a new non-linear controller design method is proposed for the
regulation of either the output load voltage or the input inductor current state
variables in DC-to-DC converters. Such cases are addressed, respectively, as the
voltage control mode and the current control mode. The design method is based on
the application of the extended linearization controller design technique extensively
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developed by Rugh and his co-workers (sec the References section), to non-linear
average PWM controlled models of the converters. The extended linearization
approach for feedback controller design constitutes a highly attractive non-linear
design technique based on the specification of a linear regulator which induces
desirable stability characteristics on an entire family of linearized plant models
parametrized by constant equilibrium points. Such a family may be represented by a
smooth surface defined in the input—output space of the system. The obtained linear
design serves as the basis for specifying (usually in a non-unique manner) a non-linear
controller with the property that its linearized model, computed about the same
generic operating point, coincides with the specified stabilizing regulator. The
resulting non-linear controller thus exhibits the remarkable property of ‘self-
scheduling’ with respect to operating points which may change its value due to a
sudden change of the reference set point.

We propose here the use of non-linear P-I controllers for regulating either the
output load voltage or the input inductor current of DC-to-DC power supplies such
as the boost, the buck—boost and the Cuk converters. The frequency domain
- Ziegler—Nichols method (Astrdm and Haggliind 1988, pp. 54-58) is used for the
specification of the linearized P-I regulator gains which stabilize the family of
parametrized transfer functions. In the output voltage control mode, such a transfer
function relates the incremental output load voltage to the incremental duty ratio
function of the converter. In the current control mode, the transfer function relates the
incremental input inductor current to the incremental duty ratio function of the
converter. The non-linear P—I controller is obtained from the linear design in a
manner similar to that proposed by Rugh (1987). It should be remarked that, for the
three converters, constant output voltage regulation cannot be accomplished by
sliding mode control defined on surfaces representing zero output voltage error (Sira-
Ramirez 1987). A constant output voltage control may be achieved only when a
combination of the state variables is formed in an appropriate sliding line, or else
indirectly through constant input current regulation (Sira-Ramirez 1987). Similarly, it
is easy to verify that even if direct use of PWM controllers does achieve constant
output voltage regulation for a limited range of desirable set points, such restrictions
turn out to be rather unnatural. On the contrary, the non-linear P-I controller
proposed in this article efficiently handles the output voltage regulation problem for
the three converters without instability effects, at least in a local sense. However, input
inductor current control by non-linear P-1 compensation does exhibit certain
limitations inherent in the non-existence of a non-trivial real crossover frequency for
the family of transfer functions for certain sets of parameter values and constant set
points. In such cases, the associated infinite crossover frequency prevents the
application of the Ziegler—Nichols design recipe for a P-1I regulator.

It should also be pointed out that since the designed controller is to be used in
combination with an actual PWM actuator of a highly discontinuous nature, a
proportional—-integral—derivative (P-1-D) controller is not feasible owing to large
controller output values produced by the derivative action carried out on the
discontinuous error signal. This difficulty could only be prevented through the use of
high-order low-pass filters on the measured output signal used for feedback purposes.
This topic, and the associated saturation problems induced on the PWM actuator, are
not investigated in this article.

Section 2 of this article presents a brief overview of the extended linearization
technique as applied to the design of non-linear P-I regulators for general time-
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invariant bilinear systems. Section 3 presents, in detail, the procedure for obtaining a
non-linear P-1 compensator for the Cuk converter. In this section the relevant
formulae for obtaining non-linear P-I regulators for average models of PWM
controlled converters of the boost and the buck—boost type are also presented in
summary form. Such formulae specify P—1I controllers for both the output voltage
control mode case and the input inductor current control mode case. Here, the
manner is also indicated in which the designed non-linear controllers are to be used in
the actual discontinuous PWM scheme. This section presents some simulation
examples highlighting the non-linear P-I controller performance. The last section is
devoted to some conclusions and suggestions for further work.

2. Background results

In this section we briefly review the extended linearization technique (Baumann
and Rugh 1986) as applied to time-invariant discontinuously controlled systems of the
form:

dx/dt = f(x) +u[b(x) +y] + 'I} (2.1

y=h(x)

with x being an element of R”, y and 5 constant n-dimensional vectors, f(x) and b(x)
smooth vector fields defined on an open set of R", and h a smooth scalar output
function. The variable u represents the control signal taking values on the discrete set
{0, 1}.

The discontinuous feedback control strategy is usually specified on the basis of a
sampled closed-loop PWM control scheme of the form (Skoog and Blankenship
1970):

1 fort, <t<t,+ ulx(t)]T 22
"0 for t,+ u[x(t)1T<t<t,+ T '

where u[x(t,)] is known as the duty ratio function, which is generally represented by a
smooth feedback function of the state (or of some related variables such as sampled
output error e(t,) =y, — W(t;) = ys — h[x(t,)]) which satisfies the natural bounding
constraint: 0 < u[x(t,)] < 1, for all sampling instants t,. T is known as the duty cycle
determining the time elapsed between sampling instants, i.e. t, ., =t + T

Remark

It has been rigorously shown by Sira-Ramirez (1989 a, sec also Sira-Ramirez
1988 a, 1989 c) that an average model of (2.1), (2.2) can be obtained by assuming an
infinite sampling frequency (ie. letting the duty cycle T—0) on (2.2). The average
model is simply obtained by formally substituting the discontinuous control variable
u in (2.1) by the duty ratio function u(x). The average trajectories, obtained as
solutions of the resulting non-linear system, satisfy the property of accurately
representing all the qualitative properties of the actual PWM controlled system
(2.1),(2.2). This was demonstrated in Sira-Ramirez (1989 c) by showing that there
always exist a sufficiently small sampling period T for which the deviations between
the actual PWM controlled responses and those of the average model, under identical
initial conditions, remain uniformly arbitrarily close to each other. Conversely, for
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each prespecified degree of error tolerance, a sampling frequency may be found such
that the actual and the average trajectories differ by less than such a given tolerance
bound. The error can be made even smaller if the sampling frequency is suitably
increased. Moreover, from a purely geometric viewpoint, in those regions of non-
saturation of the duty ratio function p, integral manifolds containing families of state
responses of the average model constitute actual sliding surfaces about which the
discontinuous PWM controlled trajectories exhibit sliding regimes (Sira-Ramirez
1989 a). Outside the region of non-saturation, the trajectories of both the actual and
the average PWM models entirely coincide. The average model dynamics then play
the role of the ideal sliding dynamics (see Utkin, 1978 and Sira-Ramirez 1988 b) in the
corresponding variable structure control reformulation of the PWM control strategy
(see Sira-Ramirez 1989 a).

The average model of (2.1), (2.2) is thus formally obtained by substituting the duty
ratio feedback function u in place of the actual switch control function u. However,
in the resulting system we shall denote the averaged state vector x by means of the
vector z:

d4m=ﬂﬁ+MMﬂ+ﬂ+"} (2.3)

y=~h(2)

Let Z be a constant equilibrium state vector for (2.3). If such an equilibrium state
exists then it must, necessarily, correspond to a constant value U of the duty ratio
feedback function u. We could express such a value U as a function of Z by, say,
U = u(Z). We prefer, however, in the same spirit as Rugh (1986), to express Z as
a function of U by Z(U). This value Z(U) would coincide with the previously given
equilibrium state Z if and only if the jacobian matrix [A(U) + UB(U)]:= df /oz +
Udb/dz, evaluated at the equilibrium point (U, Z(U)) is invertible. In such a case, the
implicit function theorem guarantees the existence of a unique solution Z(U) of:

f(Z(U)) + UIKZU)) + 7] +n=0 (24)

Notice that preliminary feedback can always render an invertible jacobian matrix
A(U) + UB(U) if such is not the case, for a particular U, in the original average system
(2.3).

The linearization of (2.3) about a given equilibrium point (U, Z(U)) results in:

dzs

2 = [AU) + UB(U)]z, + [MZ(U)) + s

oh' |t
Y5 = C€Z5:= I:g:l Zs
z

with: z4(t) = 2(1) — Z(U); y,(t) = y(t) — Y(U) = p(t) — cZ(U); py(t) == p(t) = U.

Equation (2.5) constitutes a family of linearizations of (2.3) parametrized by the
constant input equilibrium point U. Taking Laplace transforms in (2.5) one obtains,
under zero initial conditions, the family of parametrized scalar transfer functions
relating the incremental output transform y,(s) to the incremental duty ratio input
transform p,(s):

Gy(s):

(2.5)

s -
= 20— (sl — LA+ UBUD T THEO) +7) 6
d
This transfer function description of the linearized system is only valid in the
region of non-saturation of the duty ratio function, ie. for 0<U < 1.
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At this stage, the extended linearization approach suggests the use of a P-I
controller which stabilizes to zero the incremental output response corresponding to a
generic element of the parametrized family of systems represented by (2.6) (sec also
Rugh 1987). For this purpose, the Ziegler—Nichols method (Astrom and Haggliind
1988, pp. 54-58) can be readily used upon determination of the ultimate frequency
(also called phase cross-over frequency), W,(U), (or, equivalently, the ultimate period,
defined as: Po(U) = 21/W,(U)) and the ultimate gain (also called the gain margin),
Ko(U), corresponding to (2.6). These parameters are defined by the following
relations:

Arg Gy(jWo(U)) = =1 Ko(U) =Gy (jWo (V)™ (2.7)

These two basic parameters, in turn, specify-the gains of a P—I controller which is
to act on the incremental error function e;(U) = 0 — y,(U). Such a P-I controller is
described by its transfer function Cy(s) as:

Cy(s) = us(s)/es(s) = K1 (U) + K, (U)/s (28)

Using the well-known Ziegler—Nichols rules, the above gains are easily computed
in terms of the ultimate frequency and the ultimate gain as:

K (U)W(U)

K (U) =04Ko(U), Kp(U)=—"" "

(2.9)
A non-linear P-I controller may then be proposed, following Rugh (1987), by
considering:
dé(t)

&7 = K010

ity = {(1) + K, [5(1)]e(t)

where ji(t) is the non-linear controller output signal. This signal is to be taken as the
specification of the duty ratio function, u, for the PWM actuator only in the region
where the output signal ji(t) does not violate the condition: 0 < ji < 1.

It is easy to see that linearization of the non-linear state equations (2.10), around
the operating point e(U) =0, j(U) = {(U) = U, produces an incremental model whose
transfer function coincides with (2.8). The behaviour of the average non-linear
controlled system (2.3) in the vicinity of a given equilibrium point (U, Z(U)) thus
exhibits the same stability characteristics that the linearized P-I controller (2.8)
imposes on the family of linearized plants represented by (2.6). By the results
commented upon in the Remark, the response of the actual discontinuous PWM
controlled system (2.1)—(2.2) in conjunction with the designed non-linear P-I
controller will exhibit the same qualitative stability characteristics caused by the
stabilizing design on the average PWM closed loop system, provided a sufficiently
high sampling frequency is used in (2.2).

Since the computed duty ratio fi(f) must not violate its natural bounding
constraints, 0 < ji(t) < 1, one obtains the actual duty ratio u by bounding the
computed controller output signal ji(¢) through a limiter, as follows:

(2.10)

0 for f(t) <0
u(t)=<ift) forO<p(t) <1 (2.11)
1 for p(t) > 1
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This bounding process of the computed duty ratio function fi(t) may cause
saturation effects on the PWM actuator for those initial conditions far from the
required equilibrium point. If such operational requirements cannot be avoided, the
use of anti-reset windup schemes may be used (Astrom and Haggliind 1988, pp.
10-14). We do not give further consideration to this topic here since it implies only a
minor modification of the proposed control scheme.

The PWM actuator induces a high frequency discontinuous motion (chattering)
on the systems state and output variables. Since the feedback design presented above
is based on the infinite frequency averaged output values, one can obtain an
approximation to the ideal smooth performance by placing a low-pass filter at the
system output before feeding this signal back through the P-I controller. This
procedure approximates the characteristics of the idealized design when the cut-off
frequency of the filter and its associated phase lag is made sufficiently small.

The complete non-linear P—I regulation scheme, based on the extended lineariz-
ation of an average PWM controlled plant of non-linear nature, is shown in Fig. 1.

Non- linear V Non-tinear system [y |{LO%W | h(z)
P-I x = f(x) + ug(x) pass s
regulator filter

Y4 (U)

Figure 1. Non-linear P-I control scheme for output regulation of a non-linear PWM
controlled system.

3. Design of P-I controllers for DC-to-DC power supplies
3.1. Cuk converter

Consider the Cuk converter model shown in Fig. 2. This circuit is the outcome of a
deliberate design effort geared to obtain as many desirable DC-to-DC conversion
properties as possible with a numinum of component elements. This converter,
invented by Dr Slodoban Cuk, is described by the following bilinear state equation

model:
<

dx,
—dt-=—-(u,x2+uw1x2+b
dx, WX — UW X — UWX
o= 1 1~ Uy X,y
a7 ! . (3.1)
dx
—dti = —Wy4X3+ UW,Xx,
y=2X3

/

where, x; =1, \/l:', x,=V, \/62 and x;= 13\/23 represent normalized input
inductor current, transfer capacitor voltage and output inductor current variables,
respectively. The quantity b = E/\/Z,_ is the normalized external input voltage. The
converter parameters are defined as: w, = 1/,/L,C,, w, = 1/\/Z37C2 and w, = R/L,.
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These are, respectively, the LC input circuit natural oscillating frequency, the LC
output circuit natural oscillating frequency and the RL (output) circuit time constant.
The variable u denotes the switch position function, which acts as a control input,
taking values in the discrete set {0, 1}. System (3.1) is of the same form as (2.1), with
the vector field f(x) being of the form Ax, and the vector field b(x) being of the form
Bx. The constant vectors y and 7 are of the form y=0and n=[b 0 0]". We now
present, according to the theory contained in the previous section, the formulae
leading to a non-linear stabilizing P-I controller design for the average model of (3.1).

The average PWM controlled Cuk converter model is simply obtained from (3.1)
by replacing the discontinuous control function u by the duty ratio function pu.

~

Figure 2. Cuk converter.

dz,
Y0 —wyz;+ pw z; + b

at s (32)

The equilibrium points of the average model are obtained from (3.2) assuming a
constant value, U, for the duty ratio function u:

p=U; Z,(U)=0ibU%o}w,l-U)% Z,(U)=bjw,(1-U) o0
Z4(U) = 0,bU/w, 0,(1—U) '

The linearization of the average PWM model (3.2) around the constant equilib-
rium points (3.3) results in an incremental model, parametrized by U, of the form:

Z1s 0 —-(1-l)w, 0 Z15
d
it Zys | = | @1(1 - V) 0 —w,y U [ 225
Z34 0 w,U —Wy ||Z3s
,Z,(V)
+ | =0, Z,(U) —~ 0, Z5(U) | s (34

w,Z,(U)
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where:
z5() =z,(t) - Z;(U); i=1,2,3; ys(t)=Wt) — Y(U):=z5(t) — Z5(U);
ps() =p(t) — U

The parametrized family of transfer functions relating the average incremental
output inductor current z;; to the incremental duty ratio y; is found to be:

2 % U2 2

- — 1-U

G ( ) _ (l)zb ”‘——7‘5 o w4(1__‘7U) * +( 77)217 o (3 5)
VYT 01(1-U) 5 + 0,57+ (U20d + (1 - UNod)s + au(1 - VY]

The family of parametrized linear systems represented by (3.5) is used for the
frequency-response-based Ziegler—Nichols P-1I controller design.

After substitution in (3.5) of s by jw, the phase cross-over frequency is found by
computing the value of the frequency W,(U) that makes the imaginary part of (3.5)
equal to zero (discarding, of course, the trivial solutions: Wy (U) = 0, and W, (U) = ).
One obtains after some straightforward calculations:

Wo(U) = /a(U)[1 — (1 — B2(U)/a>(U)) /2]
(U) =052 —U)(1 = U) " [U02 + (1 — U)?w?] (3.6)
B*(U) = wi(1 - U)[2U%w] + (1 — U)*wi

To guarantee the existence of a real crossover frequency, the condition:
B2(U)/a?(U) < 1 must be enforced on the system parameters w,, @, and the constant
duty ratio U. If this requirement is not fulfilled by the system then the Nyquist plot of
the incremental transfer function G,(jw) does not intersect the real axis except at
=0 and w = c0. In such a case the Ziegler-Nichols recipe degenerates into the
specification of an arbitrary proportional controller which can be made independent
of the operating point. A P-I controller is not obtained in such a case and the
resulting linearized closed loop system exhibits infinite gain margin.

According to (2.7), the ultimate gain K,(U) is obtained as the inverse of the
absolute value of G( jW,(U)). In this case, such a key design parameter is obtained as:

~ 2101 =U) jor}(1 - U)* - We(U)]

Ko(U) w,b  Joi(l—U)— WEU)

(3.7

According to the Ziegler—Nichols design recipe (2.9) for P-I controller specific-
ation, the values of the proportional and integral term gains which stabilize the entire
family of linearized plant models (3.4), or (3.5) are given, respectively, by:

04, 0,(1 = U) |wd(1 — UY — WR(U)
KilU==" b ol - U) = W)

@,04(1 =~ V) |0}(1 - U)* -~ WE(U)|
dnwb il - U) = WR(U)|

(3.8)
K,(U) =

Wo(U)

The P-I controller Cy(s) = K,(U) + K,(U)/s is such that it would stabilize to
zero the output response of the entire family of linearized plant models represented by
(3.5). The non-linear P-I controller whose linearization around the constant



DC-to-DC power supply P—I controller design 609

equilibrium point coincides with (3.8) is given, according to (2.10), by:

i [oo41-0 il -0 — WO

"= ['4mzb T} (1= - WOl W"(O]e“)
. 0deo, 41— 0) [03(1 =02 — WD) (39)
p=l0+ (‘ b (=0 — W2 >“’(”

e(t) = Z,(U) — z3(1)

The output /& of the non-linear P-1 converter is to be regarded as the specification
of the needed stabilizing duty ratio function for the average PWM closed-loop
converter. However, depending on the proximity of the initial states to the desirable
constant average load current (acting as a set point), the actual values of ji may violate
the natural constraints imposed on the duty ratio function . Therefore, a limiter of
the form (2.11) has to be enforced on the output of the non-linear P-I converter. This
procedure yields the actual duty ratio function. In actual operation, x may be subject
to saturation during certain intervals of time. Typically, an antireset-windup scheme
(see Astrom and Haggliind 1988, pp. 10—14) would be used in combination with the
non-linear P—1I controller to avoid overshooting effects on the average controlled
output.

The PWM actuator induces undesirable high frequency discontinuous signals
(chattering) for the converters state and output variables. In order suitably to
approximate the average closed-loop designed behaviour, a low pass filter must then
be placed at the sensing arrangement used to obtain the actual output inductor
current x,(t) used for feedback purposes. One may, for instance, propose a simple
first-order RC circuit, with a sufficiently small time constant, 1/7; (equivalently, a
sufficiently small cut-off frequency) as follows:

@ _

1
. —<i>(f(t)—x3(t)); z3() = £ (1 (3.10)

One may regard the filter output, z5(¢), as the average output current value
required by the non-linear P-I controller (3.9).

The complete non-linear P-1 regulation scheme based on extended linearization
of an average PWM controlled Cuk converter would be that of Fig. 1, replacing the
block representing the non-linear system (2.1) by a block representing the Cuk
converter.

3.2. Boost converter

3.2.1. Non-linear P—I regulation for the case of the output voltage control mode in a
boost converter. Consider the boost converter model shown in Fig. 3. Ths circuit is

L 0

it
LT

Figure 3. Boost converter.
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described by the bilinear state equation model:

dx,
T —WoXy + UDX, + b
dx, (3.11)
=y = @oX1 — 01Xy UWyX,
y=x3

where, x; = Iﬁ, Xy = V\/E represent normalized input current and output voltage
variables, respectively. The quantity b= E/\/f, is the normalized external input
voltage and w, = 1/\/_If and o, = 1/RC are, respectively, the LC (input) circuit
natural oscillating frequency and the RC (output) circuit time constant. The variable u
denotes the switch position function, acting as a control input, taking values in the
discrete set {0, 1}. System (3.1) is of the same form as (2.1), with f(x) a linear vector
field of the form f(x) = Ax, while b(x) is of the form b(x) = Bx; the constant vectors y
and nare givenby:y=0and n =[b 0]". We now summarize the formulae leading to
a non-linear P-I controller design for the average model of (3.11).

Average boost converter model for the output voltage control mode

dz,
i —WoZy + pwoz, +b
dz, (3.12)
ar =WoZy — W2y — HWoZy
t
Yy=2

Constant equilibrium points
bw, b

rwga —?U)z]; Z,(U) A (3.13)

u=U; Z(U)= T [wo(1-0)]

Parametrized family of linearized systems about the constant equilibrium points

b

d [Zla(t):l I: 0 —wo(1— U)] [216:| (1-— U)_
ar = + s
dt [ z,4(1) wo(1-U) —wy Z2s _ —boy, (3.14)
[wo(1—U)?]
Y1) = 224(t)
with

z5(t) = 2:(t) — Z(U); i=1,2 ys(t) = W0 — Y(U) = 2,(8) — Z,(U);
p(y=u(t)—U

Family of parametrized transfer functions relating incremental output voltage to
incremental duty ratio

s—b[Z, ()]}

Gy(s) = y5(8)/1s(s) = — o Z,(U) T

SO 315
s + w5+ 03(1—U)? (3.13)
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Crossover frequency
Wy (U) = \/20,(1 = U) (3.16)
Ultimate period and ultimate gain
2n J2n wy(1 = U)?
PyU)i= =Y o Ko(U)=—— 3.17
o(U) Wo(U) = Twg(1 = U] o(U) b (3.17)

Ziegler—Nichols P—I controller gains for the linearized family of converters
0400(1 - U)? w(1 - V)

K,(U)=— ——— K,(U)y=—+ 3.18
(V) ; {0 ==0 T (3.18)
Non-linear P—I controller (output voltage control mode)
df(v) _ [g@(l —C(z)ﬁ]em
dt (2/2nb)
> (3.19)

. _ 2
0 =)+ [94““%3’”-}(0

et) = ya(U) — W(t) = Z2(U) = z,(1) |

Low pass filter
A simple first-order low pass filter may be proposed to yield an approximation to
the ideal average output function z, required by the non-linear P-I controller. Such
a filter is characterized by a sufficiently small time constant of value (1/T;), and a
state f.
L~ (F)U0=x0% 20 =50 (320
f
3.2.2. Simulation example. A boost converter circuit with parameter values R = 30 Q,
C=20puF, L=20mH and E =15V was considered for non-linear P-I controller
design. The constant operating value of u was chosen to be U =08 while the cor-
responding desirable normalized constant output voltage turned out to be Z,(0:6) =
0-3354. Figure 4 shows several state trajectories corresponding to different initial

Z;

Z,

_l _ .
! 0 ! 2
Figure 4. Normalized state trajectories of the ideal average boost converter model controlled
by a non-linear P-I regulator.
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conditions set on the ideal average boost converter model controlled by the non-linear
P-I1regulator of the form (3.19). Figure 4 represents the projections of the closed loop
system three-dimensional state vector trajectories onto the z,-z, average state
coordinate plane. The average controlled state variables, z, and z,, are shown to
converge toward the desirable equilibrium point Z,(0-8) = 1-7683 and Z,(0-8) =
0-3354. Figure 5 shows the average controlled variables evolution when subject to a
step change in the output set point value, from Z,(0-8) =0-3354 to Z,(U) =0-1677
(the corresponding change in the operating point of the duty ratio was from U = 0-8 to
U = 0-6). Figures 6(a) and 6(b) show the state response of the actual PWM controlled

e z, (1)
1.5
|
0.5 2, (1) /\__
ol e T T Time (ms)
150 200 250 300 350

Figure 5. Average controlled state response of the boost converter subject to a 100% step
change in the set point value.

0 T T 00 200 T 300

(a)
0.4 xz(f)
0.3
0.2 (Filtered output £(1))
0.1
0 Time (ms)
0 100 200 300
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Figure 6. (a) Normalized state response of the actual PWM controlled boost converter. (b}
Filtered output response of the actual PWM controlled boost converter with a non-
linear P-I compensation scheme.
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circuit and the filtered output response, respectively. The sampling frequency for the
PWM actuator was chosen as 1 kHz and the output low pass filter cut-off frequency

was set at 0-1 rad s~ 1.

3.2.3. Non-linear P—I regulation for the case of the input current control mode of the
boost converter. Input inductor current can also be sensed, and appropriately filtered,
for feedback regulation purposes. One usually pursues constant input current
regulation to obtain a desirable controlled constant output voltage at the load
indirectly. In this section, we propose a non-linear P—I controller scheme similar to
the one in the previous section, which uses the average value of the input current for
feedback purposes. As before, we only summarize the relevant formulae leading to the
non-linear P-1 controller specification. Evidently, the equilibrium points are the same
as in (3.13).

Average boost converter model for input current control mode

N

dz,
G = T @ + pwoz, + b
dz, > (3.21)
a =WeZy — W2y — PWoZy
Y=z

Y

Family of parametrized transfer functions relating incremental input current to
incremental duty ratio

Go() = 2 0y zyv), ST

L 3.22
us(s) s+ w5+ wj(1 —U)? (3-22)

The damping ratio &, defined by ¢ = w, /(2w,), is independent of U.

Crossover frequency

862 1/2
WO(U)=w0(1—U)|:l—(—1_ U)f] (3.23)

The Ziegler—Nichols method is thus applicable only for 0< U <1 — Zﬁé.

Ultimate period and ultimate gain

2n \/E

WU =TT gez T2y

) {“"’“_U)[l_(l—évﬂ } (3.24)
_wd1-U)

_oit-0)

Po(U) =

Ko(U)
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Ziegler—Nichols P-I controller gains for the linearized family of converters
240){(1 -U)
b

Ky() = 210~ U)@(1 = U — 201

K, (U)=
(3.25)

(47b)

Non-linear P-1I controller

-

= = {(4nb) " 0l (1 — O [wd(1 - )% — 20312 }e(t)

: 201
(O = 0 + [0—4“",(,1 Q]em [ 6

e(t) = ya(U) — W(t) = Z,(U) — z,(9) ]

Low pass filter

A simple first-order low pass filter may be proposed to yield an approximation to
the ideal average output function z, required by the non-linear P-1 controller. Such a
filter is characterized by a sufficiently small time constant of value (1/7;), and a state f.

d
S (%)( FO=x,0% 2,00 =£(1) (327)

3.3. Buck-boost converter

3.3.1. Non-linear P—I regulation for the case of the output voltage control mode in a
buck—boost converter. Consider the buck-boost converter model shown in Fig. 7.
This circuit is described by the time-invariant bilinear state equation model:

dx,
I WX, — UWgX,y + ub
dx, (3.28)
71[_ = —w0x1 "‘*(lez + uw0X1
y=X3

where, x, =1./L, x, = V\/—C— represent normalized input current and output voltage
variables, respectively; b= E/\/Z is the normalized external input voltage and it is

k f LT
+ -[_w_‘w L .

Figure 7. Buck-boost converter.
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here assumed to be a negative quantity (reversed polarity) while, w, = l/ﬁC and
o, = 1/RC are, respectively, the LC (input) circuit natural oscillating frequency and
the RC (output) circuit time constant. The switch position function, acting as a con-
trol input, is denoted by u and takes values in the discrete set {0, 1}. System (3.11) is of
the same form as (2.1), with f(x) of the form: f(x) = Ax, and b(x) of the form: b(x) = Bx,
n=0 and y=[b 0]". We now summarize the formulae leading to a non-linear
P-I controller design for the average model of (3.28).

Average buck—boost converter model for the output voltage control mode

-

dz,
= @oZ2 — H0oZ; + ub
d 3.29
‘Ez=_woz1‘wlzz+#w021 r -
dt
y=2;
o
Constant equilibrium points
bUw, —-bU
=U; ZiU)=—5+—"53= Z,(U\)=—— " - - 3.30
g O~ sa-vT 2wy O
Parametrized family of linearized systems about the constant operating points
-_— b -
d| z14(0) 0 wo(1—=U) |{ 215 (1-0)
4 = + My
Zzo(t) ‘—wo(l - U) — 234 _ bwL - (3.31)
[wo(1 —U)*]

Ys(t) = z,5(8)
with:

() = 2() = Zi(U); i=1,2 ys(8) = Y1) — Y(U) = 25(t) — Z,(V);
Hs(t) = (1) —U

Family of parametrized transfer functions relating incremental output voltage to
incremental duty ratio

yals) s—blz,(U)]"!

—wozl(U)s_szls+w3(1 -U)?

G = e =

(3.32)

Crossover frequency

1 1/2
Wy(U) = wo(1 — U) (1 + ﬁ> (3.33)



616 H. Sira-Ramirez

Ultimate period and ultimate gain

2 2
Po(l) = = T
° [wo(l—U)(H—) ]
U (3.34)
[wo(1-U)]
Ko ==" 15ty

Ziegler—Nichols P—1I controller gains for the linearized family of converters

[0-4wo(1 — U)?]

Ki) == b0y
1 3.35
[wé(l _ U)’(l + %) ,2] (3:33)
K== @y =~

Non-linear P—1I controller

2 1 3 1 1z
a [“’°( i (1 +Rt)’) ]

Tde T [Anlblg(0)]e(r) 2 [ (336)
-0 [P
() = yu(U) = {0 = Z5(U) = 2,0
Low pass filter
7 (%)(f(t) ~xa(0); 220 = (0 (337

3.3.2. Simulation example. A buck-boost converter circuit with the same parameter
values as in the previous example was considered for non-linear P-TI controller design.
The constant operating value of u was again chosen to be U =075 while the
corresponding desirable normalized constant output voltage turned out to be
Z,(0-75) = 0-2012. Figure 8 shows several state trajectories corresponding to different
initial conditions set on the ideal average buck—boost converter model controlled by
the non-linear P-I regulator of the form (3.36). Figure 8 represents the projections of
the closed-loop system three-dimensional state vector trajectories onto the z,-z,
average state coordinates plane. The average controlled state variables, z, and z,, are
shown to converge toward the desirable equilibrium point represented by Z,(0-75) =
—0-8482 and Z,(0-75) = 0-2012. Figure 9 shows the ideal average controlled state
variables evolution when subject to a step change in the output set point value, from
Z,(0:75) = 0-2012 to Z,(U)=0-1006 (the corresponding change in the operating
point of the duty ratio was from U = 0-75 to U = 0-6). Figures 10(a) and 10(b) show
the state response of the actual (i.e. discontinuous) PWM controlled circuit and the
filtered output response, respectively. The sampling frequency for the PWM actuator
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Figure 8. Normalized state trajectories of the ideal average buck-boost converter model
controlled by a non-linear P-T regulator.
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Figure 9. Average controlled state response of the buck—boost converter subject to a 100%
step change in the set point value.
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Figure 10. (a) Normalized state response of the actual PWM controlled buck-boost
converter. (b) Filtered output response of the actual PWM controlled buck-boost
converter with a non-linear P-1 compensation scheme.
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was chosen as 1kHz and the output low pass filter cut-off frequency was set at
O-lrads™ '

3.3.3. Non-linear P—1I regulation for the case of the input current control mode in
a buck—boost converter
Average buck-boost converter model for the input current control mode

dz,
5 = @oZz— Uwozy + ub
dz, (3.38)
= —WoZy — W23 + HWoZy
y=z;

Family of parametrized transfer functions relating incremental input current to
incremental duty ratio

vs(5) b s+w(1+U)
Gy(s)== =— .- > .
o) = T T-UF 405 + wl(1 - U)? .
The damping ratio ¢ is defined by & = w, /(2w,).
Crossover frequency
Wo(U) = wo(1 — U)[1 —4E2(1 + U)(1 = U)~2]17? (3.40)

The Ziegler—Nichols design method is valid only for values of £ and U that satisfy
E<O5(1—-U)(1 + U)~ V2,

Ultimate period and ultimate gain

2r o
Po(U):= Wo(Uj - {wo(l - U)[1 —482(1+ U)(l _ U)—Z]l/zf}' a1
Ko(U) = o,(1-U)
b
Ziegler— Nichols P—I controller gains for the linearized family of converters
K,(U) = 9'_4&(;_“(’_)
(3.42)
() = [@o@i (1= UPP[1 - 482(1 4 U)(1 - 1) *]"2]
AV =—— T
Non-linear P—1I controller
%(tﬁ = {(4nb) 'wow (1 —O)*[1 — 4E2(1 + (1 = )~ 21" }e(r)
04w, (1-0) (3.43)

HO =10 + {— S -}e(r)

e(t) = y(U) — W) = Z,(U) — 2, ()
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Low pass filter

&) _

gy —(%)(f(t) =x(0); 2 =f(1) (3.44)

4. Conclusions and suggestions for further research

This article has demonstrated the feasibility of output load voltage regulation for
buck and buck—boost converters. Such regulation is made in either a direct output
voltage feedback scheme, or, indirectly, through an input current feedback scheme.
The stabilizing control strategy is accomplished by means of a non-linear P-1
controller specification based on extended linearization of average PWM controlled
models of the DC-to-DC power supplies. The output current regulation problem for a
Cuk converter was also investigated and solved by the same technique. The stabilizing
design considers non-linear P-I regulators derived from a linearized family of transfer
functions parametrized by constant equilibrium points of idealized (infinite-
frequency) average PWM controlled converter models. The non-linear controller
scheme, as applied to the actual discontinuous PWM regulated converter, is shown to
comply with the same qualitative stabilization features imposed on the average model
design, provided the output feedback signal is properly processed through a low pass
filter and a sufficiently high sampling frequency is used in the PWM actuator. The
local character of the stabilizing properties of the proposed non-linear P—I regulation
schemes are left as a research topic which requires further elaborate work.

The proposed non-linear control scheme can be extended to a number of other
DC-to-DC power supply configurations such as the various celebrated modifications
of the Cuk converter, including those with output capacitors and magnetic coupling
between the input and output inductors. Application of the method to higher-order
converters will undoubtedly require the use of symbolic algebraic manipulation
packages such as MACSYMA or REDUCE. As a matter of fact, the third-order Cuk
converter design example, presented in this article, was carried out making extensive
use of the REDUCE package. Other types of classical compensating networks can
also be proposed. In particular, the use of the analytical design theory developed in
Newton et al. (1967), and its associated integral-square error minimization, could be
considered as an alternative to the Ziegler—Nichols design recipe for the non-linear
P-I converter specification. The feasibility of such an alternative approach has to be
demonstrated through further work.
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