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A VARIABLE STRUCTURE CONTROL
APPROACH TO THE PROBLEM OF
SOFT LANDING ON A PLANET

H. SirA-RAMIREZ!

Abstract. A discontinuous feedback control policy is proposed for the exponen-
tial sliding of terminal descent trajectories of a vertically controlled spacecraft
attempting a soft landing maneuver on a planet.

Key Words—Soft landing problem, sliding regimes, nonlinear systems.
1. Introduction

The problem of soft landing on a planet has received some attention in the
control systems literature, especially from an optimal control viewpoint. An
early contribution using a fuel-optimal control approach, in the case of soft
landing on the Moon, was given by Meditch (1964). Further studies, within the
same optimal approach, were presented in Flemming and Rishel (1975) and,
later on, by Cantoni and Finzi (1980). The minimum fuel problem was shown to
yield a bang-bang control solution with a single control switching performed on
the basis of sign evaluation of a nonlinear (logarithmic) surface coordinate
function, defined in the state space of the system. It was shown in Meditch
(1964) that the minimum fuel and the minimum time landing problems are
completely equivalent.

In this article, attention is paid to a non-optimal solution for the problem of
soft landing on a planet by using the theory of Variable Structure Systems and
their associated Sliding Regimes (Utkin, 1978 a). The sliding mode control
approach has recently been applied to other classes of aerospace problems in the
context of spacecraft reorientation maneuvers (see Vadali, 1986), reorientation
and detumbling maneuvers (Dwyer and Sira-Ramirez, 1988), active nutation
damping for orbiting satellites (Sira-Ramirez and Dwyer, 1987), flexible
spacecraft control (Dwyer et al., 1987), and aircraft dynamics (Calise and
Kramer, 1984). Sliding mode control constitutes a simple, robust, feedback
control technique with great potential for practical applications. For general
background on the subject and thorough surveys, the reader is referred to the
many works of Utkin (1978 a; 1977; 1984; 1987), the book by Itkis (1976), the
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tutorial by De Carlo et al. (1988) and recent articles by Sira-Ramirez (1988 a; b;
1989 a; ¢).

A variable structure control solution to the problem of controlled landing is
shown to specify a switching policy which is capable of guaranteeing the soft
landing of a thrust-controlled vehicle, by inducing an ideal exponential rate of
decay in the height and vertical speed variables. The mathematical idealization,
inherent in the solution scheme, is shown to result in the physical inconvenience
of total residual fuel exhaustion due to the infinite time duration of the landing
maneuver. A hybrid approach is hence proposed in which a sliding mode control
strategy is used in combination with an optimal bang-bang policy for the
touchdown stage. Switching to the optimal policy is triggered by either critical
height or critical residual fuel mass availability. As an alternative, a free fall
trajectory may also be proposed for touchdown with a prespecified allowable
downward velocity of impact.

Section 2 contains the main results of the article, while Sec. 3 is devoted to
the conclusions and suggestions for further research. In order to make the
article self-contained, an Appendix is included with some background material
about sliding mode control in nonlinear dynamical systems.

2. The Problem of Soft Controlled Landing

2.1 A landing model for a vertically controlled vehicle (Meditch,
1964) Consider the nonlinear mode! describing the motion, and mass be-
havior, of a thrust controlled vehicle attempting a vertical regulated landing on
the surface of a planet of gravity acceleration constant, g and negligible
atmospheric resistance (Meditch, 1964; Flemmmg and Rishel, 1975; Cantoni
and Finzi, 1980):

ﬁ__ dxz _ _ g dx3 _
T TR (_x;)“ - % )

where x; is the position (height) on the vertical axis, positively oriented
downwards (i.e., x; <0 for actual positive height), x, is the downwards velocity
and x3 represents the combined mass of the vehicle and the residual fuel (See
Fig. 1). u is the controlled rate of ejection per unit time, while o is the relative
ejection velocity. The control is restricted to take values on the interval [0, a]
with a>0. The maximum thrust of the braking engine is thus ga. In relation to
(A.1) (See Appendix), the vector fields f and g are expressed, in local
coordinates, as

and g(x) = —(—CL-> < g

e 9 L0
f(x) = x; 3 t &5 %

X2

It will be assumed that the engine is capable of pulsed thrusting with
reasonably high frequency (if only low frequency trusting is technically possible,
our results form the basis for a Pulse-Width-Modulated approach thanks to the
intimate connections among this discontinuous control technique and sliding
regimes. (See Sira-Ramirez, 1988 ¢, 1989 b)). If no pulsed control is possible at
all, then the approach still allows for the specification of either a smooth
nonlinear amplitude modulated feedback control action or an equivalent
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Fig. 1. Vertically controlled descent on the surface of a planet.

smoothed high gain approach which can be easily programmed on the actuator
regulating the rate of ejection. '

2.2 A variable structure control approach Soft landing on the ground
may be seen as a particular case of a hovering maneuver at certain prespecified
height. Taking the output as y=h(x)=x;—K, a sliding mode approach would
take y=0 as the sliding surface. However, in this case, Lyh=0 and
LyLeh=~(0/x3)#0 i.e., the system (f, g, h) has relative degree 2 (see the
Appendix). This indicates that a hovering maneuver, ideally represented by
x, =K, cannot be directly accomplished by a sliding mode approach on the basis
of height information feedback alone. An auxiliary output must be devised, as
indicated in (A.9) of the form,

w = k(x) = cih(x) + Leh(x) = ¢ (x;—K) + x5. (2.2)

Since Lyk(x)=~(0/x3)<0, (f, g, k) has relative degree one and a sliding
motion locally exists on the manifold £71(0). On w=0, x,=~c;(x,~K), with ¢,
chosen as a positive constant. The ideal sliding motion is then governed by
dx,/dt=—c,(x,~K), i.e., an asymptotically stable evolution of the position
(height) variable may be ideally achieved towards the sliding manifold x; =K,
while the velocity x, asymptotically approaches zero. This motion exhibits an
exponential rate of decay solely prescribed by the design parameter ¢,. For a
soft landing on the ground we let K=0 from now on.

Since, Lek(x)+[Lyk(x)]u=g+ci1x2—(0/x3)u, the equivalent control (see
the Appendix) achieving soft landing is given by u®(x) = (x3/0)[g+c1%2]. Using
Theorem A.2, the switching logic,

a forw >0,
u = (2.3)
0 for w < 0,
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locally creates a sliding motion on k£~ !(0) in the region determined by
0 < u*x) = (x3/0)[g+c122]) < a. (2.4)

The left hand side inequality is trivially satisfied for a descending maneuver
(x2>0). The inequality in the right hand side establishes that the ratio of
maximum thrust to remaining mass must exceed gravity plus average controlled
acceleration (i.e., oa/x3>g+c1x2).

2.3 Reachability of the sliding region from w<0 If initially w<0 (.e.,
the representative point of the state trajectory is below the sliding plane
£~1(0)), the control action (2.3) specifies a free fall trajectory until reaching of
the plane w=0. The free fall does not spend any fuel mass and hence x3(t)
remains constant, i.e., it remains equal to the total initial mass of the spacecraft.
The point of coordinates x§, x5, x3, on the plane w=0, hit by the descending
trajectory is obtained by intersecting the parabolic state trajectory of (2.1),
computed with #=0, with the sliding plane w=0:

* _ & _‘/ _ 201 2
e {1 ' (h° 2¢ )}
g / ZC%( v3 ) ’ (2.5)
- & - /1- — Yo
1 [ g o 2g '

x5 = my

I

x5

where h, (<0) is the initial height v, is the initial velocity and m, is the total
initial mass. Condition (2.4) implies that the sliding mode region is reachable by
a free fall trajectory provided the initial data and system parameters satisfy

g+c1x2 B 1- 2c1 _v_(z) )
0 zg

Since the factor ¥V1— (2¢3/g) (ho—v3/2g)>1, a necessary but not sufficient
condition for the existence of a sliding mode on the region (2.4) is represented
by the simpler condition mog<oa, i.e., the maximum braking force must
necessarily exceed the total spacecraft weight; in other words, the maximum
trust to initial mass ratio must be greater than the gravitational acceleration.

Figure 2 shows a free fall trajectory, in state space, which reaches the region
of existence of the sliding regime, on the plane w=0, after a free fall descent
with zero initial downwards velocity.

2.4 Reachability of the sliding region from w>0 If w>0 initially, Gi.e.,
the representative point is above the sliding plane) a full thrust action is
necessary to reach k~1(0). However, certain restrictions must be satisfied on
the initial data in order to guarantee reachability of the region of existence of a
sliding regime, (2.4), within physically meaningful conditions.

The full-thrust trajectory is easily computed by integration of the system
equations (2.1), with #=a. In this case, the parametric representation of the
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Fig. 2. Free fall trajectory reaching the region of sliding
mode existence on the sliding plane.

state trajectory, with initial conditions: h,, v and m, turns out to be

x1(8) = ho + (vo—0)t + (%)tz - (%-)[mo—at]log[l——"%t]

x2(8) = vo + gt + alog[l—it} . (2.7)
no

x3(t) = —at + my

If one considers the set of trajectories parametrized by the initial data (hq,
vo, My), for which, at some time ¢, x(f;)=2x,(¢;)=0, one obtains from (2.7) a
transcendental surface equation, independent of x3, which is, precisely the
minimum-time switching surface (Meditch, 1964).

The specification of this minimum-time switching surface can be viewed as
the problem of specifying an integral manifold of (2.1), with #=a, whose
intersection with the sliding plane is represented by the line x;=x,=0. This
integral manifold is henceforth denoted by s(x)=0. It is easy to see, that the
surface coordinate function s must satisfy the following partial differential

equation,
ds as oa as _
0x, ¥z + BX2 (g— X3 ) a ( 0x3 A)a =0 (53

with the boundary condition represented by the line x, =x,=0.

The characteristics (Arnol’d, 1983, Chapter 2) of (2.8), which in fact
correspond to the trajectories of (2.1) with #=¢a, may also be represented,
aside from (2.7), by the intersection of its projecting cylinders,
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X1 = ho + %—@—[xg,—mo] + ( ziz )[ch—mo]2
_|{< X3 |
( p )x3log[ e ] ) (2.9)
Xg = vy — %[xg—mo] + alog[%fo—]

An explicit, exact, expression for the manifold of all such integral curves is
not possible to obtain. Hence, one usually resorts to an approximation by
letting, within a 2.23(%] error (See Meditch, 1964),

2
*3 | = J A e @ 2 9 X37 P
log[ o ] log[l T t] = ) ¢ o2 o= 2 P (2.10)

The minimum-time switching surface is then, approximately, represented by
the set of points x*=(x¥, x3, x3) satisfying (using also the notation s(x) for the
approximation)

2 -1
s¥) = - L8 |- T2 |t 4 ar - Jlg—= xf = 0. (2.11)
mo 0 nig

Thus, the set of initial states (hy, vg, m) for which the fully thrusted
trajectory can reach the sliding manifold w=0, must, necessarily, comply
(within the effects of 2.23[%] error in the approximation (2.10)) with the
restrictions w>0, s<0, i.e.,

oo’ oa | oa
> — = - =
w >0, e [g o ho + vo 8 e ho < 0. (2.12)

It is obvious that any initial state starting above (2.11) leads, inevitably, to a
crashing of the vehicle on the surface of the planet. A sliding mode approach
therefore demands that the initial conditions, above the sliding surface, which
possibly lead to a sliding regime, must be necessarily located below the
minimum-time (i.e., minimum-fuel) switching surface.

Aside from this set of restrictions, one is also compelled to identify the
subset of initial states satisfying (2.12) whose corresponding full thrusted
trajectories hit the region of existence of a sliding regime, on k71(0), deter-
mined by (2.4). To find this new subset of (2.12), one must find, by virtue of
(2.4), an integral manifold of (2.1) with # = a, whose intersection with the sliding
plane is now represented by the hyperbolic trace of the cylinder: (xs/
0)[g+c1x2])=a on k~1(0). This integral manifold, denoted by s;(x)=0, is easily
seen to also satisfy the partial differential equation (2.11) with the boundary
condition represented now by the line, defined on w=0,

(x3/0)[g+c1x2] = a; %2 = ~c1%1. (2.13)
The characteristics parametrized by the initial data (ho, vo, my) are repre-

sented, as before, by the intersection of its projecting cylinders (2.9). In this
case, however, it is very difficult to compute even an approximate expression
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Fig. 3. Full thrust trajectory reaching the region of
sliding mode existence on the sliding plane.

for the manifold s;(x)=0.

Note that, due to the nearly parabolic form of an individual characteristic,
each one of them intersects twice the sliding plane. By forcing one of the
intersections to be on the boundary of the sliding mode existence region (i.e., to
force it to satisfy the boundary condition (2.13)), the second intersection point is
actually a boundary point of the set of initial states, on the sliding surface, that
reach the boundary of the sliding mode existence region on w=0.

In summary, the initial states x, that reach the region of existence of a
sliding regime from above the sliding surface are restricted to satisfy

w= k(xg) >0, s(xo) <0, s1(x0)>0. (2.14)

Figure 3 shows a typical state trajectory which starts above the sliding plane
and reaches the region of existence of a sliding regime.

2.5 Ideal sliding dynamies The smooth control action #*%(x) (see (2.4)
and the Appendix), and the condition w=*k(x)=0, on the basis of (2.1), define
the following set of redundant differential equations representing the ideal
sliding dynamics,

dxl _ de
7 T )

- —an, B = —@olgran].  (2.15)

Integrating the second and third equations above, one obtains an explicit
expression for the line representing the ideal sliding mode state trajectory,

[(GF) Je(-252))
o ¥ {
([ ks |

Xo = —C1X1

I

X3

]
=
%)
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Fig. 4. Ideal sliding trajectories arising from
free fall and full thrust trajectories.

where x¥, ¥, and x% are the coordinates of the initial condition point lying on
the sliding surface (typical ideal sliding trajectories are shown in Fig. 4).

From (2.15), and the fact that ¢;>0, it follows that x;—0 and x,—0
exponentially (i.e., in infinite time). It is easy to see from (2.16) that the ideal
solution would lead to x3=0 at touchdown (i.e., the entire residual fuel mass and
the satellite mass would have disappeared in the infinite time effort for soft
landing!). The proposed approach, however, is easy to modify in order to yield a
finite time smooth landing. This is accomplished by modifying only the final
stages of the sliding maneuver.

2.6 Some practical aspects of smooth landing via sliding regimes In
order to avoid total exhaustion of residual fuel in the sliding mode controlled
descent, one may resort to one of two possible control actions at the final stage.

(1) Maintain a sliding mode strategy until certain prescribed height is
reached. At this point, switch the engines off and let the vehicle follow a free fall
descent trajectory, until reaching the minimum-time switching surface. From
this time on, exercise full thrusting until touchdown.

(2) Keep the sliding mode strategy until a small height is achieved and switch
the engines off to allow a free fall descent at 1g acceleration. Maximum height
for switch off (typically 1 [mt] for lunar missions) is chosen to guarantee
touchdown within an allowable downwards velocity (see Figs. 5(a) and 5(b)).

An important restriction to be incorporated on any landing maneuver
strategy, especially in manned missions, is the availability of residual fuel at
touchdown (so as to guarantee the ascent of the vehicle, later on). Typically a
25[%]-30[%] of the total mass of the landing spacecraft is assumed to be
constituted by fuel (Meditch, 1964). Since the ascending maneuver is only
accomplished with full thrusting, a significant percentage of the available mission
fuel must be used for orbital re-injection of the spacecraft. This is so, even
taking into account the fact that, usually, a “platform” and considerable payload
is left behind, at the landing site.
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(b) Combination of sliding mode and free fall
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Fig. 5.

The prespecified total mass of fuel needed for the ascent plus the satellite
payload and its dead mass are to be viewed as a restriction on the state space,
bounded by a plane of the form, say x3=m,. This plane evidently intersects the
sliding surface w=0, on a straight line parallel to the plane x;, x,. If a final
free-fall landing is permissible, the engine must be completely shut-off at the
moment the ideal sliding dynamics trajectory reaches this mass restriction line.
Hence, maximum allowable switch-off height must be guaranteed by that
moment. Alternatively, if a minimum-time path strategy is adopted for the final
stage, a different plane, parallel to x3=m,, given by xz3=m,+m, must be
considered as the switch-off line. Here, m, would represent the needed fuel for
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the fully thrusted minimum-time touchdown maneuver. The height at which the
switch off takes place is conditioned by the expendable fuel mass m,.

2.7 The sliding-mode-free-fall strategy  In a sliding-mode-free-fall strat-
egy, the height at which the engine is shut off is extremely important. Suppose
the allowable downwards velocity at touchdown is given by v,, then this value
determines, in turn, the maximum height &, at which the engines can be shut off.
This height is easily obtained by intersecting the parabola (representing the free
fall trajectory) which crosses the x, axis at x,=v,, with the sliding plane, and
then taking the only physically meaningful solution. Such maximum height is

given by
hy = —5’2—[1—]/1+—2€—1”“— ] (2.17)
1 g

The planes x, =0, x,=h, determine a line segment, on the sliding plane, on
which x3=my,. It is clear that the ideal sliding dynamics must reach this target
segment in order to guarantee: 1) that final downward velocity at landing is
smaller or equal than v, and 2) landing occurs within the total required payload
mass, m,. The set of initial states (x¥, x¥, x¥), defined on the sliding plane
w=0, from which this reaching condition can be ideally achieved, may be
obtained from the expressions (2.16) as the set of states (x7, 3, 13) satisfying
the restriction,

4

L L
> m"{[(_f%_) ]exP(—cl haoxl )} (2.18)

15 = —cyxf

When these requirements are enforced, the restriction (2.18), together with
(2.4) (expressed now as (x3/0)[g+ ¢1x5]1<a) must be satisfied by the initial
point on the sliding surface reached by the controlled, or uncontrolled, state
trajectory (see Fig. 6).

X1
Region of existence x2=v, (Maximum
of sliding mode / tOlllch_d own
3 \ velocity plane)
- — > .
Switch off «}\ \

Sliding \ target segment \ i o
plane \\:\

\

Set of initial sliding states \é x3= iy (Minimum
reaching target segment payload plane)

Fig. 6. Set of initial states, on the sliding surface, transferable to
minimum payload switch off line with prescribed final free fall
velocity at touchdown.
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2.8 A sliding-mode-minimum-time strategy In a sliding-mode-time-
optimal combination of controlled descent, the moment at which the engine
should be shut off is determined by the intersection of the sliding trajectory with
the switching line specified by the plane x3=m,+m, This instant, however,
determines in turn, the height at which the full thrust (minimum-time) descent
will occur later on, following a portion of the free fall descent trajectory.
Suppose m, is given. Then, according to (2.7), the height at which the fully
thrusted descent must start on the minimum-time surface is given by

2 on
ho = —(vo—0) ’(’;' = g_ :1"2' + 2 log[l——m::#p] (2.19)

with

Vo = —g—"c—i‘— - alog[l——n—l%l:]. (2.20)

Using expressions (2.19), (2.20) in the equations describing the free-fall
parabolic descent from the sliding surface to the minimum time switch surface,
one finds that the height x¥, on the sliding surface at which the switch off must

take place is given by
=4 11— ‘/1._.261 _ ¥ (2.21)
ct ho~ 3¢ '

with ko and v, given by (2.19) and (2.20).

2.9 A smoothly controlled alternative If fast switchings are not tech-
nically possible one may think of using, upon hitting of the sliding surface, a
nonlinear controller, which instruments the smooth equivalent control law
defined previously as

u*(x) = (x3/0)[g+c1x.]. (2.22)

This control action represents a smooth feedback policy of the amplitude
modulation type, producing the ideal sliding behavior previously discussed.
However, in comparison with the discontinuous feedback policy, its lack of
robustness results in no safety margin guarantee. We propose in this section a
different smooth control alternative which is also robust.

A well known and efficient way of avoiding high frequency switchings
inherent in the sliding mode policy (2.3) is represented by the use of a piecewise
smooth actuator of the high-gain saturation type (see Slotine, 1984). This
technique substitutes the ideal discontinuous policy (2.3) by the piece-wise
smooth policy,

a for w > %,
U= a+£2é(w—%) for |w| =< %, (2.23)
0 for w< .
ﬂ’
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where B is a constant defining the linear gain of the saturation-type actuator. For
a sufficiently large B, the linear portion of (2.23) exhibits high-gain properties
and thus performs an adequate averaging of the controller actions between the
full thrust and the shut off conditions. Thrust amplitude modulation is hence
assumed. The asymptotic stability properties of the controlled system (2.1)-
(2.23) toward the w=0 manifold are examined in the Appendix.

This possibility, aside from retaining the robust features of the sliding mode
control policy, conveniently smoothes the actuator action and the resulting state
trajectories in the vicinity of the surface w=0. (see Figs. 8(a)-8(e) in Example).

2.10 The effect of atmospheric resistance If the density of the planet
atmospheric gases is not entirely negligible, then the model (2.1) must be
slightly modified (see Arnol'd, 1988, p. 4),

4n _ 4 _ (X \z _ (O dxs _ _

where 7y is a positive quantity representing the “air” resistance. It is easy to
show in this case that for a free fall trajectory, the downwards velocity never
exceeds the quantity (mg/c)'’?, independently of the initial state of the falling
spacecraft.

The equivalent control corresponding to the sliding surface x,= — ¢, x, is now
represented by u*°(x)=(x3/0) [g+ c1x2~ (y/%3)x3]. According to Theorem A.2,
the region of existence of a sliding regime on k£7!(0) is thus represented by

Xy = —aix1, 0 < (x3/0)[g+ci1x—(y/23)25] < a, (2.25)

i.e., the set of states that must be reached on the sliding surface is quite more
restrictive than in the case where the atmospheric resistance was negligible.
Further details of this case are left to the interested reader.

2.11 A simulation example Simulations were performed for the model
(2.1) with the following parameters:

o = 200 [mt/sec], a = 50 [kg/sec],
g = 1.63 [m/sec?], ¢, = 1.2 [sec™!],

two cases of initial data were used,

ho= —50 [mt], vy, = 0 [mt/sec] (2.26)
and

ho= —5[mt], vy = 8 [mt/sec], (2.27)
corresponding to initial conditions below and above, the sliding surface, respec-

tively. Figures 7(a)-7(d) show the evolution of the controlled state variables
during the free fall and the sliding mode stages (i.e., from initial conditions
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(2.26)). A variable structure controller of the form (2.3) was used in obtaining
these simulations. Figures 8(a)-8(d) correspond to the state variables evolution
during the full thrust and sliding mode stages (i.e., from initial conditions
(2.27)). Figures 8(a) to 8(d) were obtained by using a high-gain actuator of the
form (2.23) with the value of 8 set equals to 50. The state-space performance of
the controlled vehicle, in this case, approximates that obtained with an ideal
switch of the form (2.3) but with the switching frequency, and inherent state
chattering, significantly reduced as depicted in the control trajectory of Fig.
8(e).
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3. Conclusions and Suggestions for Further Research

A non-optimal feedback control scheme of discontinuous nature has been
presented for the soft landing of a vertically controlled vehicle on the surface of a
planet. A sliding mode control approach was shown to allow ideal exponentially
controlled trajectories towards a soft landing condition. In order to avoid total
residual fuel exhaustion, the discontinuous control approach must be necessarily
combined with either a free fall policy or a free-fall-time-optimal strategy at the
final stages of the landing maneuver.

It was also shown that a sliding motion does not globally exist on the sliding
surface guaranteeing exponential descent. A detailed study was conducted on
the initial state restrictions from which reachability of the region of existence of
the sliding mode can be accomplished. Finally, some consideration was devoted
to the computations of the set of initial states on the sliding surface from which a
prespecified terminal velocity can be guaranteed in a free fall landing policy
executed from a small terminal height. This restriction was also combined with a
fixed terminal payload requirement. The set of initial states on the sliding
manifold, from which the ideal transfer can be accomplished, was also explicitly
computed.

Chattering avoidance can be accomplished by using a high-gain actuator in
place of the ideal switch in the feedback control strategy. This results in a
feedback scheme sharing the robustness of sliding mode control with reduced
bang-bang effort on the part of the actuator. A different but intimately related
approach to the problem here analyzed is constituted by a Pulse-Width-
Modulation feedback control strategy (See Sira-Ramirez, 1989 b).
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Appendix

A.1 The concept of relative degree and sliding regimes in nonlinear
systems A smooth (C*) single input single output system of the form,

9~ o) + g0
(A.1)
y = h(x)

is said to have local relative degree » (Byrnes and Isidori, 1984) at %9, if
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L,LE'h(x) = 0 for all x in a neighborhood of x°
and forallk =1, 2, ---, r—1 ¢, (A.2)
L,Li h(x%) = 0

where L,¢ stands for the directional or Lie derivative of the smooth scalar
function ¢ in the direction of the vector field X. System (A.1) is usually
addressed as the triple (f, g, k).

The state coordinate transformation z;=¢ (x)ALy (x), i=1,2,---,7 and
2,4j=9, H.(x), j=1,2,---,n—r places the system in normal form coordinates
whenever z=®(x)=coll¢,,¢,, -, ¢,] defines a local (or global) diffeomor-
phism around x°. For this, the coordinate functions ¢, .(x), 7=1,2,--- n—-r,
are chosen to be functionally independent among themselves and from the first »
coordinate functions. Let EAcollzy,22,7:+,2,] and ndcollz,+1,2,42, "1 24]-
The transformed system, defined in new coordinates z, and said to be in normal
form, is expressed as

dZ,’

—d_t'=zi+1v/ l=1v 2!”" r—l

92 _ [rh(7'(2)) + Lyl h(¢ (2))u |

i -f glf : (A.3)
d

_d'tl' = Q(E, nv u)

The dynamics associated with the evolution of the system, starting with
initial conditions such that y=0, and controlled by the smooth feedback law,

L,L7Th(¢7'(2)) ~ LgLF'h(x)

O 4 —— L @) Ljho)

is known as the zero dynamics. The zero dynamics is described from (A.3), by

% = ¢(0, 1, «°(0, 7)) 4 g,(n). (A.4)

Let h~1(0) denote the set, {xER": y=h(x)=0}. Then, a sliding regime is
said to exist locally on A71(0), if and only if there exists an open set of R”
containing 4#~'(0) where (See Utkin, 1978; Sira-Ramirez, 1988 b)

sl_i,r})l*LH,p(,)gh <0 and sli,r{)‘fl'f+u'(x>yh >0 (A.5)
with % (x) and - (x) which are fixed smooth feedback control laws defining the
switching policy triggered by the sign of y on each side of the manifold A72(0),

ie.,

ut(x) fory>0
u = (A.6)
u{x) fory<0

with ¥ (x)>u (x) locally.
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If a sliding mode exists, the state trajectories evolution remain, at least
locally, constrained to 271(0) and the state variables are algebraically related by
a single constraint. Ideally, if the motions were smoothly controlled to remain
locally restricted to h~'(0), they would be described by the ideal sliding
dynamics (Utkin, 1978) represented by the redundant set of differential equa-
tions,

L = 10 + 9w ()
uEQ(x) U th(x) (A7)
L, h(x)

i.e., #*9(x) is the smooth feedback control law that locally guarantees satisfac-
tion of the invariance conditions (Itkis, 1976): y=0 and dy/dt=L h(x)
+u"(x)L, h(x)=0. u"(x) is known as the equivalent control (Utkin, 1978).
Hence, the ideal sliding dynamics coincides with the zero dynamics of the triple
(f, g, h).

The following theorem assumes that the feedback control policies u™ (x),
u# (x) can be chosen at will, i.e., they are part of the sliding regime design
problem.

Theorem A.1. A sliding regime locally exists on A~1(0), if and only if the
system (f, g, h) has local relative degree equal to one.

Proof. Necessity is obvious, for suppose the system is not locally relative
degree one, then dy/dt=Lch(x)+uL h(x) is locally independent of u, i.e.,
locally L,h=0. Hence, switching from ™ (x) to %~ (x) in the vicinity of ()
does not change the sign of dy/dt and conditions (2.5) cannot be satisfied.
Suppose now that L,h#0 and let £(x) be an arbitrary local strictly positive
function. Then, defining

and u*(x) = _—E(zih Leh ,
one obtains a switching logic that locally defines a sliding regime on A71(0).

By subtracting, on y=0, the expressions in (A.5) one obtains that locally
L,h<0. This condition is known as the transversality condition (Sira-Ramirez,
1988 b).

From the definition of #*%(x) given in (A.7), one has that locally on A1(0),
ut(x)=—e(x)/Lgh+u"(x) and u (x)=e(x)/Lyh+u"(x) is a switching law
locally creating a sliding regime on A~1(0). It then follows that the inequality,
w (x)<u®¥(x)<u™ (x), is locally verified. On the other hand, assume that this
last inequality is known to be locally valid around A~1(0). Then, it follows that
u (x)<—Leh/Lh<u*(x), i.e., locally

th + u"(x)Lgh = Lf+u'(x)gh >0
and

th + u*(x)Lgh =] Lf+u*(x)gh > 0.
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It is clear then that there exists an open set containing a subset of A7'(0)
where conditions (A.5) are valid and a sliding regime locally exists on the zero
output manifold. We have thus proved the following theorem:

Theorem A.2. A sliding regime locally exists on 2~1(0), if and only if, locally
on h~1(0)

w(x) < u*x) < ut(x). (A.8)

Relation (2.8) actually allows the computation of the region of existence of a
sliding regime on A~1(0).

If a given system does not locally exhibit a relative degree equal to one, it is
still possible to create a sliding regime that asymptotically approaches the zero
output manifold y=0. Indeed, suppose (f, g, h) has relative degree »>1 and
consider the auxiliary output, defined by original coordinates as (see Isidori
(1987) for the original procedure related to local feedback stabilization of
nonlinear systems),

w = k(x) = cth(x) + coLeh(x) + -+ + ¢,.,LF2h(x) + LF'h(x). (A.9)

By definition of the relative degree of (f, g, h), it follows that
L,h(x)=L,L}‘1h(x)9&0. i.e., (f, g, k) has relative degree one. Therefore, a
sliding regime may be created on £ 1(0)4 {xER": w=k(x)=0} by use of an
appropriate variable structure control law.

In the normal form, coordinates (A.9) is expressed as

w(z) = k(x) = 12y + €225 + -+ + €12, T 2,. (A.10)

Under ideal sliding conditions, w=0, z,=—Z,;%!¢c;z;, and the corresponding
equivalent control is given by #*%(z)=—~L k(P 1(2))/L k(P (2)). The cor-
responding zero dynamics or ideal sliding dynamics is obtained as

dz; .
ez =12, 12

dzr—l _ — _’—1 .
| - (A.11)
dzt' = Lek(®7(2)) + Lk(D71(2))u™(2) = 0

id?—= 4,2), y=2z, w=0

It is easy to see that by appropriately choosing the constants ¢;
(i=1,2,---,7r—1), the ideal sliding dynamics can be made locally asymptotically
stable towards the manifold: z;=0 (i=1,2,---,r), with the poles of the linear
part of the approaching dynamics placed, entirely at will, in the left half of the
complex plane. Hence, while sliding takes place on £71(0), all components of the
vector col[z;,+,2,] can be made asymptotically go to zero (notice that z, is a
linear combination of 2z1,-++,2,_1) in the open region where the relative degrees
of (f, g, k) and (f, g, k) remain constant. In particular, z; goes asymptotically
to zero and hA~1(0) is locally reached.
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A.2 A high gain approach to sliding mode creation Here, we will show
that the state trajectories of the nonlinear system (A.1)-(2.23) locally asymp-
totically converge toward the w=0 manifold provided B is chosen sufficiently
large in (2.23) and a sliding regime is known to exist locally on w=0 for the
discontinuous controlled system (A.1)-(2.3). The results here constitute a
particularization of those found in Marino (1985). High gain controllers usually
represent a robust and practical substitute for a given variable structure control
strategy. The idea has been reported extensively in the Russian literature (see
Utkin, 1978 a; b, and references therein) and has also been brought to practical
use by Slotine (see Slotine, 1984) in recent times.

The following theorem establishes that the existence of a local sliding mode
on a given smooth manifold is a sufficient condition for the stabilization of the
system trajectories around such a surface by means of a high-gain controller.

Theorem A.3. Suppose system (A.1), (2.3) exhibits a local sliding regime on
the surface £7'(0)={xER": w=k(x)=0}. Then, there exists a high gain
controller of the form (2.23) with a sufficiently large but finite §, such that the
controlled trajectories locally asymptotically converge toward w=0.

Proof.  Suppose that the hypothesis of the theorem holds true. Then, from the
smoothness assumptions, one can always find an open neighborhood around
£71(0), where the sliding mode conditions (A.5) (with #* (x)=a and ¥~ (x)=0)
are valid. Suppose that points of this neighborhood can still be located at a
distance greater than a small number ¢ from w=0. Choose now f=1/¢in (2.23).
It should be evident from the construction just made from (A.5) and (2.23) that
outside the boundary layer defined by B, the controlled trajectories are directed
towards the manifold. Note that from the sliding mode existence assumption,
the transversality condition L,h <0 necessarily holds locally true. On the other
hand, within the boundary layer, the surface coordinate function w is governed
by

48 Lk + [a+aTﬁ(w—-ll7)]L,k(x)

= [L,k(x)+—%Lgk] + —"'Z—ﬂngk. (A.12)

It is evident that for a sufficiently high 8, the controlled surface coordinate
dynamics (A.12) exhibits a two-time scale separation property. Indeed, dividing
the above expression by § and letting f— « on sees that since Ly k<0, then
(aB/2)wL k=0 implies that w=0 is a slow manifold of the controlled system.
The corresponding fast subsystem described in the fast time scale 7= ftis given
by

—‘% = SwLgk. (A.13)

Consider the Lyapunov function V(w)=w?>0 around £~'(0), then it is easy
to see from (A.13) that dV(w)/dt=aw?L k<0 locally around k~'(0), i.e., the
fast system trajectories are locally asymptotically stable towards k~1(0) and the
controlled trajectories eventually adopt w=0 as an integral manifold. It then
follows from Tikhonov’s theorem (see Marino, 1985) that £71(0) is locally an
asymptotically stable manifold for the high gain controlled system (A.1)-(2.23).
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