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Sliding mode control of nonlinear first order
distributed parameter systems !

H. SIRA-RAMIREZ? AND J. RIVERO-MENDOZA?3

Abstract. A complete characterization of Distributed Sliding Modes is pre-
sented for dynamical systems described by controlled nonlinear first order partial
differential equations. The proposed approach is geometric in nature and uses the
notions of contract forms, canonical contact structures and characteristics defined
in the space of 1-jets of functions. The results generalize the characterization of
sliding modes in distributed controlled systems described by linear and quasi-linear
first order partial differential equations.

AMS Subject Classifications. 35B37, 93C10.

1. Introduction

The. theory of sliding regimes associated to variable structure controlled
systems of the lumped type has been extensively developed in the literature

" during the last 40 years. Early fundamental contributions must be credited

to researchers in the Soviet Union and Eastern Europe. For a comprehen-
sive treatise on the subject, in the context of finite-dimensional nonlinear
dynamical systems, the reader is referred to Emelyanov [1] and Utkin (2],
and for the linear case to a book by Itkis [3]. The theoretical background, in
its most general form, was provided by Filippov’s fundamental contributions,
collected now in a recently translated book [4]. Thorough surveys indicating
the main results and the many applications of this field to technical prob-
lems have been written by Utkin, [5]-[7], during the years. A tutorial article
of recommended reading is that by DeCarlo et al [8]. Generalizations for
finite dimensional nonlinear systems can be found in the works of Slotine
[9], Marino [10], and Sira-Ramirez [11], [12] and [21]. ’
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In this article a geometric approach is presented for the characterization
of sliding regimes, and their fundamental properties, in controlled dynami-
cal systems described by nonlinear first order partial differential equations
(NFOPDE). This article constitutes a generalization of the results presented
in Sira-Ramirez [13] for the case of distributed sliding mode control in first
order linear and quasi-linear partial differential equations. The proposed
approach constitutes a fundamental departure from the methods, based on
Banach spaces, used by Berger et al [14], Orlov and Utkin [15], and from
the approximate finite-dimensional method presented by Orlov and Utkin in
[16]. Tt also differs from the Lyapunov-based approach, presented by Utkin
in [17], where a particular one-dimensional second order distributed heat
process of the nonlinear parabolic type was treated.

A distributed sliding manifold may be portrayed as the smooth solu-
tion manifold of a desirable closed loop dynamical system represented by a
NFOPDE. The prolongation to the space of 1-jets of functions of the sliding
surface is shown to play a fundamental role in both the characterization of
the invariance properties of the ideal sliding dynamics and the determination
of the sliding mode existence conditions. A controlled NFOPDE is geomet-
rically characterized as a smooth manifold, parametrized by the feedback
control function, in the space of 1-jets of functions. The ideal sliding dy-
namics is obtained by impossing a local invariance condition on the Filippov
average of the controlled characteristic direction fields defined in such a jet
space, with respect to the prolongation of the sliding manifold. Local exis-
tence of a sliding regime on the given sliding surface is then characterized
in terms of the appropriate transversality of the corresponding characteris-
tic direction fields — associated to the extreme controlled systems —- with
respect to the tangent distribution to the sliding manifold representing the
solution of the ideally desirable dynamics. The results not only characterize
sliding regimes in general nonlinear first order distributed parameter systems
but they can also rederive known results for the linear and quasilinear dis-
tributed cases [13], as well as those related to the explicit and implicit finite
dimensional nonlinear cases [12]. The results can be extended to systems
described by a finite set of NFOPDE controlled by multiple inputs.

Section 2 of this article contains some background material on the ge-
ometrical aspects of nonlinear partial differential equations. Section 3 con-
tains the main results of the article. Section 4 is devoted to some conclusions
and suggestions for further research. Further background material related
to this article can be found in references [18], [19] and [20].
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2. Mathematical background

In this section we present some basic results about integration of
NFOPDE’s by means of characteristics. The reader is referred to Olver
[18] and Arnold [19], [20] for more thorough and enlightening details.

2.1. Elements of the geometric theory of nonlinear first order
partial differential equiations

The developments in this section assume some familiarity with contact
manifolds, differential forms, the space of jets of functions, symplectic struc-
tures and prolongations of functions, vector fields and 1-forms to jet spaces.
All the background definitions are provided in the above cited references. We
collect the fundamental results of the theory of NFOPDE slightly extending
the exposition in Arnold {20].

Consider a NFOPDE:

(1) % | F(v,z,t,p) = 0

ot

where x represents the vector of local spatial coordinate functions z;
(¢ =1,...,n) defining points on an open set in R", t denotes time. The func-
tion v is the unknown scalar function and p is an n dimensional vector with
components p;, representing the partial derivatives, dv/dz; (i = 1,...,n).
We also denote by ¢ the partial derivative dv/dt and by n the vector of
components (p,q). 7 is a smooth function of all its arguments.

All our considerations and results are of local character on a given open
set (manifold) N of R"*? described by the vector of local coordinate func-
tions (v,z,t), denoted by n. The projection of such an open set N onto
R™*1, along the direction of v, is labeled as M, and it is equipped with
local coordinates (z,t) which we simply denote by x. Also, we denote by
z the vector of local coordinates (v,z,t,p,q) = (1,7) in R*™3 which we
identify as the manifold of 1-jets of functions defined on M, labeled here
as J}Y(M,R). By TN and TJ*(M, R) we denote, respectively, the tangent
bundles of N and of J!(M, R).

Equation (1) can be interpreted as the expression of a 2n+2 dimensional
hypersurface in J}(M, R). We denote such a hypersurface by E and define
it as:

() E=¢70):={s eI (MR)|9(z) = ¢+ 7 (v,2,t,p) = O} .

The space J1(M, R) is equipped with the standard contact structure in-
duced by the nowhere zero canonical 1-form « : == dv— pdz — gdt = dv - ndx.
N :
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The contact structure in the space of 1-jets, J}(M, R), is represented by the
field of 2n+-2 dimensional planes which are called the contact planes (or con-
tact distribution), annihilating the 1-form a. A contact plane at the point z
in J7}(M, R) is denoted by I, and it is a subspace of the tangent space of
JY(M,R) at z, T,J!(M, R). Since the exterior derivative of a, denoted by
w := da = dz Adp -+ dt A dq, is a nondegenerate skew symmetric bilinear
form on the field of even dimensional contact planes II, the contact planes
are, indeed, symplectic vector spaces. The distribution in TJ"}(M, R) an-
nihilating the 1-form d¢ is constituted by the field of planes © tangent to
the hypersurface £ (tangent distribution). The plane tangent to E at z is
denoted by 6,.

DEFINITION 1. A surface E in J™!(M, R) is noncharacteristic if its
tangent planes © and the contact planes Il are transversal, i.e., if their direct
sum at each z spans the tangent space 7,J'(M, R).

It is generally assumed that the manifold E is noncharacteristic at all
points z under consideration of the space J!(M,R). The intersections of
the contact planes and tangent planes at points z in E are, again, a field of
planes, of dimension 2n+1, which are tangent to E. These are the character-
istic planes. It is not difficult to see how the symplectic structure associated
to the contact structure, naturally and uniquely, determines a jet-field of
directions belonging to the characteristic planes. Such a field of directions,
in turn, determines the characteristics of the nonlinear equation (1) as de-
scribed below.

Consider the 2-form w, obtained by exterior differentiation of the contact
l-form a. Since the 1-form d¢ is not identically zero at z, d¢ acts on
vectors belonging to Il as a nonzero linear form. Notice that II, is an
even dimensional vector space, while w is a nondegenerate skew-symmetric
bilinear form on IT,. Hence, I1, is actually a symplectic vector space. Every
symplectic vector space is known to be isomorphic to its dual space. Hence,
one can identify 1-forms (covectors) with vectors of II,. We proceed to
identify, by the above discussion, a nonzero vector ¢ of II, with the nonzero
1-form d¢, by imposing the equality d¢(-) = w(&,:). The vector £, will
be known as the jet-characteristic vector of E at the point z. The jet-
characteristic vector £ belongs to the characteristic distribution 1N © and
it is skew—orthogonal to itself d¢(&) = w(§, ) = 0. This vector, however, is
nonuniquely defined. The nonuniqueness of £ arises from the fact that one
may take any vector u = B(z)¢ in the span of £, and still obtain the same
previously described identification with the 1-form d¢. Indeed, let d¢(-) =
w(p,+) and then dg(p) = B%(z)w(E, €) = 0, and p is also characteristic. The
above procedure does, however, uniquely determine, at each point 2, the
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jet-characteristic line or, jet-characteristic direction, containing all vectors
that are in the span of £, The n + 1-dimensional integral curves of the jet—
characteristic directions, contained in F, are the jet-characteristics of the
partial differential equation.
One can explicitly compute the set of ordinary first order differential
equations generating the jet—characteristics for the equation (1) as follows:
Consider a nonzero vector

0 7} 2 i} )
=V-—- S —— —_. —-
$=Vau T X5, T T3+ P35, T 93,
belonging to 6., the tangent plane to £ in 7,J!(M, R). For such a vector
we have
(3) dd(s) = ¢V + ¢z X+ 6T + P +Q =0.

The vector ¢ lies in the contact distribution IT, if it belongs to the null space
of the 1-form ¢, i.e., a(¢) = V — pX — ¢T° = 0. The vector ¢ is then,
necessarily, of the form

o a 0 ] 0
g_(pX+qT)5v-+X5£+T5t+P5;;+Q;9_q

The vector ¢ belongs to the characteristic plane II, N 6, if and only if
(4) [$op + $2] X + [$uq + $:] T+ $pP +Q =0.

The jet~characteristic vector ¢ has components (v= 7 X, z, l,b, q) These
components are determined from the condition that the skew scalar product
of £ with all vectors of the form

2} 5} 0 0 2}
(pX+qT)“a—v'+X'51'+T—a—t+P5;+Qgé,

is identically zero. Evaluating the 2—form da = dx Adn on the pair of vectors

(Pi+q)£-+i~a-+—a—+b—§-+d§ ‘and ¢
v dr Ot dp dq ’

one readily obtains, that
(5) ~PX-qT+zP+Q=0.

Consequently, letting the coefficients of X, T, P in (4) and (5) be identical

and using v= 7 X= p = +q , one obtains an expression for the components
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of the jet—characteristic vector yield £ as follows

v = P¢p+q2p7v+q,

(6) . gz = ¢p: P t=¢q=1’
i’ = _¢up_¢'z: _fvp’“}rz’
é = —¢uq— ¢ = _?’vq—ft’

or briefly, in terms of the local coordinates z of J!(M, R)
(7 2= £(2).

DEFINITION 2. Let 7 be an n-dimensional submanifold of M and let-
@ : v — R be a smooth function. The initial manifold G defined in N, is
constituted by the set {(v,z,t)|v = p(z,t), for (z,t) € v}. The pair (p,7)
is referred to as the:Cauchy data. The initial jet-manifold T' constructed in
JY(M, R) on the basis of the Cauchy data is the set consisting of all 1-jets
of functions on M satisfying the following requirements:

1) the base point x of the jet (n,) lies on v,

2) the value of the function v at the point x is equal to ¢,

3) the value of the total differential of the function v at x € 7 is such
that its restriction to the tangent planes (tangent distribution) to 7 is equal
to the total differential of the initial condition ¢ evaluated on such planes,

4) the jet z = (n,7) is a point of J!(M, R) belonging to E.

In other words, an initial condition for the equation ¢ = 0 is an assign-
ment of a particular value ¢ to the unknown function v on the points of
an n—dimensional hypersurface v defined in the n + 1-dimensional space of
coordinates x = (z,t).

DEFINITION 3. A point of the initial jeet-manifold T is said to be
noncharacteristic for the system (1) if the projection of the jet~characteristic
direction at this point onto M is transversal to v. It can be shown [20, pp. 82]
that an explicit condition, over the initial data (4, ¢) and the function ¢, for
which an initial point 20 = (n°,7°) = (+°,2°,%,p%,¢°) is noncharacteristic,
with respect to the equation ¢ = 0, is that the n + 1-dimensional vector
#x(2°) = [%, (n°,p°) , 1] is not tangent to ~.

_ For a given noncharacteristic point 20 of the initial jet-manifold I' in

JY(M, R) there exists, defined in some open neighbourhood U of x° =
(2°,1°), a locally unique solution v to the equation ¢ = 0. This means that
any two solutions of (1), which are made to satisfy the same noncharacteris-
tic initial condition v|yay = @luny, v(2°,10) = °, dv(2°,t%) = (p°, ¢°) = =°,
necessarily coincide over some open subset of U.
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DEFINITION 4. The 1-graph of a function f : M — R of n+-1 variables
is the submanifold constituted by 1-jets of f at all points of M, i.e., it is an
n + 1-dimensional surface in a 2n + 3-dimensional space.

The solution of equation (7) generates a one-parameter group of diffeo-
morphic transformations, on the subset E of the jet space J}(M, R), for
which the field of contact planes Il remains invariant. From each nonchar-
acteristic point of the initial manifold I' in J1(M, R) one locally obtains a
Jet-characteristic defined as the integral curve of the vector field ¢. The
solutions of equation (1) are constituted by those functions on M whose
1-graphs coincide with jet-characteristics on E. To find such a solution,
one solves the set of 2n + 3 first order ordinary differential equations (7)
for the jet~characteristics of (1) on E, and performs a number of algebraic
operations (see Arnold [19, pp. 370]) to obtain the graph of the mapping
v = v(z,t), p = Ov(z,t)/dz, ¢ = dv(z,t)/8t = ~F(v(,t),z,t,p(z,t)) in
JY(M,R). The function v(z,t) is a solution of (1) with initial condition
v|ly = . We call a characteristic for (1) the functions defined on M which
correspond to the jet-characteristic of (1) in E. In other words, a function
f defined on M with values in N is a characteristic of (1) if its prolonga-
tion to J'(M, R) is a jet-characteristic of (1). The field of directions in TN
whose associated flow coincides locally with the characteristics of (1) will be
termed the characteristic direction of (1). We specify a characteristic vector
field x(n) defined in T'N, as a vector field whose span is the characteristic
direction of (1).

Notice that since £(z) is a prolongation of k(n) to TJ1(M, R), the first
n + 2 components of £(z) necessarily coincide with those of x. According to
the prolongation formula for vector fields (Olver [18, pp. 108-111]), the last
n+1 components of {(2) are therefore discarded when an explicit expression
for k(n) is sought once £ is explicitly known as £(n), i.e., with its components
written as explicit functions of the local coordinates n = (v, z,t) of N.

DEFINITION 5. A given n + 1 dimensional manifold $ in N charac-
terized by the smooth graph of the function v = s(z,t) in N is said to be
locally invariant with respect to the dynamical system (1) if for some non-
characteristic set of initial data (y,7), whose graph lies on S, the solution
of (1) locally coincides with S.

An equivalent definition of invariance can be given in terms of the field of
jet—characteristic directions or, alternatively, in terms of the characteristic
vector field associated to (1).

DEFINITION 6.  An n + l-dimensional manifold S in N is locally
invariant with respect to the system (1) if the jet-—characteristics of (1), i.e.,
the integral curves of £(z) in E, locally belong to the prolongation S{1) of
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S to J1(M, R). Alternatively, S is locally invariant with respect to (1) if
the characteristic vector field x(n) in TN locally belongs to the distribution
tangent to S.

3. Distributed sliding mode characterization in variable structure
controlled NFOPDE

In this section we characterize sliding regimes in feedback controlled dis-
tributed systems described by NFOPDE. Restrictions to the case of dis-
tributed sliding regimes in controlled systems described by first order quasi-
linear partial differential equations {13}, and to the case of ordinary differ-
ential equations (ODE) [2], [11], [12], [21], can easily be accomplished by
direct particularization of the adopted framework.

3.1. Distributed variable structure controlled systems discribed
by NFOPDE and their associated sliding regimes

Consider a dynamical distributed system described by a controlled
NFOPDE B :
v

(8) 5t-+<1>(v,x,t,u,p):0,

(9) y = h(v,z,1),

where y is the scalar-valued smooth output function defined on the open set
N of R"*t2, z represents the vector of local spatial coordinate functions z;
(f = 1,...,n), t denotes time, while u = u(v,z,t) is a distributed smooth
time-varying feedback control law taking values in R. The function v is
regarded as the distributed "state” of the controlled system. p is an n-
dimensional vector with components p; representing the partial derivatives,
dv/dz; (i = 1,...,n). We will be using ¢ to denote dv/dt. ® and h are
smooth functions of all their arguments.

Available to the controller is a distributed variable structure feedback
switching law '

(10) u= {ui(v,z,t) fory >0
u”(v,z,t) fory<O
with u* (v, z,t) > v~ (v, z,t) locally on N.

The condition y = 0 is assumed to locally define an isolated smooth
manifold solution v == s(z,t) in N, i.e., h(s(z,t),z,t) = 0. The graph of v is
assumed to be a smooth time-varying surface with locally nonzero gradient
except possibly on a set of measure zero. The zero level set of h is addressed
as the sliding manifold, or the sliding surface, and is locally defined as

(1) S={n=(v,zt)eNc R v=s(zt)}



Sliding mode control 131

_ The manifold S can be prolonged (See Olver [18, p. 97-119]) to the space
of 1-jets of functions J}(M, R) defined on M. For this, we simply complete
the set of coordinate values at each point of S with those of the partial
derivatives s;(z,t), s¢(z,t) at the point of S. In this manner we obtain the
1-graph of the sliding surface in J*(M, R) as

(12) SW(2) = {z€ J{M,R) | z = (s(z,1),2,¢, s.(z,t), se(z,1))}.

Alternatively to the above definition, one may characterize a sliding sur-
face S as a solution of an unforced NFOPDE regarded as a destrable dis-
tributed dynamics. Associated to such a desirable dynamics there is defined
an arbitrary set of known initial data (v°,©?) such that the sliding manifold
v = s(z,t) 1s locally a solution for the corresponding Cauchy problem, i.e.,
we may assume that the NFOPDE

(13) v/t + Fi(v,z,t,p) = O

v|,0

§
A

is such that ¢%(z,t)|,0 = s(z,t)|,0 and
se(z,t) + F4(s(z,t),z,t, sz(z,t)) =0.

Hence, within such a characterization of the sliding surface S, the pro-
longation S()(z) in (12) is also expressed as

(14) SM(z) = {2 € J{(M, R) | g+ 7%(v, z,t,p) = 0}

All developments below can be reproduced with ease for this alterna-
tive, though implicit, characterization of the sliding manifold. However, we
only deal with the more natural characterization of a sliding surface given
explicitly by an expression of the form (11), from which the corresponding
prolongation (12) can be computed.

For an unspecified control u, system (8) dv/dt + ®(v,z,t,u,p) =
g+¢(v,z,t,u,p) = 0 can be interpreted as a hypersurface E*, defined on the
manifold J}(M, R), parametrized by the control function u. If u = u(v, z,t)
is a fixed smooth distributed feedback control function, then the closed loop
system (1) dv/dt + (v, z,t,u(v, z,t),p) = ¢+ F(v,z,¢t,p) = O corresponds
to a hypersurface denoted by E in the manifold J!(M, R). In order to
introduce a suitable parametrization of the hypersurfaces representing the
variable structure controlled system (8), (9) we rewrite the controlled system
(8), (9) in an equivalent form using a distributed switch position function v,
taking values in the discrete set {0,1} and defined on each point of coor-
dinates 7 = (v,z,t), according to the value of the scalar output function
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y = h(v,z,t). The switch function » acts then as a distributed control
parameter

%': + U@(V,I,t;u+(vxz:t):p) + (1 - V)‘I)(v, z,t,u (v: x,t),p) =0

with

Y = 1 fory>0

T 10 fory<O
or,
a .
-é—: + ®(v, z,t,u” (v,z,t),p)+
+v[®(v, z,t,ut (v, 2,t),p) — B(v,2,t,u” (v, 2,t),p)] = 0.
We will simply write the obtained switching system, with the obvious

indentifications, as

dv

(15) 3 + F(v,z,t,p) + vG(v,z,t,p) =0;
y = h(v,z,1t)
_ {1 fory>0,

(16) v_{O fory < 0.

Thus, corresponding to the controlled system (15)—(16) one has two hy-
persurfaces Et and E~ respectively, defined in J'(M, R) as

(17) Et = {zEJI(M,R)|q+F(v,z,t,p)+G(v,z,t,p)::0}
(18) E~ = {ze€JYM,R)|q+ F(v,z,t,p) =0}.

The set of corresponding controlled jet—characteristics in E¥ and E~
are, according to the notation of Section (2.1), generated by the vector field
£1(2) and ¢ (z), which we notationally unify under the parametrized vec-
tor field £(z,v), with v € {0,1}. We thus denote by £(z,1) the vector
field £*(z) and by £(z,0) the vector field £7(2), ie., &(2,V) = vE*(2)+
(1 — v)é=(2). The components of the vector fields £*(2), £ (2) are de-
scribed, respectively, by the right hand sides of the following set of ordinary
differential equations

v=p(Fp +Gp) +9q v=pFy +q
z= F,+ G, a=F,

(19) t=1 ' t=1
p= “(Fu+Gu)P_ (Fz+Gz) Pp=—Fyp— F;

q= ""(Fu +Gu)q = (Ft + Gg) q= —-qu — F.‘t .
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or, briefly, in the local coordinates z of J}(M, R) by

(20) i=et(s), =6 (2).

It follows, from (19), that the controlled vector field é(z,v), v € {0,1},
is described by

v = p(Fp+vGy)+yg
T = F, +vG,
(21) ot =1
P = —(Fy+vGy)p— (Fs+vGy)
| = —(F,+vG,)q~ (Fi+vGy),

ie.,

(22) i= E(2,v) = V€T (1) + (1 - V)€ (2) =
= ) +v[E4(2) - €(2)] -

The contact distribution II intersects the field of planes tangent to E*
and E~ and creates on such tangent distributions ©* and ©~ fields of
2n + 1-dimensional planes called the eztreme characteristic planes. In the
manner indicated in Section 2, such fields of characteristic planes uniquely
determine the corresponding fields of jet—characteristic directions specified
in TJY(M, R) by the vector fields £¥(z) and €~ (z). There exist integral
submanifolds (curves) of these fields of directions in E* and E~ which cor-
respond to 1-graphs of functions on M. Such submanifolds will be termed
in ET and E~ the ezxtreme controlled jet-characteristics.

The extreme jet—characteristics in J1(M, R) uniquely define eztreme
characteristics in the open set N by simple projection. These are obtained
by identification of integral submanifolds of the jet-characteristics with 1-
graphs of functions defined on M which constitute solutions of the corre-
sponding NFOPDE. Associated to such characteristics one defines eztreme
characteristic vector fields k*(n) and k™ (n) in TN whose prolongations
to TJ1(M, R) (See Olver [18, p. 104]) coincide with the jet-characteristic
vector fields £€¥(z) and £ (z) respectively. It is evident that the vector
fields k*(n) and x™(n) defined in T'N are uniquely determined. It is easy
to see that the parametrization previously adopted for the extreme jet-
characteristic fields £*(z) and €7 (2) in terms of the switching control func-
tion v, denoted as £(z, v), is trivially inherited by the corresponding extreme
characteristic vector fields k*(n) and «7(n) (the argument being that the
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projection from TJ(m, R) to T'N does not destroy the parametrization since
such an operation simply amounts to deleting the prolongation components
in £1(2) and £7(2)). In correspondence with such an inherited parametriza-
tion, we also denote by x(n,1) the vector field k*(n) and by x(n,0) the
vector field k= (n). One trivially has x(n,v) := vkt (n) + (1 - v)x " (n). It
is easy to see from the prolongation formula for vector fields (Olver [18, p.
104]) that, conversely, such a parametrization is preserved, via prolongation,
in the controlled jet—characteristic vector fields, i.e., denoting by ”Pr x” the
prolongation of the vector field Kk we have '

Pr k{n,v) = Pr [vw*(n) + (1 - v)x™ (n)] =
=vPret(n)+(1-v)Pre(n) =
= VEH () + (1= V)E () = E(5,0).

DEFINITION 7. A distributed sliding regime is said to locally exist
on an open set N (= N N S) of the sliding manifold S if the total time
derivative of the output function of the controlled system (15)-(16) satisfies

dy

: dy .
23 st = i
(23) vhmo ] <0 and yhmo A >0

THEOREM 1. Given Cauchy data (p,7) defining an initial subman-
ifold § of noncharacteristic points in N. There locally ezists a distributed
sliding regime for the solutions of system (15), (16) on an open set N of S if
and only if the extreme characteristics (or phase flows corresponding to the
extreme controlled characteristic direction fields k*(n), k™ (n)) whick arise
from the initial submanifold G exhibit such a local sliding regime on N, in
correspondence with the distributed control policy (16).

Proof. Suppose a distributed sliding mode locally exists for (15), (16)
on an open set N of S. Then the total iime derivatives of y computed
on any point n of an open n + 2 dimensional negihbourhood of § with
nonempty intersection with N satisfy conditions (23) on the regions y < 0
and y > O respectively. The total time derivative at any point n in N can be
computed in terms of the directional derivative of the scalar function h along
the controlled characteristic direction fields k™ (n), (n). The directional
derivative depends on the location of the point n with respect to the sliding
surface S and, hence, it is given by
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fory>0
dy Ohdv Ohdz Oh
._':__--—_...*—_____-_l___.
dt Jdvdt OJzdt Ot
oh
= 3, (1) = Lerh = Lymph < 0.
n
fory<0

dt  dvdt  dzdt 8t o W7

== L&_(n)h = LK,(?‘),O)h > O

Hence the flows corresponding to the characteristic vector fields x*(n) and
'k~ () satisfy the conditions for the existence of a sliding regime on S (See
[12]).

Sufficiency is easily obtained by assuming that a sliding regime locally
exists for the flows corresponding to the extreme controlled characteristic
direction fields x*(n) and £~ (n), about an open set N of the sliding manifold
y = 0, while hypothesizing that a distributed sliding mode does not ezist on
such a set. By reversing the above arguments, a contradiction is readily
established.

. Remark. Existence of local distributed sliding regimes for (15)-(16) on
open subsets N of the sliding manifold S are completely characterized in
terms of the existence of local sliding regimes — on the same sliding manifold
S — for the (n + 2)-dimensional time-varying dynamical system generating
the control parametrized characteristics of (15) in N

v (n) + (1= v)x~ () =
= k7 (n)+ vt (n)- £« (n)]

(24) B kln,v)

y = h(n)
with v given by (16), according to the sign of y, i.e.,

V:{l fory>0,

(25) 0 fory<O.

We refer to (24)-(25) as the controlled characteristic system.

The problem of characterizing distributed sliding regimes in controlled
~ dynamical systems described by NFOPDE is thus reduced to the problem
of characterizing sliding regimes for an associated nonlinear dynamical sys-
tem described by a finite set of discontinuously controlled ordinary differen-
tial equations representing the controlled characteristic system. All known
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results for the description of sliding motions in finite dimensional nonlin-
ear controlled dynamical systems thus become immediately available for the
above formulated distributed control problem. The following theorems char-
acterize the existence of distributed sliding motions for (15)—(16) in terms of
the associated controlled characteristic system (24)-(25). Some additional
results can also be found in Sira-Ramirez [11] and [21].

THEOREM 2. Let L.h denote the directional (Lie) derivative of the
scalar function h with respect to the vector field k. A distributed sliding
regime locally ezists on an open set N of S for the distributed system (15),
(16) only if the extreme characteristic vector fields k*(n), k™ (n), associated
to the system (24)-(25), satisfy, on the open set N , the following distributed
transversality condition

(26) L[K+(,,)_,¢-(n)]h <0.

Proof. Let a distributed sliding regime exist on an open set N of S,
then, according to Theorem (1) one has that L.+(h < 0 and L.-(,)h >0
on any point n of S. Then Ln+(n)h = Ln—(n)h = L[R"'(ﬂ)—ﬂ“('l)]h < 0. O

3.2. Characterization of the distributed ideal sliding dynamics
and the distributed equivalent control

In this section a characterization is presented for the Distributed Ideal
Sliding Dynamics and the Distributed Equivalent Control (Utkin [2]). Intu-
itively, under ideal distributed sliding mode conditions, the closed loop sys-
tem solution must locally adopt the zero output level set S as a local solution
manifold of the resulting controlled partial differential equation, provided the
(noncharacteristic) initial Cauchy data is specified precisely on the sliding
manifold S. The characteristics of the ideal sliding dynamics must then be
invariant with respect to the sliding manifold. The smooth distributed feed-
back control law responsible for the idealized controlled response is known as
the Distributed Equivalent Control and it formally replaces the distributed
switch position function v in the system equation (24). Such a smooth dis-
tributed feedback control law is here denoted by v29 (v, z,t) or vE9(n).

DEFINITION 8. Consider the n 4+ 1-dimensional distribution in TN,
tangent to the sliding manifold S. Any smooth vector field x(n), locally be-
longing to such a distribution, annihilates the 1-form dh, i.e., (dh,&(n)) = 0.
We denote such a distribution by Ker dh and define it as follows:

Ker dh = {k(n) € TN|(dh, k(1)) =0} .
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The following proposition is just a restatement, in simple terms of the
annihilating distribution of a 1-forms, of an invariance criterion for partial
differential equations appearing, in terms of symmetry groups and infinitesi-
mal generators, in Olver {18, pp. 103, Theorem 2.27 and pp. 165, Theorems
2.71 and 2.72].

PROPOSITION 1. The prolongation £(z) of a vector field x(n) to
TJY M, R) (denoted by € = Pr k), belongs to the distribution tangent to
S in TJYM, R) if and only if x(n) € Ker dh.

Hence, there exists a 1-form w in the cotangent space T x J}(M, R) such
that (w, £(z)) = 0. We define such a 1-form w as the prolongation of the
1-form dh and denote it by ”Pr dh”. In other words, Proposition (1) states
that (dh,x) = 0 if and only if (Pr dh,Pr &) = 0.

The next proposition states that the smoothly controlled jet-character-
istics, generated by the controlled vector field £(z,v) in TJ}(M, R), locally
adopt the prolongation S(1) of the sliding manifold S as their integral man-
ifold if and only if the corresponding characteristics, generated by the con-
trolled vector field x(n,v) in TN, locally adopt S as their integral manifold.
Hence the invariance of the controlled jet-characteristics with respect to S(1)
is equivalent to the invariance of the controlled characteristics with respect

to S.

PROPOSITION 2. Consider the prolongation S() of S to JY(M,R).
The controlled jet-characteristic direction field £(z,v) = vEY(z) +
(1 — v)é(2) belongs, for some smooth control function v(n), to the dis-
tribution in TJY(M, R) tangent to S(V) if and only if the smoothly controlled
characteristic direction field k(n,v) = vet(z) + (1 — v)x™(2), whose pro-
longation to TJY(M, R) coincides with &(z,v), belongs to the distribution
tangent to S, i.e., to the annthilating distribution of the 1-form dh, here
denoted by Ker dh.

Proof. Let k(n,v) € Ker dh, locally in N for some smooth function
v(n). Then {dh, x(n,v)) = O locally in N. Hence, by the result of Propo-
sition (1) above, x(n,v) € Ker dh if and only if (Pr dh, Pr x(n,v)) =
(Pr dh, £(z,v)) =0, i.e., if and only if £(z,v) € Ker Pr dh. )

The Distributed Ideal Sliding Dynamics is thus obtained by imposing an
invariance condition, with respect to the manifold S, on the ideally smooth
controlled characteristic flows arising from the controlled characteristic sys-
tem (24)-(25). This amounts to constraining the corresponding smoothly
controlled characteristic vector field x(n,v) = k™ (1) + v(n) [t (n) — £~ ()]
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to the distribution Ker dh, tangent to the given sliding surface S. Thus,
(dh, £~ (n) +vE(n) [x*(n) ~ &~ (n)]),

Le-(my+vmQ(n) [+ (n)-n=(m)}h = O
it follows that the equivalent control is uniquely given by

__ ldhkT(m)
(dh, [x*(n) — &= (n)])

(27) vE9(n) =
= Lk Lt () -xm (-

Hence, by virtue of (26), the distributed equivalent control ¥£% () is locally
well defined on the open set N of S where a distributed sliding regime exists.
The following theorem gives s sufficient condition for the existence of a local
distributed sliding regime in terms of the computable distributed equivalent
control function 159 (n). ‘

THEOREM 3. A local distributed sliding regime ezists on an open set
N of S if and only if the distributed equivalent control, vE9(n), satisfies

(28) 0<vE(n) < 1.

Proof. From (27), it readily follows that if (28) holds valid on an open
set N of the sliding manifold S, then

__ {dh, kT(n))

(dh, [x*(n) — &~ (n)])
By virtue of the transversality condition (26) and the local smoothness as-
sumption on the involved vector fields k*(n), k™ (n), and the function k()
the left hand side inequality in (29) yields (dh, x~(n)) > 0, for points 5 lo-
cated in N and located on any arbitrarily small neighbourhood of X in R"*2,
Similarly, the right hand side inequality in (29) yields (dh, % (n)) < 0. The
result in Theorem 1 completes the sufficiency part of the proof.

To prove necessity, suppose that a distributed sliding regime locally ex-
ists on the open subset N of the manifold S. Then, from Theorem 2 the
transversality condition Lix+(n)—x~(n)h < O holds locally valid. Also, for
any n in N, the relations Lo+(;h <0, and L-(,)h > 0, are locally true. It
follows that there exist strictly positive smooth function a(n) and b(n) such
that locally in N, :

a(n) L+ (nyh + (1) Le~(n)h =
= La(n)x+ (m)+b(mx=(mh = Lia(m)+5(m)e=(n) +a(n)lxt (n-x=(m) =
= [a(n) + 5(m)] L= (m)+(atn)la(m) +o(m)x+ ()~~~ (m)] P = O+

(29) 0< <1.
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From the uniqueness of the distributed equivalent control it follows that
vEQ(n) = a(n)/la(n) + b(n)]. Hence 0 < vF9(h) < 1, as claimed. O

A more explicit characterization of ideal distributed sliding motions and
the corresponding distributed equivalent control is still possible in terms of
the functions F, G and h, defining the controlled NFOPDE in (15). In-
deed, the components of the controlled characteristic field k(n,v), can be
obtained by projection of those of the controlled jet—characteristic direction
vector £(z,v) given in (21). However, recall that such projected components
are supposed to be ultimately explicit functions of v,z,t, i.e., of n. The
components of k(n,v) have the form

v = p(Fp+vGp)-g
(30) : ¢ = F,+1G,
t = 1

with v € {0, 1} determining the vector fields k™ (n) and x*(n). The dis-
tributed transversality condition (26) is readily interpreted as

0
]GP:2-—hGP<0

dzx

(31) [ah dh

ERLA P
and the equivalent control is just given by

L,.-(\h
VEQp) = —— ()"
Ligt (n)-x~(m)1h

(teFt o)+ eF+ 3] [2
(32) T et T T arg o
6z P oz P

The ideal sliding dynamics is obtained by formally replacing the smooth
distributed control v£9(n), from (32), into the system equation (15). The
initial Cauchy data for such an ideal dynamics is to be specified as a non-
characteristic (but otherwise arbitrary) n-dimensional submanifold § of the
sliding surface S.

4. Conclusions and suggestions for further research

The theory of Variable Structure Systems undergoing local sliding mo-
tions has been extended to distributed controlled systems described by first
order nonlinear PDE’s. The key property of such a class of dynamical sys-
tems is the possibility of relating properties of their controlled solutions to
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those of a controlled system described by a finite set of ordinary differen-
tial equations known as the characteristic equations. This property was
used in this article to establish conditions for the local existence of a dis-
tributed sliding regime on a given sliding manifold for nonlinear first order
distributed dynamical systems solved with respect to the time derivative. A
distributed sliding mode locally exists for the infinite dimensional dynamical
system whenever the corresponding finite dimensional controlled character-
istic system exhibits such kind of motions on the prescribed sliding manifold.
The given sliding manifold also qualifies as a local integral manifold for the
flows of a smoothly controlled (equivalent) characteristic direction field. The
equivalent characteristic direction field is the Filippov average direction field
[4] also prescribed by the Equivalent Control Method [2] on the finite dimen-
sional discontinuously controlled characteristic system.

The case of distributed sliding regimes in dynamical systems described
by higher order nonlinear partial differential equations, of the implicit or
explicit type, can be adequately treated from a Lie group theoretic view-
point by using notions of symmetry groups, invariance, and prolongations to
appropriate jet spaces, of associated functions and infinitesimal generators
of such symmetry groups. This avenue is left as a topic for further research.
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