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Abstract. In this article, a general synthesis method is proposed for the design of discontinuous feedback strategies
leading o asymptotically stabilizing sliding regimes. The method is applicable to the class of nonlinear dynamical
systems possessing constant equilibrium points. A family of nonlinear stabilizing sliding manifolds, parametrized
by generic desired equilibrium point, is specified on the basis of the extended linearization approach. Some ex-
amples including simulations are presented for illustrative purposes.

1. Introduction

In this article, a new method is proposed for the synthesis of stabilizing sliding modes
(Utkin [1]) in nonlinear controlled dynamical systems. The nonlinear sliding-surface design
method is based, entirely, on the extended linearization approach for nonlinear systems,
developed by Rugh and his co-workers [2-5]. We propose to specify a nonlinear sliding-
mode controller by first resorting to parametrized linearization of the given nonlinear system
about a general constant equilibrium point. Using well-known results (Utkin [1}; Itkis [6]),
a standard stabilizing sliding-hyperplane design is then carried out on the basis of the
parametrized family of linear systems, possibly transformed to controllable canonical form.
The ideal sliding dynamics, corresponding to the linear design, is purposefully characterized
by a set of stable eigenvalues that are independent of the constant operating point. A suitable
extension of the sliding-hyperplane design yields a nonlinear switching manifold that is
tangent to the prescribed hyperplane. The designed manifold contains the equilibrium point
and is parametrizable in terms of the nominal operating conditions. Moreover, the cor-
responding ideal sliding dynamics can always be made locally linear (possibly, modulo
a suitable local diffeomorphic state-coordinate transformation derivable from the linear-
ized system). The nonlinear sliding manifold is nonuniquely obtained by standard
“unlinearization” schemes carried out by direct integration of the synthesized sliding
hyperplane. The nonlinear sliding-mode switching logic is synthesized on the basis of the
obtained nonlinear sliding-surface coordinate function and the corresponding nonlinear
equivalent control.

An important property of the proposed sliding-mode controller, aside from those already
mentioned, lies in the fact that if a sudden change of the nominal operating conditions
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takes place, the control scheme exhibits self-scheduling properties by means of which a
sliding regime is automatically formed that stabilizes the system trajectories to the new
equilibrium point. This last property is clearly inherited from the well-known merits of
the extended linearization technique, and it makes the “scheduling” process of the sliding
manifold and of the switching “‘gains” totally unnecessary.

In this article, only single-input nonlinear systems are treated. The multi-input case will
be presented elsewhere. Section 2 of this article presents a general procedure for synthesizing
stable nonlinear sliding manifolds for single-input nonlinear systems via extended lineariza-
tion. Section 3 presents several illustrative examples—some of them of a physical nature—
accompanied by simulation experiments. The conclusions and suggestions for further
research are given in section 4.

2. A synthesis procedure for sliding mode controllers via extended linearization
2.1. Problem formulation

Consider the n-dimensional nonlinear dynamical system:

dx®) = fe(r), u()) 1)
dt

where f(*,;) : R* X R = R" is a continuously differentiable function of its arguments.
The controlled system (1) is assumed to have a continuous family of constant state-equilibrium
points, X(U), corresponding to nonzero constant inputs, u = U. In other words, f(X(U),
U) = 0. The pair [df/dx (X(U), U), af/ou(X(U), U)] is assumed to be controllable, where
af/3x(X(U), U) € R™" and oaf/3u(X(U), U) € R™" stand for the Jacobian matrices of
f(x, u) with respect to x and u, respectively.

It is desired to maintain locally, in a stable fashion, the trajectories of the nonlinear system
() at the constant nominal equilibrium trajectory, X(U), by means of a sliding motion
suitably induced on a manifold S that contains such an equilibrium point. In other words,
it is required to synthesize the following:

1. A nonlinear sliding surface S, parametrized by the nominal control input U, of the form
S={xeR" sx, U) =0}, )
where, for each fixed U, s(.,U) : R" — R, is a smooth function satisfying s(X(U),

U) =0;
2. An associated variable structure control law

ut@x, Uy forsx,U) >0
ux, U) = 3
u(x, U) fors(x, U) < 0
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that automatically forces every small state deviation, from the nominal operating condi-
tions, to zero, via the local creation of a stable sliding regime taking place on S and
leading the state trajectory to X(U).

In order to specify such a parametrized sliding manifold, we propose to resort to the
method of extended linearization (see [2-4]) as indicated in the following paragraphs.
For the connections of this technique with the closely related method of pseudolineariza-
tion, the reader is teferred to [5].

2.2. A nonlinear sliding-mode controller design based on extended linearization

1. Linearize the dynamical system about each point in the family of constant operating
trajectories, [U, X(U)], obtaining the following parametrized family of linear systems:

x5 = A(Ux; + b(Uus, 1Y)
where, for fixed U, the input and state perturbation variables are defined, respectively,

as: uy = u(t) — U, x3(t) = x(t) — x(U), while then X n matrix A(U) and the n-vector
b(U) are defined as

Ay := Y @), v); bU) := . x@), v &)
ox du
Since the pair [(4(U), b(U)] is assumed to be controllable, a similarity transformation

exists of the form

25 = P(Uyxs =: [pi(1), p2(U), ..., pa(U)}xs ©6

such that system (4) may be represented as a controllable canoncial realization. The non-
singular matrix P(U) is obtained from the well-known expression

o U) o) ... 1
az(.U) a3('U) 0
P7'(U) = ), AWbO), ..., A" UbW)] : M
o, (U) 1 .
1 0 ... 0
where detfA-AU)] = N + o (DN + a0 (UN72 + ... + (D).
2. Obtain the transformed system in controllable canonical form as
Z:xa = 225
2 = 235
: ®
Zn-1s = Zns

Zy = — Q1 (D)zgs — ap2(U)2a—1ps — --- —oo(Uz1s + Us-
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3. Use as a sliding surface the linear manifold

Ls = {2 € R": 05(z) = D, ¢z = ¢z = 0; ¢, = 1}, ©)

i=1

and choose the coefficients ¢;, independently of the operating point (X(U), U)], such that
the roots of the characteristic polynomial
n
DNl =0 (10)

i=1

for the (reduced) linear ideal sliding dynamics are specified at convenient locations in the
~open left half of the complex plane—i.e., so that the autonomous ideal sliding-mode
dynamical system

215 = 22
25 T 23 (11)
i(n—l)a = T Cn-1 Zn-16 T Cp-2Zm-25 — - — €121

is asymptotically stable toward the origin of transformed coordinates.

4. Obtain, on the basis of the previously described design steps, the parametrized sliding-
hyperplane specification in terms of the original perturbed state coordinates x;, as follows:

Sa = {15 € R": S&(X&, U) 65 Ua(P(U)X5) = CTP(U)Xa = 0} (12)

5. Obtain a nonlinear sliding manifold S such that its corresponding linearization about
the operating point [X(U), U] yields back the sliding hyperplane (12). In other words,
find a nonlinear switching surface that is tangent to the sliding hyperplane (12) at the
equilibrium point.

5a. Sliding manifold. We must, thus, find a nonlinear sliding-surface coordinate function

s(x, U), parametrized by the constant operating point U, such that the following relations
are satisfied:

33 U" = P(U) = (P (U), cpa(U), ..., Tp,(U)] (13)
ax x = X(U)

or, componentwise,

ds(x, U) ‘ =cpU);i=2,...,n, (14)
ox; x = X(U)
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with the additional (boundary) condition s(X(U), U) = 0.

Remark. In general, there are many parametrized sliding-surface coordinate functions, s(x,
U), that satisfy relations (14) and the boundary condition. Such a lack of uniqueness of
solution may not be totally inconvenient, and it is a prevailing characteristic of the method
of extended linearization. [ ]

We present below two alternative procedures for obtaining the required nonlinear sliding
surface on the basis of the designed linear switching manifold.

1. Assume that 3X;(U)/dU # O for each i, i.e., according to the implicit function theorem,
the ith component X;(U) of the vector X(U) is invertible. In other words, there locally
exists a unique solution, X;"!(x;), for U in each of the equations: x; = X;(U). It then
follows that the relations in equation (14) may be viewed as a particularization, on the
equilibrium point, of the following relations:

fﬁ(«;, U = X'l i=1, ..., n. (15
X

These relations, indeed, define a trivially solvable set of first-order partial differential
equations, to be satisfied by s(x, U), with a given boundary condition. The solution of
such a system may be obtained by direct integration (see Arnold [71, pp. 65-68) as follows.

T X', .
s ) = 25 [ % 1y 191 20 49, (16)

The validity of this integration procedure is immediately verified upon differentiation
of equation (16) with respect to the ith component of the state vector. Indeed, such a dif-
ferentiation yields

-1 -1
B5(x, U) = Ty (xp) o0 XD (T 1 ).
ox; dX; ' (x;) dx;

This expression coincides, for each i, with relations (15) and yields back relations (14) when
particularized at the equilibrium point x;(U) = X;(U).

2. Alternatively, if not all the components of the equilbrium vector X(U) are invertible,
there will be, generally speaking, at least one (say the first one) that is invertible indeed.
One can then resort to a similar integration procedure, which will be justified in the same
manner as in the previous case, and obtain an integration formula for the sliding surface.
Such an explicit integration formula is inspired by the results in Rugh [2] and allows one
to obtain a nonlinear sliding manifold in a rather systematic manner:
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s=@er @) = |1 P B0V a5 + 3 el 06 il = X85 5i0] =03,
=2 an

It can be verified, after partial differentiation with respect to the components of the vec-
tor x, and substitution of the equilibrium point (U, X(U)), that the manifold defined in
equation (17) represents one possible solution for the required parametrized nonlinear sliding
manifold that satisfies relations (14).

Indeed, it should be evident from equation (17) that s (X(U), U) = 0. (For this, notice
that X7 (x; (1)) = XT‘ (X, (1)) = U, and also x;(U) = X;(U). Hence, the integral term
and every term in the sum in equation (17) vanish when evaluated at the equilibrium point.)
Differentiating s(x, U) with respect to x;, (( = 2, ..., n), one obtains

b6 U) = T X )i =2, ...,
3x,~

which, particularized on the equilibrium point, satisfies the last of the n-1 relations (14).
Differentiating now equation (17) with respect to x; yields

n

s, U) - >, Ip (X7 () dX; X1 ' () dXi' ()
ax, j=1 Xm—l(xl) dx,

n -1
+ D) "_Pf(’jx ) 1 — xxi @l
j=2 1

- 3 el ) T )

j=2 1

el 67 ) S0 4 3 e B ) g~
1 j=2 1

n ) 1
I ) + D) LX)
j=2 1

which satisfies the relation in equation (14) for i = 1, in view of the fact that every term
in the sum vanishes when particularized at the equilibrium point.
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It should be remarked, however, that in obtaining a suitable nonlinear sliding surface
by any integration procedure carried out on the linearized surface design, one should always
be led by the idea of obtaining a manifold where the constrained dynamics exhibits the
property of linearity and asymptotic stability as the main requirements. The second prop-
erty is always guaranteed by the imposed nature of the linear design; however, the first
property is not always trivially achievable except in special cases (see the examples in sec-
tion 3).

5b. Equivalent control and ideal sliding dynamics. The smooth feedback control obtained
as the solution of the equation

éﬁxsz = QS'(XJ) f(x’ uEQ(x, U) =0 (18)
dr ox

plays a fundamental role in the theoretical developments of the sliding-mode control tech-
nique. Such a feedback control, usually known as the equivalent control, is here denoted
by 2 (x, U).

By virtue of the implicit function theorem, local existence and uniqueness of the equivalent
control is guaranteed under the assumption that the following relation is locally verified:

3 [ 3506 U) fr, ) ] = 3s(x, U) 3fx, u) » ¢ (19)
du ax ox du

The equivalent control W2 (x, U) generates state trajectories that locally satisfy s(x, U)
= constant. When the equivalent control is used on the system with initial conditions precise-
ly located on the sliding manifold s(x, U) = 0, the resulting state trajectories leave the
switching manifold locally invariant, i.e., motions stay locally constrained to the switching
manifold. The dynamics obeyed on the manifold, under such idealized control actions,
is known as the ideal sliding dyanmics. The ideal sliding motions are thus obtained from
the well-known invariance conditions, which make the switching manifold a local integral
manifold of the smoothly controlled system:

s, U) =0, 4 5x, U)=0. (20)
dt

Once the nonlinear sliding-surface coordinate function s(x, U) is known, computation of
the switching strategy is carried out on the basis of the equivalent control.

5c. Sliding-Mode Switching Logic. A nonlinear sliding-mode switching strategy is usually
synthesized such the sliding-mode existence (Utkin [1]) are satsified, at least in a local
fashion. Such well-known conditions are given by
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lim ds(x, U) < o, lim $& U) 5 o, Q1)
=0 dt s—0 dt

It has been shown that, for nonlinear systems that are linear in the scalar control input,
a necessary and sufficient condition for the local existence of a sliding mode is that the
equivalent control locally exhibits values that are intermediate between the extreme values
of feedback laws among which the switching take place (i.e., u* (x, U) < i, U) <
u~ (x, U)). The region of existence, on the sliding surface, of such a sliding regime coin-
cides precisely with the region where such an intermediacy condition is satisfied by the
equivalent control. One may therefore synthesize the nonlinear sliding-mode switching logic
for such a large class of nonlinear systems from knowledge of the equivalent control func-
tion, ¥?2(x, U), and of the sliding-manifold coordinate function, s(x, U) (see Sira-Ramirez
[8]), as follows:

ux, Uy = — k| u®ex, U) | sgns(x, U); | k| > 1, (22)

where the sign of the constant & is locally chosen so as to satisfy the ideal sliding-mode
conditions (21) (see examples 1 and 3 in section 3).

In more general cases, where there is no special input structure to the system such as
linearity, the above switching logic (22)—or any other satisfying the equivalent control in-
termediacy condition—may still locally create a sliding regime, provided that the system
exhibits a control foliation property through its input channel (see Sira-Ramirez [9, 10]).

An alternative discontinuous feedback-control strategy, possibly yielding weaker discon-
tinuities in the controls, is represented (see Slotine and Li [11], Chapter 7, and also Dwyer
and Sira-Ramirez [12]) by

ux, U) = uEQ(x, U) — ksgns(x, U), 23)

where the sign of the constant « is appropriately chosen to guarantee locally the validity
of the sliding-mode conditions (20) (see sections 3.1 and 3.2).

For the class of application examples presented in the next section, switching strategies
of the form (22) or (23) suffice for the local creation of a sliding regime.

3. Some application examples

In this section, we present some illustrative examples of sliding-mode control synthesis
for nonlinear plants, using the method of extended linearization. We begin with a somewhat
general second-order example, in which the synthesized sliding surface is seen to entirely
coincide with the intuitive solution that one would propose, in general, for achieving a
linear ideal sliding dynamics. The proposed sliding-mode design process therefore appears
as a natural synthesis procedure. The rest of the examples in this section represent simple
applications of a physical nature.
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3.1. A general second-order example

Consider the nonlinear controlled system, defined in R?, expressed in regular canonical
Jorm (see Luk’yanov and Utkin [13]):

X = ox;, x)
‘1 1 X2 7
X = v, x) + glx, xpu.

We assume the existence of a contimuum of constant equilibrium points, parametrized
by the corresponding constant value U of the control input 4 (parametrization with respect

to equilibrium values of the state variables is also possible in cases where U = 0; see [2]
and section 3.2 below):

u=U; x(U) = Xi(U); xU) = XHU) (25)
such that d¢/dx, (X, (U), X3 (U)) # 0 and g(X;(U), X,(U)) # 0.

3.1.1. Design of the stabilizing switching line for the family of linearized systems.
Linearization of system (24) about an equilibrium point of the form (25) yields

x5 = o1 (X (U, X (x5 + 0,(X 1 (U), X(U))xys
(26)
[v1Xi (U), X,(U)) + 61X, (U), X (U)Ulxs

+ (M &X(U), X, (U)) + gXi(U), X, (UNUlxgs + g(X(U), Xo(U))us,

X2

where ¢; 1= 09/0x;; v; 1= 0y/ox;; g := 0g/dx;; i = 1, 2.
We briefly express such a linearized system by

X5 = ¢1xs + exos

: 27
x5 = [y + 81Ul x15 + [v2 + 82U x5 + gus.
As can be easily seen, the linearized system (27) may be placed in controllable canonical
Jorm by means of the following similarity transformation, parametrized by the equilibrium

point:

25 = = X15
@
82 28)
26 = i [e1x15 + @ox25].
8¥2
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The previous assumption about the nonvanishing of g and ¢, at the equilibrium point
X; (), X,(U)] locally guarantees the nonsingularity of such a linear coordinate transfor-
mation. Evidently, a sliding line rendering an asymptotically stable ideal sliding dynamics
for the transformed system is given by g5(25) = ¢1215 + 225 = [ 11725 =: ¢z;. Using
form (28), the sliding-line equation in original coordinates is obtained after multiplication
by the nonzero factor ge, as

S; = {xs € R? : 55(x5, U) = (1 + c)x15 + oax5 = 0; ¢; > 0} 29

Indeed, if the system is ideally maintained on such a sliding line, the resulting dynamics
(known as the ideal sliding dynamics) is simply governed, according to system (27), by

X3 = — X ¢ > 0 (30)

which is asymptotically stable to zero and independent of the operating point.

3.1.2. Synthesis of the sliding-mode controller for the nonlinear system. In general,
the key idea behind the method of extended linearization for obtaining a nonlinear con-
troller design, once a linear feedback stabilizing controller has been properly synthesized
for any member of the parametrized family of linear systems, consists in finding a ronlinear
regulator that when linearized about the nominal operating trajectory yields back the de-
signed linear regulator specified for the family of linearized systems.

In nonlinear sliding-mode design, the method of extended linearization consists in speci-
fying a (nonlinear) sliding manifold, and its associated equivalent control, on the basis
of the linearized surface design. This manifold must be such that when it is linearized about
the constant equilibrium point, it yields back the designed stabilizing sliding hyperplane
corresponding to the linearized system. The linearization of the corresponding nonlinear
equivalent control about the operating point yields the linear equivalent control previously
obtained.

Expressions (14) yield, in this case, the following conditions:

3s(x, U) e + 01X (U), Xp(Uy); 382 V) = (X, (U), X, (U)).
ax, x = X, (U) ax, x =X U)
%, = X,(U) x = X,(U)

In is easy to verify, from the definition of ¢, and ¢,, that the following nonlinear sliding
manifold S is such that its surface coordinate function s(x,, x,, U) satisfies the above
conditions:

S ={x€Ry:s(x;, % U) = @o(x;, ) + c1(xy — X;(U)) =0; ¢; > 0}.(31)

In view of o (x;(U), (1)) = ¢ X (U)), X;(U)) = 0, it can also be immediately
verified that s(X(U), U) = 0 as required, ie., S contains the equilibrium point.
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The ideal sliding dynamics corresponding to the manifold (31), according to the first
equation in system (24), is clearly given by the linear system

X =—qk — X5U); ¢ >0, 32)

which represents an asymptotically stable linear dynamics whose solution converges toward
the first component of the equilibrium point. Since ¢, is nonzero at the equilibrium point,
the implicit function theorem guarantees that the local isolated solution for x, of s(X; (U),
x5, U) = o (X, (U), x,(U) = 0 exists and is unique. Thus, the solution for x, coincides
precisely with X; (U).

The equivalent control, obtained from the condition ds/dt = 0, is given by

uf(x, U) =

B (. Ale1(xp, x3) + el @(xy, x3) + @2 (xy, X2)v (%1, %)} (33)

g(xy, x2)er(xy, x3)

For the control function u, a switching strategy that locally accomplishes sliding-mode
existence for the discontinuously controlled system is given by

u=—k|ux, U)|sgnsx, U); | k| > 1 (34)
where the sign of & locally coincides with that of ¢,g, i.e.,
sgn(k) = sgn(gez). (35)

It is easy to verify, in this case, that equation (34) leads to a sliding regime on s(x, U)
= 0. Computing the time derivative of s(x, U), substituting into the resulting expression
the control law given by equation (34), and letting k = | k | sign(e,g), one obtains:

4—“’;’@ = |(¢; + c)e + oy | {sgnl(e) + c)e + oxv] — | k| sgnlsx, V)]}.
t

from which it should be evident that ds (x, U)/dt < O for s(x, U) > O and ds(x, U)/dt
> 0 for s(x, U) < 0. Hence, in the vicinity of the switching surface, conditions (21) hold
valid.

Alternatively, the switching logic specified in equation (23),

u(x, U) = u(x, U) — « sgn (s(x, U), (36)
also locally generates a sliding regime on s(x, U) = 0, provided sign (x) = sign (¢,8)—

i.e., here also k = | « | sign (¢,g). Proceeding in the same manner as described above,
one obtains
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is(x’ U)_ =
dr

- | K| ' 28 | sgn S(x, U)’

which evidently satisfies the sliding mode conditions (21).

3.2. State-scheduled sliding-mode controlled reorientation maneuvers for a single-axis
spacecraft

Consider the kinematic and dynamic model of a single-axis externally controlled spacecraft
whose orientation is given in terms of the Cayley-Rodrigues representation of the attitude
parameter, denoted by x; (see Dwyer and Sira-Ramirez [12]). The angular velocity is
represented by x,, while J stands for the moment of inertia and u is the applied external
torque:

&_os A + D)xy; oy (37

dt dt J

Given arbitrary initial conditions, a slewing maneuver is required that brings the attitude
parameter to a final desired value X; and the angular velocity to a rest equilibrium. We
summarize below the design steps leading to a nonlinar sliding surface where the ideal
sliding dynamics is linear and asymptotically stable toward the desired equilibrium point:
x =X, x=0u=0.

3.2.1. Family of linearizations parametrized by constant equilibrium point

ot L 0
dr 0 0.5(1 + X% X1
= + Us (38)
dxzy 0 0 X2 1
at J

withx16=x1 "XI,X25=XZ —0,u5=u—0.

3.2.2. State-coordinate transformation to controllable canonical form

2J

—— 0
21 1+ X% X15 )

225 X2
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2
dt 01 215 0
b + Uus (40)
d_ZAS 00 28 1
dt

3.2.3. Linear sliding surface and ideal sliding dynamics in transformed and original
coordinates

In transformed coordinates:
05(2s) = 225 + €125 = 0;¢1 > 0 41
5 = — 0z “42)
In original coordinates:
Ss(x5) = cxps + 0.5 (1 + X)) x5 = 0 43)
X153 = —CiXps (44)
3.24. Nonlinear sliding surface, ideal sliding dynamics, and nonlinear sliding-mode
controller. The nonlinear parametrized sliding-surface coordinate function s(x, X;) must
satisfy the following relations:
B X)L, st X)

axl x =X, 8x2 x =X
xn =0 x =0

=051 + X} (45)

with the condition s([X,, 0]7, X;) = 0.

In this example, we illustrate in detail how to obtain the nonlinear sliding surface s(x,
X,) = 0, using the direct integration method described in section 2.

The relations (45) may be viewed as representing a particularization on the equilibrium
point [X;, 0] of the more general relations

Is(x, X)) _ - 9s(x, X))

ax 1 axz

=051 + 1), (46)

with the boundary condition s([X;, 0], X;) = 0.
Integration of the second equation in relations (46) yields

s@, X)) =05 (1 + ) x + (&, X)), A7)



392 H. SIRA-RAMIREZ AND M. RIOS-BOLIVAR

where {(x;, X,) is an arbitrary function of x, that must satisfy {(X;, X;) = 0, in accor-
dance with the boundary condition imposed on s(x, X).

Substituting the solution (47) on thefirst equation in relations (46), one obtains now an
ordinary differential equation for the unknown function {(x;, X))

ﬁ(& X)) _ df(x, X)) _ .
3x1 dx1

1

which evidently has as a solution {(x;, X;) = ¢{(x; — X;). This solution clearly satisfies
the condition {(X;, X;) = 0.
The sliding-surface coordinate function is therefore given by
sx, Xp) = ¢;(x; — Xp) + 0.5 (1 + 1) x. (48)
From equation (36) one obtains, on s(x, X;) = 0, the ideal sliding dynamics as
x = — cb — Xp). 49
The equivalent control u*€(x, X,), associated with equations (36) and (48), is given by
Wox, X)) = — J x3(c; + x1%). (50)
Finally, according to equation (23), the adopted switching logic for this example is given by
ux, U) = uP@(x, Uy — x sgn s(x, U) = J x(c; + xyx,) — & sgn s(x, U),  (51)

where, in view of the fact that the quantity ¢,g of equation (35) is in this case represented
by 0.5(1 + x})/J, the sign of « is globally positive.

Remark. Notice that from equations (39) and (41), one could have also obtained, instead
of equation (43), the following linear sliding manifold:

2
S50t Xp) = — = ' x5 + xp5 = 0. (52)

a+xH

The linearized ideal sliding dynamics corresponding to this manifold is still the same
as in equation (44). However, the nonlinear sliding-surface coordinate function s(x, X;)
must now satisfy the following relations:

as(x,wﬁ)_ _ 2¢ | as(x, X;)

ax; x =X a + X%) 0x, x =X
% =0 =0

=1 (53)

with the condition s([X;, 017, X;) = O.
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Relations (53) are again viewed as particularizations at the equilibrium point of

ds(x, XL) _ _2 a . das(x, X;) _

; 1.
ax, a+x ax,

Using the direct integration procedure, as described above, one obtains

s(x, X;) =2 ¢ftan”! (x;) — tan”! (X)] + x, = 0. (54)
The nonlinear equivalent control associated with equation (54) is given by

W(x, X)) = Jeyx, (55)

The corresponding ideal sliding dynamics taking place on the sliding surface (54) is no
longer a linear system, in the original coordinates. However, a suitable nonlinear state-
coordinate transformation reveals the underlying linear nature of such an ideal sliding
dynamics. Indeed, one obtains by virtue of equations (37) and (54) that

X = —c (1 + Dltan™ (x) — tan~" X))]. (56)

Letting £ = tan~! (x,), and denoting the constant equilibrium point by = = tan™! (X;),
one readily obtains

4 — — ¢ ¢ ~ ). (57)
dt

3.2.5. Simulations. Computer simulations were carred out for the synthesized sliding-mode
controller (48), (51) on a spacecraft with moment of inertia J = 90 N-mt-sec?, with c;
chosen as 0.11 sec™?, and k = 1.2. Figure 1 shows a family of state trajectories of the
sliding-mode controlled system when the reference operating point for the Cayley-Rodrigues
attitude orientation parameter x, is set to X; = —0.4 rad. Figure 2 shows a typical con-
trolled state-variables time response. Figure 3 also shows a family of state trajectories of
the sliding-mode controlled system when the reference operating point abruptly changes
from the stabilized value of X; = —0.4 rad to a new operating point set at X; = 0.6 rad.
The parametrized sliding surfaces corresponding to both operating points are also depicted
in this figure and labeled as S;, S,. Figure 4 depicts the time response of the state variables
under such an abrupt change of operating conditions taking place precisely at ¢ = 70 sec.

3.3. Vertical motions of a glider

Consider the motion of a glider on a vertical plane of symmetry (Rouche et al. [14], pp.
17-19). Let x; represent the angle between the normalized velocity vector of the glider’s
center of inertia and a horiztonal line. Let x, represent the magnitude of such a velocity
vector. In appropriate time-scaled coordinates, the controlled system equations can be written
as
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Figure 1. State trajectories of sliding-mode controlled spacecraft.

_ o 44
X2
(58)
X, = — sinx; — ux3,

where u is the ratio of the drag and lift coefficients, acting here as a control parameter
via suitable modifications of the glider’s angle of attack. It is desired to devise a sliding-
mode controller to maintain the glider state variables x, and x, at their nominal equilibrium
points representing a rectilinear down motion at constant velocity (see [14], p. 33).

3.3.1. Constant equilibrium points

u=Ux = XU = - an ' Uy x = X0 = __L__ (59)
‘41 + U2
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Figure 2. Typical time response of sliding-mode controlled spacecraft state variables.

3.3.2. Family of linearization about equilibrium points

. - U — 2 0
X1 N+ 02 X15
= + Us (60)
x-25 _ 1 - 2U X258 . 1
J1+U02 41+ 02 1+ U2

with xj3 = x; — X (U), x5 = X2 — X5(U), us = u — U
3.3.3. Transformation to controllable canonical form
_1 JT + U2 0

2 X135

= (61)

228 l U4J1-+ U2 - ,{1 + Ui X5
2

X135
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Figure 3. State trajectories of sliding-mode controlled spacecraft under a sudden change of the orientation parameter
operating point (from X; = —04 to X; = 06).

3.34. Linear sliding surface and ideal sliding dynamics in transformed and original
coordinates

In transformed coordinates:
05(25) = 235 + 1215 = 0; ¢; >0 (62)
s = — C1Zys (63)

In original coordinates:

s5lxs) = |: € — 4—\/.1%:, Xip + 2xp5 = (64)

Xj; = = Xy (65)
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Figure 4. State responses of sliding-mode controlled spacecraft under a sudden change of the orientation parameter
operating point.

3.3.5. Nonlinear sliding surface, ideal sliding dynamics, and nonlinear sliding-mode
controller

s, U) = = cosx + % ¢ [x + tan~ 1 ()] = 0 (66)
X2
X = — ¢ [x + tan” ()] (67)
o, Uy = — 1 |: c [xz - cosxlj - gn?‘xll — k sgn x(s, U) (69)
cosx; + 13 X B

Remark 1. Notice that in this case the factor g¢, (of equation (35), equal here to —cos
x, — x3), is negative in the range — /2 < x; < w/2. Hence « is chosen to be negative.ll

Remark 2. Again, it is possible to obtain a different sliding manifold whose linearization
coincides with equation (64) and contains the equilibrium point. For instance, using the
integration formula of equation (17), one obtains:
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_1 -
. __ 9 1+ ¢ )
sx, U) = fu e |:Cl Tm' 2:, dd + 2 (x; — Jeosx;)

_ -8
24 + 925
ie.,
s, Uy = ¢, [x; + tan ' ({U)] + 2 (x; — Jeos x;) = 0 (70)

which, as can be easily verified, does not result in a linear ideal sliding dynamics as in
equation (67).

3.3.6. Simulation. Computer simulations were carried out for the synthesized sliding-mode
controller (66), (69) on a glider with ¢, chosen as 1.0 sec™!, and «x = 0.1. Figure 5 shows
the time responses of the state variables x; and x, of the sliding-mode controlled system
when the reference operating point, for the control input u, abruptly changes from U =
10to U = 1.5 att = 80 sec. This change in the control-input operating point corresponds
to a change from —0.78 rad to —0.98 rad, in the operating point for the angle x;.

075—— T R B T ' [
-0.85
=

_09 ..... , ......
-0.95 ' ‘

- i N S S S

6 7 8 9 10 11 12 13 14
time [s]

0.85 I T | | 1 l T

08L - ...

x2

07—

time [s]

Figure 5. State responses of sliding-mode controlled glider under a sudden change of the control-input operating
point (from U = 10to U = 1.5).
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Remark. In the previous second-order examples, the nonlinear systems were already in
regular canonical form. Hence, in accordance with the results of section 3.1, the lineariz-
ing sliding manifold could have been obtained directly from the systems equations. However,
it should be remarked that this is not the case for (single-input) higher-order systems, nor
for systems that are not in regular canonical form (even if they are affine in the control).
For the last class of systems, obtaining a linearizing sliding manifold is by no means a
trivial task. Moreover, transformation to regular canonical form of a nonlinear system in-
volves a quite complicated procedure dealing with the solution of certain associated Pfaf-
fian systems (see Luk’yanov and Utkin [13]). The method of extended linearization therefore
provides us with an alternative synthesis approach for such particular cases and, more im-
portantly, for the general case represented by systems of the form (1). The next example
deals with a second-order control-affine (bilinear) system that is not in regular canonical
form. |

3.4. Input-current scheduled sliding-mode control of angular velocity in a DC motor

Consider a DC, field-controlled motor provided with separate excitation. Let V, be the
constant armature voltage and let u be the field current, acting as a control parameter.
The set of bilinear differential equations describing the dynamics of such a controlled system,
acting on a load that exhibits a nonnegligible damping reaction, is given by (see Rugh [15],
pp- 98-99).

i1=—&x1—-—K-x2u+—V—a
L, L, L,
(71
x.2= —EXZ+K.X1M,
J

where x; is the armature current, x, is the motor-shaft angular velocity, L, and R, are,
respectively, the inductance and the resistance in the armature circuit, X is the torque con-
stant, and J and B are, respectively, the load’s moment of inertia and the associated viscous
damping coefficient.

It is required to maintain a fixed nominal angular velocity W by suitable discontinuous
control actions generated by the field-circuit input current . We summarize next the
nonlinear sliding-mode controller synthesis.

3A.1. Family of constant equilibrium points

u=Unx =X = _ B , X =X{U) = WU) = V.KU

—_ - (72)
RB + K*U? R,B + K*U?
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34.2. Family of linearizations parametrized by constant equilibrium point

_R_ky ___ KU
X1 L L, X15 R.B + K2U?
_ a N L,(R,B ) " 73
Xo5 KU _B 25 __ KBV,
J J J(RB + K*U?)

34.3. State-coordinate transformation to controllable canonical form

_B _ kU
{ 21 ] J 9(U) L, n(U) [xw }
= 4
22 _KU? - BR,  _ _2BKU | 2
L J 9 L Jq(U)

with

2 _ 2 w22
n(Uy = KVa U= 2B°L, + RJB - K*U* J) %)
LYJ?[RB + K*U?]

34.4. Parametrized linear sliding surface and ideal sliding dynamics in transformed
and original coordinates

In transformed coordinates:
05(z5) = 235 + €125 = 0; ¢, > 0 (76)
5 = — Q12 an
In original coordinates
ss(x5, U) = — (¢;BL, — R,B + K?U*) x;5 + 2B — Jc)KU x35 = 0 (78)
Xip = — CiXig X5 = — CrXos a9

34.5. Nonlinear sliding surface, ideal sliding dynamics, and nonlinear sliding-mode
controller

2772
s, Uy = — (c;Ly — 2R) | x, — — BVa — - V. In Mﬁ x
2772 -
RB + K°U BV, &0

— 2
+ @B - Jey) |: (x%)* - [__V&_] ] =0
2x, R.B + K*U?
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81

V,KU }

«‘32=—Cl|:x2— )
R.B + K°U

u¥(x, Uy =
(82)

TR2(erLy = 2R +2V,X, + (2B = Jer)d = HUNI(=Ryx + Vo) + 2BL,(2B — Jeuis,
(e, = MG + 2Vpx, + @B ~ Je)(3 — BUNKx, + 2L,(2B — JeKXix;

ux, Uy = — k | u¥x, U) | sgn s(x, u) (83)

34.6. Simulations. Computer simulations were carried out for the synthesized sliding-mode
controller (80), (83) on a loaded DC motor with moment of inertia J = 1.06 X 1075N-
m-sec/rad, B = 604 X 10 "SN-m-sec/rad, and L, = 120 mH, K = 1.41 X 1072N-m/A,
R, = 7Q V, = 5 V. ¢; was chosen as 5.0 sec”!, and k = 1.05. Figure 6 shows the time
responses of the state variables x, and x, for the sliding-mode controlled system when the
reference operating point for the motor-shaft angular velocity abruptly changes for W; =
159.25 rad/sec to W, = 280.69 rad/sec at t = 0.1 sec. The corresponding change in the
input-current nominal value is from U = 0.1 Ato U = 0.2 A.

07 L —'7“77 I TP ! T B
0.68
0.66

x1 [A]

0.64}- :

0.6

300 ; : , : . —

250

x2 [rad/s]

200

150 =

time [s]

Figure 6 State responses of sliding-mode controlled DC motor under a sudden change of the shaft’s angular-
velocity operating point (from W = 159.25 to W = 280.69).
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4. Conclusions and suggestions for further work

A general systematic approach has been proposed for the synthesis of sliding-mode control
regulators for a rather wide class of nonlinear systems, possessing no particular control-
input structure and exhibiting a continuous family of constant operating points. The method
makes use of the extended linearization technique for the specification of the nonlinear
switching manifold, the associated equivalent control, and the required switching strategy.
As demonstrated by a general second-order example, in which the required linearizing sliding
surface is readily apparent, the method appears to be a natural one, since it yields the in-
tuitively obvious solution. The self-scheduling properties of the proposed controller were
demonstrated in three physically motivated simulation examples
The fundamental advantages of the proposed design scheme are as follows:

1. The approach benefits from an extensive list of well-known theoretical contributions
for design of linear sliding modes, including efficient computer packages already
developed for such design tasks.

2. The possibilities of nontrivial applications can be greatly enhanced, and carried out,
by means of existing algebraic manipulation systems.

3. The method naturally enjoys rather useful self-scheduling properties when nominal
operating conditions are abruptly changed. This is particularly important in the field
of control of mechanical manipulators, aerospace systems, and other practical nonlinear
control application areas.

4. For approximate linearization of nonlinear systems, the method developed in this article
also constitutes an alternative approach to that developed by Barolini and Zolezzi [16].

As a topic for future work, the multivariable sliding-mode control case needs some special
attention and careful examination from the perspective of the extended linearization ap-
proach. Also, automation of the design process via computational algebra packages, such
as MACSYMA, REDUCE, or MAPLE, is strongly encouraged.
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