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NONLINEAR DYNAMICAL DISCON-
TINUOUS FEEDBACK CONTROLLED
DESCENT ON A NON ATMOSPHERE-
FREE PLANET: A DIFFERENTIAL
ALGEBRAIC APPROACH"

H. SIrRA-RAMIREZ!

Abstract. A new approach is proposed for the feedback controlled descent of a
thrusted vehicle on the surface of a planet which exhibits non-negligible atmospher-
ic resistance. A nonlinear Pulse-Width-Modulated (PWM) dynamical feedback con-
troller is synthesized on the basis of a suitably defined nonlinear average model.
Using Fliess’ Generalized Observability Canonical Form, of the average model, a
linearizing dynamical feedback strategy is synthesized by exact linearization. The
smooth controlled behavior is then approximated, arbitrarily close, by means of the
discontinuous PWM control scheme. A simulation example is presented.

Key Words—Smooth landing maneuvers, dynamical feedback controller design,
pulse-width-modulation control, differential algebraic systems.

1. Introduction

The problem of soft controlled descent on the surface of a planet has been
traditionally studied from the perspective of the Optimal Control theory. An
early solution, using Calculus of Variations, was given by Miele (1960). Over the
years, the problem has gained both theoretical and practical interest. In the mid
60’s, Meditch (1964) proposed a minimum-time approach using Pontryaguin’s
Minimum Principle. In his work, Meditch has shown that the minimum-time and
the minimum-fuel landing problems are equivalent. The optimal control approach
was also used by Flemming and Rishel in their book (Flemming and Rishel, 1975)
to illustrate Pontryaguin’s Minimum Principle. Significant contributions were
given later on by Cantoni and Finzi (1980) which further modified the solution
proposed by Meditch. Recently, a Sliding Mode Control approach was proposed
by Sira-Ramirez (1990), with various practical alternatives for the final touch-
down stage. In Sira-Ramirez (1990), a suitable sliding manifold is synthesized
which induces an exponentially stable behavior in the ideal sliding trajectories
associated with average height and average vertical speed variables. Under the
assumptions of Amplitude Modulation capabilities on the thrusters braking
action, it has been proposed in Sira-Ramirez (1991), a dynamical feedback
controller for the smooth descent problem based on exact linearization and pole
placement.

Recent contributions to the understanding of nonlinear controlled systems
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have been given by Professor M. Fliess in a series of outstanding articles
(Fliess, 1986; 1989; 1990 a; Fliess and Messager, 1990). In Fliess’s work, a
new and general approach, based on Differential Algebra, (see Kolchin, 1973)
has been proposed for the study of linear and nonlinear lumped, or distributed,
controlled dynamical systems. A powerful, most elegant, and general character-
ization has been contributed by Fliess’s work on a number of long standing
problems in automatic control theory. Among such problems, one can list:
feedback decoupling, right and left invertibility, realization, cascade decomposi-
tion, feedback linearization and model matching. Sliding mode controller design
has also been approached from the differential algebraic viewpoint by Fliess and
Messager (1990).

Fliess’s key observation is that a large class of lumped nonlinear dynamical
controlled systems, in state space form, are more naturally described as a set of
implicit first order differential equations (some of which could degenerate into
algebraic equations) relating the state variables to a finite number of time
derivatives of the several input components. Different state space representa-
tions are then related by input dependent state coordinate transformations,
possibly involving a finite number of input component time derivatives. This
setup not only allows for a unified view of regular and singular systems (i.e.,
systems with algebraic constraints, or descriptor systems), but it also explicitly
exhibits some of the limitations found in standard state space descriptions of
some physical systems. Namely, it points to the local validity of the state
variable representation 4 la Kalman. Central in the developments is the
theorem of the differential primitive element (Kolchin, 1973). This theorem
accounts for the existence of a Generalized Controller Canonical Form (GCCF)
from which dynamical feedback linearization can be trivially achieved. The
approach duly requires, however, account of possible singularities, such as
impasse points and assessment of the stability properties of the proposed
linearizing controller. From an input-output viewpoint, physical systems are
viewed as implicit scalar differential equations, relating a finite number of time
derivatives of the input and output vector components under some proper
constraints. Based on such representations, one can naturally define generalized
phase variable components (see Conte et al., 1988; Diop, 1989), which im-
mediately lead to a local Generalized Observability Canonical Form (GOCF).
From this canonical form, input-output dynamical feedback linearization is also
trivially feasible, modulo some singularities such as nonminimum phase do-
mains. It turns out that, for scalar systems, if the given output variable also
qualifies as a differential primitive element, then the dynamics of the GOCF
correspond to the GCCF.

In this article, we extend the work in Sira-Ramirez (1991) to propose, based
on Fliess’s GOCF results, dynamical discontinuous feedback control actions of
the Pulse-Width-Modulation (PWM) type for soft controlled landing maneuvers.
The dynamical feedback controller design proposed in Sira-Ramirez (1991) is
utilized as an average feedback controller, synthesizing the duty ratio function
associated with the PWM strategy. A non-optimal, dynamical feedback solution
is hence proposed for the problem of soft controlled landing on the surface of a
non atmosphere-free planet. The nonlinear Pulse-Width-Modulation (PWM)
dynamical feedback controller is deemed to be a more realistic control alterna-
tive, entirely possible with the available spacecraft technology. The smooth
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average solution is then translated into an actual discontinuous (PWM) control-
led scheme which approximates, arbitrarily closely, the smooth designed
behavior.

Section 2 presents some general results and derivations about dynamical
feedback linearizing controllers, using Fliess’s GOCF. Section 3 presents the
main results of this article in relation to the soft landing maneuver via a
dynamical feedback linearizing controller of the average PWM regulated sys-
tem. Simulations are presented that illustrate the performance of the proposed
controller under the assumption of a constant atmospheric resistance coeffi-
cient. The controller is also evaluated in the presence of significant unmodelled
changes in such a coefficient. The Appendix contains some background material
on PWM control of Nonlinear Systems and their design-oriented average
models.

2. Dynamical Input Output Linearization via the GOCF

In this section, we present some background material on Fliess’s GOCF (See
Fliess, 1986) obtained through a state elimination procedure as proposed by
Conte et al. (1988). v

Consider the following n-dimensional state space realization of a single-input
single-output nonlinear analytic system written in the Kalman form:

1= flx, u)
y=hix) |

(2.1)

According to Conte et al.’s results (Conte et al., 1988), under mild
conditions, there exists a non-uniquely defined, input-dependent state coordi-
nate transformation, which eliminates the state vector x from a representation
of the form (2.1) and allows the finding of a possibly implicit, input-output
representation for this system in the form,

CH@, -, 3, y, u, b, - u'®) = 0, (2.2)

where d is defined as the smallest integer satisfying the following rank condition:

3Ch; by -y BOYY Ok By e B D)

ox ox (2.3)

rank

By defining y* V=n; i=1,---,d, and, under the assumption that 8C/8y‘? is
non-identically zero, one locally obtains the following explicit' Generalized
Observability Canonical Form (GOCF) for the given system:

n, =1,
Ny = 1,
Mgy = My ’ 2.4)
n,=cn, u, w, - u?)
y=mn
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with né(nl,---,nd) and where aldd-v, is assumed to be a positive integer,
with 7 being the relative degree of the output function y with respect to the scalar
control input #. The integer » may be defined as the minimum number of times
the output signal y has to be differentiated, with respect to time, for the control
input u to appear explicitly in the output derivative expression (see Isidori,
1989, p. 145). Note that if d<n, then the state realization (2.1) is non-minimal.
We henceforth assume, for the sake of argument and simplicity, that d=n.

The required input dependent state coordinate transformation, taking sys-
tem (2.1) into the GOCF (2.4), is given by

d(x, u, u, -, uD)
h(x)
h(x)
h(n—a)(x’ u)

R V(x, u, w, -+, V)

n

(2.5)

Suppose that system (2.1) exhibits, for a given constant control input #=U,
a constant equilibrium state x=X(U), for which the corresponding output y is
given by y=h(X(U))=Y. In terms of the representation (2.4), if we let
HAcol(Y, 0,--+,0) denote the corresponding equilibrium value for the vector
7, then the autonomous differential equation,

c(H, u, , -+, u'?) =0, (2.6)

exhibits, necessarily, as a local equilibrium for # and its time derivatives, the
constant value (U, 0,---,0). It has been shown by Fliess (1990 b), using
arguments from differential specializations, that the autonomous system (2.6)
corresponds to the zero dynamics when Y=0. The stability properties of the
dynamical system (2.6) around its equilibrium state (U, 0,---,0) are crucial in all
considerations regarding exact dynamical feedback linearization.

Definition 2.1. Under the assumption that 4 is exactly equal to », we say
that the nonlinear system (2.1) is locally minimum phase at the given equilibrium
point (U, Y), if the linearization of the autonomous differential equation (2.6)
around (U, 0,---,0) is asymptotically stable to zero.

Remark 2.1:  Note that in case the integer d is smaller than #, the above
definition of a minimum phase system has to be substantially modified. In such a
case, asymptotic stability of (2.6) around its equilibrium point is not sufficient to
guarantee a corresponding stable unobservable dynamics in the representation
2.1). ‘

Imposing an asymptotically stable closed loop linear time invariant dynamics
on (2.4), towards its equilibrium point, of the form,
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N, =1,

N, = s
. , 2.7)
Npot = 1,

M, = —7m=Y)—y,n, - =y,

y=n,

for a suitably chosen set of constant parameters {v,,¥,,**-,7,}, one im-
mediately obtains an implicit expression for the required dynamical linearizing
controller,

C(Yly u, u, -, u(a)) = "Y1(771_Y) T Yol T T YN, (2.8)

Either in terms of the transformed state coordinates 7, or the original state
coordinates #, the nonlinear dynamical controller (2.8) evidently requires full
state feedback. Moreover, the practical feasibility of the closed loop system
depends exclusively on the stability characteristics of the dynamical controller
(2.8). It follows from (2.8) and the fact that the closed loop system (2.7) has the
vector H as a constant equilibrium point, that the controlled system is locally
asymptotically stable toward its equilibrium point (U, Y), if and only if the
system (2.1) is locally minimum phase around such an equilibrium point.

Remark 2.2: It should be pointed out that, in general, the GOCF approach for
the synthesis of a dynamical controller in the form (2.8) does suffer from
difficulties related to the existence of impasse points, non-minimum phase
regions, and other singularities. The impasse points arise from the impossibility
of explicitly solving for the highest derivative of the control, in the linearizing
controller equation (2.8), at some set of singular points. A second major
difficulty is usually represented by having the equilibrium point in a non-
minimum phase region, or else, when the controlled trajectories visit such
instability regions. The usual remedy for these situations has been extensively
explored by Fliess and his coworkers from the perspective of discontinuous
control actions (See Fliess et al., 1990; Abu el Ata-Doss and Fliess, 1989). The
application discussed below corresponds to the case in which the system is
minimum phase around the equilibrium point but it lies on a surface of singular
points. As in Fliess et al. (1990), the proposed solution becomes feasible by
introducing a suitable discontinuity in the control action.

3. A Dynamical Feedback Solution for Soft Controlled
Landing of a PWM Thrusted Spacecraft

3.1 The dynamical model of a soft PWM controlled landing including
atmospheric resistance  Consider the nonlinear dynamical model describing
the vertical descent, including the spacecraft mass behavior, of a thrust
controlled vehicle attempting a regulated landing on the surface of a planet of
gravity acceleration g and non-negligible atmospheric resistance force opposing
the vertical downwards motion (See Arnol’d, 1988 a, p. 4).
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dx1 =

at ~ 7?

dx2=g_ Y )z _ (92, (3.1)
dt X3 . X3 ’ ’
dx3 _

T

where x, is the position (height) on the vertical axis, chosen here to be
positively oriented downwards (i.e., x, <0, for actual positive height), x; is the
downwards velocity (See Fig. 1), and x5 represents the combined mass of the
vehicle and the residual fuel. The function u is a binary-valued control function
with values in the set {0, 1}, regulating, in a pulsed or bang-bang manner, the
constant rate of ejection per unit time a and effectively acting as a control
parameter. The constant o represents the relative ejection velocity of the gases
in the thruster. Thus, oa is the maximum thrust of the braking engine, while yis
a positive quantity representing the atmospheric resistance coefficient.

The binary-valued control signal  is assumed to be synthesized on the basis
of a PWM control strategy (See Skoog and Blankenship, 1970; Sira-Ramirez,
1989 a; b; to appear) specified by

lfort, <t<t, + ulx(t)IT
u = i kR=0,1,2,--, (3.2)
0 for tk + u[x(tk)]T <t= tk + T

where u(x(t)) is the duty ratio function generated in a feedback manner from
knowledge of the sampled state vector x(¢) at time £,. The sampling interval T,
also known as the duty cycle, is assumed to be a small constant. As a function of
the state x, the duty ratio function u is a continuous piece-wise smooth function
constrained within the bounds 0<u(x(#))<1. The feedback synthesis problem
is then defined as the problem of specifying a suitable duty ratio function g, in a
feedback manner. The synthesis problem thus entitles a “hybrid” solution

X1<O

X1

Fig. 1. Vertically controlled descent on the surface of a planet.
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scheme, comprising the specification of a sampled piece-wise constant feedback
control action to be exercised on a continuous time nonlinear system. Such a
hybrid problem is, in general, extremely difficult, if one insists on an exact
analysis or design technique. The design problem can thus be solved on the basis
of an approximation scheme. We shall base our approximation scheme on an
average model of continuous nature for the PWM feedback controlled system
(3.1), (3.2) as developed in the Appendix.

A soft landing on the surface x;=0 may be seen as a partxcular case of a
controlled descent toward a sustained hovering about certain pre-specified
height x, =K. Usually, the landing maneuver entitles a regulated descent toward
a small height (typically 1 {mt], or so, i.e., K=—1), on which a short hovering
takes place before the main thruster is safely shut off. The final touchdown stage
is actually a free fall toward the surface from the small hovering height. Taking
the output function of the system as y=h(x)=2x,—K, the problem of sustained
hovering is translated into the problem of zeroing the output y that one can
associate with the nonlinear system (3.1).

According to the results of the Appendix, the average PWM controlled model
of the vertical descent of the controlled spacecraft is given by

d21 _
i
e (20 (2)
a T\ s ML (3.3)
dz-
;; o
y=z - K

where u is the duty ratio function, satisfying the limiting constraints 0<u<1,
acting as the piece-wise smooth control parameter to be designed in a dynamical
feedback manner.

Remark 3.1:  Itis evident from the dynamical system equations (3.3) that the
maximum value of the downwards velocity z, takes place only under free fall
(i.e., uncontrolled) conditions (u=0, z;=constant=M). This maximum velocity
value is precisely given by (gM/y)'2. In such a case, the downwards spacecraft
acceleration is zero. A braking maneuver toward a sustained hovering, starting
from free fall conditions, entitles a negative controlled acceleration until
reaching zero downwards velocity at the pre-specified hovering height z, =K.
At this point the controlled acceleration should also become zero. It follows that,
during the controlled descent, the downwards acceleration is always bounded
above by zero.

3.2 Nonlinear dynamic feedback controller design for the average
PWM soft controlled landing of a thrusted spacecraft We proceed to
specify the Generalized Observability Canonical Form (See Fliess, 1986) of the
average system (3.3) which allows us to derive a nonlinear dynamical feedback
controller for the average slow descent maneuver.

It is easy to verify that for system (3.3), with output equation y=2z,— K, the
rank condition (2.3) holds true for d=3. Since the relative degree of the system
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is r=2, it follows that a=1.
The control-dependent state coordinate transformation (2.5) of the average
PWM controlled system (3.3) is given by (see Conte et al., 1988)

2
2o+ oa
nl-_-zl—K, 772:22, n3=g__l/2_23__#_
_ TR 3.4)
zr=mn + K, z22=m1, 23=fé_—r’—
3

This transformation takes the system (3.3) into the following GOCF:

n =,

My = 1y

) 2yn,g+oap (g—n.)? - (3.5)
= —(g—-n)|—— | + 2yn,— —_—

M, (g 773)[ yr’§+0a,u. (@yn,=an) Yn§+0all

y=m

Thus, the input output representation of the average PWM controlled system is
immediately obtained as

o | 2yygroapn | . (g—5)* _
¥+ (g y)[—y(y.)2+aa”] (2yy~ap) [————y(j)2+oa“] 0. (3.6)

Note that the transformation (3.4) is not defined on the set of points where
23=0. This singularity corresponds to the physical impossibility of having the
total spacecraft mass (fuel mass plus spacecraft “dead” mass) as an non-existing
quantity. In Sec. 3.2, we show, however, that the average closed loop
dynamically controlled system has a globally asymptotically stable equilibrium
point precisely at z;=0.

It is also easy to verify that, in this case, the output n, =z, — K qualifies as a
differential primitive element which allows one to write the average dynamics of
the PWM model (3.3) in GCCF (see also Sira-Ramirez, 1991).

The desirable equilibrium point for the average PWM system, in transformed
coordinates 7, is given by n, =7,=n,=0. i.e., according to the notation of Sec.
2, the set point Y=0. An implicit expression for the required dynamical
linearizing controller described in (2.8) is, hence, given by

2yn,g+oap (g-1n,)°
—(g-n)|—— | + .= —_— 3
= "3)[ Y";Jrgaﬂ (2ym,—an) yn.+oau
=TV T Ve T Yy 3.7)

In other words, by suitably choosing the constant coefficients y,, v, and y,,
the dynamical feedback controller synthesizing the computed duty ratio (hence-
forth denoted by m) accomplishes, within non-saturating conditions for the
actuator’s duty ratio values, any desirable exponential rate of decay on the
relative height, the vertical velocity and the vertical acceleration variables. Such
a dynamical feedback controller, yielding the computed duty ratio m, is
immediately obtained from (3.7), in explicit form, as
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dm _ yny+oam , (g—n,)?
at ~ “oa(g-n,) Y Yy Myt YNyt (27N, am) —YW
2
> 3.9

Note that no singularity is implied by the presence of the factor (g- 773)‘1 in
(3.8) due to the established negativity of the vertical acceleration 7, during the
descent maneuver. In original average coordinates, the dynamical feedback
controller is given by

dm _ z yz5+oam
dt - Uil [YI(ZI—K)+Y222+Y3(g_ Z 23 )
2
_ Y25+ oam _ 2y2g
+ (2yz, am)( 2 )] o " (3.9)

The actual duty ratio function u is obtained by properly limiting between 0
and 1 the values of the computed duty ratio function #, obtained as a solution of
the nonlinear time-varying differential equation (3.9), i.e.,

1 ifm>1,
p=sm f0<m<]l, (3.10)
0 ifm<O.

A block diagram depicting the complete nonlinear PWM feedback scheme for
the dynamically controlled vertical descent is shown in Fig. 2.

3.3 Stability considerations about a sustained hovering condition As
seen before, a hovering condition on y=Y =0, implies a zero equilibrium point
for the relative position coordinate n,, the vertical velocity 7, and vertical
acceleration 7, in (3.5). As it can be seen from the last state equation in (3.5),

L I X
q. Control-dependent | ,, | Low pass
2 1 state coordinate filter X2
. 4, transformation 23 | sensing
Nonlinear —{ devices X3 | Spacecraft
?g:;l;r:ccl?l — dynamics
compensator
u
m 1 U Pulse 1
—— 'i —1 width
gl?tn;‘i};tt?g 1 modulator | 0
Limiter

Fig. 2. Nonlinear dynamical feedback control scheme for
regulation of non-linear PWM controlled system.
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the hovering condition: n,=7,=7,=0, entitles an exponentially stable auton-
omous trajectory for the duty ratio function u, governed by

d—’t‘= —(i)u; (3.11)

i.e., the zero dynamics, as defined in (2.6), of the average PWM system is
therefore globally asymptotically stable to zero.

From (3.4), it follows that, under such a hovering condition, the total mass
behavior is governed by

23 = (—‘;i)u. (3.12)

An autonomous differential equation describing the behavior of the total mass
23 is immediately obtained by differentiating (3.12) and using both (3.11) and
(3.12),

dzz _ (g ),.
at = (0)23, (313)

i.e., the total spacecraft mass z3 (residual fuel mass plus spacecraft “dead”
mass) obeys the same linear differential equation obeyed by the duty ratio
function and it asymptotically converges to zero.

This reveals the consequences of sustaining a hovering condition in an
indefinite manner. Since the total spacecraft mass z; converges to zero, the
equilibrium point is by no means physically meaningful. As a matter of fact, since
the residual fuel mass is depleted in finite time, the control model (3.3) becomes
unrealistic after the fuel mass has been exhausted. In spite of this unrealistic
fact, the controlled descent toward the surface can still be practically performed
at the expense of sustained fuel mass expenditure within an allowable safety
limit in the hovering condition. The final touchdown maneuver, from the
hovering position, may be accomplished via switching off of the main engine,
thus allowing a free fall from the small hovering height, or, alternatively,
resorting to a bang-bang time-optimal maneuver (Meditch, 1964). These
maneuvers must be performed so as to guarantee enough residual fuel for the
ascending stage, if any, later on. The feasibility of the proposed average
solution, thus, entitles introducing a discontinuity in the control action at a
convenient moment to avoid singularities. This scheme for singularity avoidance
is pretty much in the same spirit of the techniques used by Fliess et al. (1990).

We may also establish the stability characteristics of the hovering condition
by resorting to considerations about the normal canonical form and the
associated zero dynamics of the average PWM controlled system (3.3) (see
Isidori, 1989; also Sira-Ramirez, 1991).

Remark 3.2:  An alternative, and possibly simpler, approach’ to the analysis
of the zero dynamics discussed in this section can be carried out by considering
the extended affine system (see Nijmeijer and Van der Schaft, 1990, p. 190) of
(3.3) obtained by just placing an integrator before the average input u.
Consideration of the normal canonical form (Isidori, 1989) and the associated
zero dynamics of the resulting fourth order system leads, precisely, to the same

" This approach was kindly suggested, in full detail, by an anonymous reviewer.
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results obtained above.

A Simulation Example. Simulations were performed for both the average
and the discontinuous controlled landing models discussed above, with the
following constant parameters:

o= 200 [mt/sec], a = 50 [kg/sec],
g = 3.72 [mt/sec?], y=1[kg/mt],
K= -1 [mt].

The three poles of the exactly linearized closed loop system were located at
—1.2 [sec™*]. The sampling frequency for the PWM actuator was set at 5
samples per second, i.e., 7=0.2 [sec]l. On a planet with the given physical
constants, the free fall limit velocity is 51.03 [mt/sec). Figure 3 shows the
evolution of the controlled state variables x; and x5 (height and vertical velocity)
in comparison with their average values z, and 2,. Figure 4 depicts the average
and actual behavior of the spacecraft mass under the designed control policy.
Figure 5 represents the time evolution of the average computed duty ratio » and
the actual (i.e., limited) duty ratio function u during the controlled descent
maneuver. Initial states were chosen, from a free fall condition, at

£,(0) = =500 [mt], =x, = 51.03 [mt/sec], x3(0) = 700 [kg].

or [mt]

-100
i 1 (1), 21(8)

-200}
—300} /

—400} /

—500 . .
>0 0 10 20

Time [sec]

6

(=1

r [mt/sec]

40} x:(0), 2(0)

20t

0 1.0 20

Time {sec]

Fig. 3. Actual and average PWM controlled trajectories
for dynamically feedback controlled position and
vertical velocity state variables.
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800 [kgl

6001 x3(1), 23(8)

4001

2001

0 10 20

Time {sec)

Fig. 4. Controlled behavior of combined spacecraft
and residual fuel mass.

Fdimited
9 duty ratio)

-4 Computed duty ratio
(actual and average)
_6 L
_8 L ) )
0 10 20

Time [sec]

Fig. 5. Average computed and actual duty ratio functions
for soft landing maneuver.

1.5 [kg/mt]

Spatial perturbation of coefficient
of atmospheric resistance
1 -\\ /——
0.5 P
0 . _ i 3 1 " i
-500 —400 -300 -200 -100 0

x; [mt]

Fig. 6. Spatial variation of atmospheric resistance coefficient.

In order to evaluate the controller performance in the presence of unmod-
eled time-varying perturbations in the coefficient of atmospheric resistance, the
value of y in the dynamical system model was assumed to be a function of the
height coordinate x; of the form y=1y +v,(x;), as shown in Fig. 6, with y =1
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[kg/mt] taken as the nominal value of the coefficient y to be used only in the
dynamical controller equations. Figures 7 to 10 depict the behavior of the
average and actual state and control input variables during the perturbed
descending maneuver.

0/ [mt]
-100} (1), z1(8)
-200 ¢

=300
—400 +

—500 : :
0 10 20
Time [sec]

[mt/sec]

40+ xZ(t)v Zz(t)

20+

0 10 20
Time [sec]

Fig. 7. Actual and average PWM controlled position and
vertical velocity state variable trajectories for
perturbed landing maneuver.

800 [kgl

600 x3(8), 23(8)

400f
200t
0 1 1
0 10 20

Time [sec]

Fig. 8. Controlled behavior of combined spacecraft and residual
fuel mass for perturbed landing maneuver.
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(limited
_ 9| duty ratio)

Computed duty ratio
(actual and average)

0 10 20
Time [sec]

Fig. 9. Average computed and actual duty ratio functions
for perturbed landing maneuver.

i

0 10 20

1.5 u(t)

Time [sec]

Fig. 10. Actual PWM thrust control input for
perturbed descent maneuver.

4. Conclusions

A dynamical feedback control scheme of the PWM type has been presented
for the soft landing of a vertically controlled vehicle on the surface of a planet
provided with an atmosphere. An exact dynamical feedback linearization using
Fliess's Generalized Observable Canonical Form was shown to allow an ideal
(average) exponentially controlled descent trajectory toward a preselected
small hovering height with asymptotically stable vertical velocity and vertical
acceleration variables. The derived nonlinear dynamical controller, governing
the landing maneuver, was shown to be asymptotically stable, thanks to the
minimum phase character of the average PWM system. However, an imposed
asymptotically stable behavior in the average controlled state vector not only
implies infinite time reachability of the proposed hovering height but it also
entitles total residual fuel mass exhaustion and a nonphysically meaningful
asymptotic equilibrium point for the total controlled spacecraft mass. In order to
handle this situation, the discontinuous PWM control policy must be necessarily
combined with either a free fall or, alternatively, a bang-bang time-optimal
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strategy for the final touchdown stage of the landing maneuver from the
pre-specified hovering height (see also Sira-Ramirez, 1990). In the appendix of
this article, it is shown in full generality that, for nonlinear single-input
single-output PWM systems, an average designed behavior can be approxi-
mated arbitrarily close by a suitable discontinuous PWM strategy, provided a
sufficiently high sampling frequency is allowed.

The differential algebraic approach and its associated GOCF has been shown
to be of great practical use in the design of nonlinear dynamical compensators.
Its use in sliding mode controller design has also enormous potential in actually
yielding chattering-free feedback control inputs and outputs. This avenue is
currently being explored with preliminary results reported in Sira-Ramirez et al.
(1990).
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Appendix

Generalities about Pulse-width-modulation Control
of Nonlinear Systems

Consider a single input nonlinear dynamical system defined on an open set of
R” described by

= f(x, v) (A.1)
with v a discontinuous feedback control strategy of the PWM type, given by

v*(x) fort, <t=<t, + ulx(t)]IT
v (x) fort, + plxU)IT <t<t, + T

k=0,1,2 -, (A.2)
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where T is a fixed sampling period also known as the duty cycle, t, is the kth
sampling instant and u(x(f)) is a continuous piece-wise smooth feedback
function known as the duty ratio function determining the variable structure
feedback control pulse width during the ongoing inter-sampling interval [,
t,+T]. The pulse width u(x(£,))T is determined at the beginning of each
sampling interval ¢, on the basis of the value of the state vector at such instant
(schemes on the basis of an output function or output error are also possible).
The continuous piece-wise smooth duty ratio function is assumed to be bounded
by O0<u(x(t))<1 for all ¢.

The effect of such a discontinuous feedback strategy on the controlled state
trajectories is to produce a zig-zag motion, very much reminiscent of actual
Sliding Mode Controlled trajectories (Utkin, 1978). The analysis and design of
such class of hybrid systems (A.1)-(A.2) is extremely difficult and can only be
carried out in an approximate manner. However, the inconveniences of the
nonlinear discrete-time approximations can be eliminated, if some smooth
continuous average model is adopted as an approximation for the actual PWM
controlled system. Such a smooth average behavior may be considered on the
basis of a high sampling frequency for systems which are relatively slow as
compared with such fast control changes. In the following paragraphs we justify
the use of an average continuous model based on an nfinite sampling frequency
assumption for (A.1)-(A.2). The advantages of such an averaging procedure,
aside from some intimate connections with Sliding Mode Control (See Sira-
Ramirez, 1989 a; b; to appear), lay in the possibility of using modern nonlinear
feedback control design techniques for the synthesis of the duty ratio function.
Furthermore, the smooth average designed behavior can be arbitrarily closely
approximated by the actual discontinuous feedback controlled trajectories as the
sampling frequency of the PWM actuator is suitably increased within finite
bounds.

Let f(x, v*(x))=X"(x) and f(x, v~ (x))=X"(x). It is easily seen that the
discontinuously controlled model (A.1), (A.2) is equivalent to the following
switch controlled model:

Z—’; = uX*(x) + (1—0)X-(x) = X-(x) + [X* ()= X-(x)]u
A f(x) + g(x)u (A.3)
with

1 for tk <t= tk + u[x(tk)]T

u = i k=0,1,2,---. (A.4)
Ofort, + plx()IT < t=<t, + T

Definition A.1. An average PWM model for the discontinuously controlled
system (A.1)-(A.2) (or equivalently (A.3), (A.4)) is defined by the dynamical
system formally obtained by letting the sampling frequency 1/T of the PWM
actuator grow to infinity; i.e., letting the duty cycle 7+ 0. We shall denote the
state of the averaged system by z(¢) to differentiate it from the state vector z(#)
of the discontinuously controlled system.

Proposition A.1. The average PWM model obtained by formally imposing
an infinitely large sampling frequency, 1/T, for the controlled system (A.3),
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(A.4) is given by

L — yXt @)+ (1-WX @) = X @) + (X @) -X @)u

A f(z) + g(2)p. (A.5)

Proof. See Sira-Ramirez (1989).

Remark A.1: The average PWM model (A.5) has a right hand side which
coincides with the Filippov average vector field (See Filippov, 1988) of X~ (z)
and X*(z), when an infinitely fast switching strategy takes place around a
discontinuity surface on which the resulting controlled trajectory can be locally
sustained. The switching surface is then none other than an integral manifold
for the closed loop system (A.5), and the equivalent control that induces the
manifold invariance is just the duty ratio function u (See Sira-Ramirez (1989) for
more details and connections with sliding regimes of variable structure control).
Note, furthermore, that (A.5) is a linear-in-the-control vector differential
equation formally obtained from the original discontinuous model (A.3), (A.4)
just by replacing the binary control parameter u by the continuous piecewise
smooth duty ratio function p.

The following result states that under identical initial conditions, the
controlled trajectories of the actual discontinuous feedback controlled system
(A.3), (A.4) continuously tend toward the average PWM controlled trajectories
generated by (A.5), as the sampling frequency associated to the PWM actuator
(A.4) is increased without limit. Hence, to arbitrarily closely retain the
qualitative and quantitative stability characteristics of the average PWM de-
signed trajectories, a sufficiently high sampling frequency is required for the
PWM actuator of the actual discontinuously controlled system. This is the key
feature that allows an efficient design scheme based on the continuous average
PWM model.

Theorem A.1. Let u(t) be a given continuous piece-wise smooth duty ratio
function bounded by 0<pu(#)<1. Under identical initial conditions for the actual
and average PWM controlled models, the corresponding controlled state
trajectories of the discontinuous PWM system (A.3), (A.4) continuously and
globally converge toward those of the corresponding average PWM system
(A.5), as the sampling frequency 1/7T grows without bound.

Proof. Note that if, in (A.3) and (A.5), the smooth vector field g(x)=0, the
theorem is trivially true, and, as a matter of fact, both trajectories x(¢) and z()
coincide for all t. The same statement holds true for identical initial conditions
and u(#)=1, or u(t)=0, on open intervals of time. Thus, assume g(x)#0. By
virtue of the Theorem of Rectifiability of Vector Fields (See Arnol’'d, 1988 b, p.
85), there exists a diffeomorphic state coordinate transformation &(-):
R"—»R", vyielding £E=®(x) and {=P(z) for the actual and average state
coordinates, such that in the transformed coordinates the vector field g(x) is
expressed as a constant vector of value, say, b; i.e.,

3 P(x) N, a«p(z)] &) = b
[ P ]xz‘p_,(g)y(d’ (&) = b; [ 9z z=¢“(§)g( (&) =b.
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Evidently, such a diffeomorphic state coordinate transformation is not expected
to produce any particularly special structure on the drift vector fields f(x) and
f(2) in (A.3) and (A.5). We denote the transformed drift vector fields respective-

ly by ¢(&) and ¢(£); i.e.,
[ dP(x) o P(2)

-1 - . _1 -
o ]x=¢_‘(§)f(¢ (&) = ¢(&); [ 52 ]z:(w(;)f(d) (&) = ¢(0).

Then, the controlled dynamical systems (A.3) and (A.5) are expressed, in new
coordinates, as

ds _
T ¢(E) + bu

g _
a3 ¢(&) + bu

(A.6)

with identical initial conditions being assumed (§(¢) = E(fo) =y,).

Let & be any finite time interval containing an integer number N of sampling
periods T; i.e., 7 =NT, with N being of order [K/T], i.e., the order of 7 is
independent of T. The differential equations (A.6) can be equivalently expressed
as integral equations of the form

2 N bt u(t)T

ET) =y, + I P(E(0))do + bk—O_[ do, (A.7)
t =0Js,
4 N fhL+T

87 =y, + J: ¢$(&(0))do + kaOJ. u(o)do. (A.8)
0 - b

Evidently, the sum of integral terms in (A.7) represents a second order
approximation to the sum of integral terms in (A.8). Hence, the integral
equation in (A.8) is a regular second order perturbation, in terms of the sampling
parameter T, of the integral equation (A.7). Indeed, using a Taylor series
expansion of u(o) around #, on each sum in (A.8), one may rewrite Egs.
(A.7)—(A.8) as

g N
L) =y, + I 9(L(0)do + b2 u(t)T, (A.9)

tll

g
E@) =y, + J $(5(0))do
ty

N
+ bkgo[u(tk)ﬂ% LT O(T3)v]. (A.10)

It follows from well known results in the theory of perturbations of integral
equations (See Miller, 1971, p. 273-285), that as the regular perturbation
decreases to zero (i.e., as sampling period T decreases to zero), the solution of
the first integral equation, representing the actual discontinuously PWM con-
trolled system, continuously converges, in a global manner, toward the solution
of the second integral equation representing the average PWM system (See
also, Tikhonov et al. (1988, p. 180-185) for the same basic result in the context
of ordinary differential equations).

The final step in completing a design procedure based on the average PWM
model consists in translating the average continuous stabilizing feedback



320 H. SIRA-RAMIREZ

controller design into a suitable ON-OFF (i.e., discontinuous) feedback control-
ler of PWM nature. Such ON-OFF controller must retain the stabilizing features
of the continuous average designed controller and, at the same time, it should
yield actual discontinuous responses that remain arbitrarily close to the smooth
designed responses. This is primarily accomplished by specifying a sufficiently
high sampling frequency for the actual PWM actuator and, secondly, by suitably
smoothing of the state variables before using them in the synthesis of the
average stabilizing designed controller. The smoothing action may be accom-
plished by introducing low pass filtering effects on the state variables measure-
ments. One then simply relies on the high-frequency rejection characteristics of
most sensing devices.
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