634 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 3, MAY/JUNE 1991

The Adaptation of Perceptrons with Applications
to Inverse Dynamics Identification
of Unknown Dynamic Systems

Hebertt J. Sira-Ramitez, Senior Member, IEEE, and Stanislaw H. Zak, Mémber,IIEEE

Abstract— A new class of adaptation algorithms is propesed
for single and multilayer perceptrons with discontinuous nonlin-
earities. The learning parameters in the proposed algorithms are
adjusted to force the error between the actual and desired outputs
to satisfy a stable difference error equation. The behavior of the
algorithms is illustrated on the application example of inveise

_ system modeling.

. I. INTRODUCTION

HE DEVELOPMENT of the perceptron can be traced
back to the early days of pattern recognition (See [3]-{5],

[7] and [10] for more details). Its application as an adaptive
system fo the control of many degrees of freedom robotic ma-
nipulators was proposed by Albus [1] in 1975. More recently,
Widrow and Winter [7] discussed numerous applications of
perceptrons for adaptive filtering (See also [2] and {10]),
adaptive pattern recognition, and adaptive signal processing. .
A critical role in advancing the practicality of perceptrons,
and neural networks in general, are played by adaptation
algorithms, others are hardware, systems approach, etc. In the
case of the single perceptron one of the most well known
algorithm that minimizes the mean square error between the
desired output and the actual output is -due to Widrow and
Hoff. For the layered perceptron the central role is played by
the back-propagation algorithm (see [7] for historical remarks,

[5] and [8] for the derivation of ‘this algorithm and [9] for -
an example of its application). One relatively minor drawback

of the back-propagation algorithm is the requirement that the
nonlinear activation functions be differentiable, while major
drawbacks are learning speed and scalability.

In this paper, we propose a new class of adaptation, or
training, algorithms for multilayer perceptrons. Our proposed
algorithms, unlike the back-propagation training algorithm, do
not require differentiability along the network’s signal paths.
On the contrary, we consider nondifferentiable activation func-
tions such as hard limiters. In the back-propagation algorithm
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one presents an input to the network and calculates the output
corresponding to the current set of learning paramefers. One
then compares the actual network output with the desired
output and calculates the Euclidean distance between the
actual and desired outputs, called the error function. The
learning procedure aims at minimizing the error function by

- suitable adjustments of the learning parameters. In particular,

one calculates the gradient of the error function with respect
to the learning parameters starting at the output nodes and
working back towards the input nodes through the hidden
layers. Once the gradient is calculated, the learning parameters
are adjusted using the gradient descent method. A substantial
departure from the back-propagation procedure is proposed
in our new training algorithms. Here, the learning parameters
are adjusted to force the error between the actual and desired
outputs to satisfy a stable difference error equation, rather
than to minimize an error function. This approach allows
one to better control the stability and speed of convergence
by appropriate choice of parameters of the error difference
equation. The behavior of the proposed algorithms is illustrated
via the application example. In Section II we briefly review
the celebrated Widrow—Hoff adaptation rule and propose a
new adaptation algorithm for the single perceptron along

- with its geometrical interpretation. In Section III we formulate

new training algorithms for multilayer perceptrons which can
be viewed as an extension of the rule proposed for the
single perceptron. In Section IV we test the proposed training
algorithms on the application example of the inverse system
modeling. Inverse system modeling is an important problem in
control theory. The reason for this is that a number of robust

- control algorithms utilize the inverse model of the plant to be

controlled. Conclusions are found in Section V. Simulations
were performed using the SIMNON package and the programs
are listed in the Appendixes.

II. THE ADAPTATION OF THE WEIGHTS OF A SINGLE
PERCEPTRON

The single perceptron as an adaptive threshold element is
shown in Fig. 1. v
One can use the Widrow—Hoff delta rule (see [7] for

its discussion) to adjust the weights w;(i = 1,2,---,n). The
algorithm can be written as
Wk +1) = W(k)+ 20X a

XTX
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Adaptive
Algorithm

Fig. 1. Single-layer perceptron.

where k is the time index or the adaptation cycle number,
W(k) = [wi(k), ~-,wn(k)]T is the value, at time at time k,
of the weight vector, X [zl, )" is the present input

635

= Ew,(k)x, Ewl(k +1)z;

i=1
= — Z [u),'(k + 1) ~ wi(k)]mi
i=1
— W(k+1) - WkE)]"X
== XT[W(k + 1) - W(k)].

We can now use the proposed update rulé to obtain

pattern, e(k) = ya — y(k) is the present error, and o is the~ Thus, if 0 < & < 2 then

reduction factor whose practical range is (0.1, 1.0).

After some manipulations, one can conclude that the error
is reduced by a factor of o at each new learning iteration
as the weights are changed while holding the input pattern
X fixed [7). More specifically, the error obeys the following
difference equation

e(k+1)=(1 - a)ek).

As one can see from this equation, the choice of « controls
the speed of convergence towards zero of the learning error
signal e.

After discussing the Widrow—Hoff delta rule, we can now
propose a new adaptation algorithm for the single perceptron
shown in Fig. 1.

In order to proceed, we need the following notation:

sgu
SGN X =
Sgn Zn
where
sgn z; = {+1, if:m >0 .
. -1, ifr; <0,i=1,2,-+:,n

We shall present the new algorithm in the following the-
orem. '

Theorem 1: If the weights w; of the single perceptron, shown
in Fig. 1, are adapted according to the rule: '

ae(k)SGN X
"XTSGN X

with 0 < a < 2 (practical range of a is (0.1, 1.0)), then
the error e(k) tends asymptotically to zero with the rate of
convergence (1 — a).
Proof: Note that
e(k+1)—e(k) =ya—y(k+1) -
=y(k) -y(k+1)

.

Wk+1) = Wk)+ 2 )

[ya — y(k)]

e(k+1) — e(k) = —XT a;((f)szcl;qNXX
= —ae(k), if X #0.
Hence
e(k+1) = (1 - a)e(k).
lim e(k) =0.

koo

- Note that in the new adaptation algorithm, as well as in the
Widrow—Hoff algorithm, the etror is reduced by a factor of a.
There are other similarities between these two algorithms. As
we shall show below, they can both be derived using the theory
of quasi-sliding modes in discrete-time dynamical systems. For
this task, we will need the following notation and definitions.
. Consider a dynamical system modeled by the following’
controlled difference equations of the state vector W (k), with
a single output signal e(k) defined by the mapping h:

[ W+ 1) = W (k) U®)
e(k) = H(W(K))

where W (k) € R*,U(k) € R™,e(k) € R.

Consider now the following level curve of the output map:
“H0) = {W € R™le = h(W) = 0}.

Definition 1: A quasi-sliding mode is said to exist on ~(0)

- if there exists a cohtrol law U(k) such that the motion of S

satisfies the relation:
le(k + 1)e(k)| < e2(k)

for e(k) # 0.
One can show that the previous condition is equivalent to
the condition of Sarpturk et al. [11] of the form:

le(k + 1)| < e(k)|

for e(k) # 0. (See also [12] for the discussion of the previous
conditions.) '

We can now look at the proposed adaptation rule (2) and
the Widrow-Hoff delta rule (1) as discrete-time controlled
dynamical systems of the form S, where the weight vector
W (k) is viewed as a state vector at time k, and the correction
terms of the present value of the weight vector are viewed as
controllers U(k) (where m = n), and the error signal e(k) is
viewed as the single output signal.

Duly armed with the previous definitions we can now prove
the following statement.
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Theorem 2: The update correction terms for the weights in
the controlled dynamical systems represented by the adaptation
rules (1) and (2) guarantee the existence of a quasi-sliding
~ mode on the zero learning error set h=1(0). .

Proof: Note that in both algorithms (1) and (2), the error
satisfies the difference equation

e(k+1)=(1- a)e(k)

from where it follows that e(k) # 0 and 0 < o < 2 (practical
range (0.1, 1.0)

le(k + De(k)] = (1 = a)e* (k)] = |(1 = a)le®(k) < €*(k).

The proof is a sufficient condition for a quasi-sliding mode
to occur.

In what follows, we shall give a geometrical interpretation
of the convergence of the proposed adaptation algorithm (2).
Note that i

W(k+1) = W(k) + U(k)

where

ac(k) SGN X

XTSGN X

Thus, the correction vector U (k) always updates the weight

vector W (k) in the direction of the line passing through the
vertices of the hypercube H = {W € R*| -1 < w; < + 1
1 = 1,2,.--,n} corresponding to the vectors SGN X and
SGN(--X) with the coefficient of proportionality given by

ae(k)
XT SGN X
even if X does not lie on a vertex of the hypercube H. The
correction term U(k) is always pointing to the same orthant
where X lies, provided e(k) > 0 and it points to the opposite
orthant where X lies whenever e(k) < 0. This is illustrated
in Fig. 2 for n = 2.

We can now present new adaptation algorithms for the three-
layer perceptron. The proposed algorithm is an extension of
the training algorithm for the two-layer perceptrons presented
in [6].

Uk) =

III. ADAPTATION ALGORITHMS FOR MULTILAYER
PERCEPTRONS

In this section we will be concerned with multilayer per-
ceptrons that are feedforward networks with one or more
layers of nodes between the input and output nodes [4]. It
is generally acknowledged that the applicability of multilayer
neural networks is highly dependent on the efficiency of the
training algorithms. One of the best known training algorithms
for multilayer perceptrons is the back-propagation algorithm
[8]- A disadvantage of the back-propagation algorithm is the
inherent requirement of continuous differentiability of the
nonlinearities. ‘

In this section we propose a ncw class of training algorithms
for the multilayer perceptrons with discontinuous nonlineari-
ties. In our analysis we shall utilize the structure depicted in
Fig. 3.

y=0 yk)  yk+1)

Fig. 2. Geometrical interpretation of the dynamical behavior of algorithm
(2) when e(k) > 0. (Notice that when e(k) < 0,T7(k) will be directed in
the opposite direction.)
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(a) Model of a single neuron. (b) Symbel for a single neuron. (c) A
three-layer adaptive perceptron.
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Fig. 3.

A. Notation and Some Definitions

The kth output of the network in Fig. 3 is obtained as the
weighted sum of the outputs of the first hidden layer
’nl}i
Yox = 24 lejn(k)ZlHj(k),

7=l

5:1127"'1”‘0

where njy is the number of neurons in the first hidden layer,

‘n, is the number of the network outputs, and 2; u; are the

binary outputs of the neurons in the first hidden layer. The
time varying quantities wyzx represent the interconnection
weights between the first hidden layer and the outputs of the
net. In vector notation

Yor = Wiy (B))” Zu (k),

where

K=1,2,"',7I.0

wig1x(k)

. wia2x(k)
WfH(k) =

Wikn, e (k)
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Fig; 4. Schematic representation of the three-layer adaptive perceptron from Fig. 3.

and
21, (k) sgn y1a1 (k)
, 211, (k) sgn y1x2(k)
Z1Hnyy (k) BN Y1Hn,
=:SGN Yig(k) ~
where '
. la if Y1Hk > 0
SgnylHn“{_l’ if yige <0, &=1,2,---,7m0. .

If we denote by W g the matrix of column vectors W%, , then
the vector Y, (k) of the output components y,,.(k) is obtained
as (see Fig. 4)

Yo(k) = Wi (k)" Z1n (k). )

Note that Wiy € R™#%™,
The analog outputs of the neurons in the first hidden layer
are given by

n2H

Yitn(k) = D wartmn(K)z2mm (k)

m=t
= Wiy (B Zon(k), n=1,2,--,mp
where
[warr1a (k)
wa2n (k)

Wik (k) =
L “)Zan}.,n(k)
and _
M zam1(k)

zam2(k)
Zon(k) =

L22Hnan (k)

Denote by Way the matrix of column vectors W3;. Then the
vector of the analog neuron outputs Y;y of the first hidden
layer is (see Fig. 4)

Yin(k) = Wan (k)" Zon (k). @

Note that Wog (k) € R™#*™#_ Observe that
Zop(k) = SGN You(k).

The components of the vector Yo (k) are the analog outputs

" of the neurons of the second hidden layer given by

7y
vomi(k) = Y wra(k)a;
i=1

= [Wik)"X, =1, nom
where
[wru(k)
wra(k)
Wi(k) =
Lwrn1(k)
and
fe
Z2
X =
LZn;

If we denote by W; the matrix of column vectors Wi(k)
then the vector Yoi (k) of the analog neuron outputs of the
second hidden layer is (see Fig. 4)

Yor (k) = Wi (k)] X ®)
where
Wi(k) € RMX™=H,

Let Y; denotes the vector of desirable output values with
components, Yac;k = 1,2,--+,n,. The error vector E(k) at
time k is then obtained as

€1(k)

E(K) = =Y;-Y,(k). - (6)

en, (k)
Let the weights update law be represented in general by the
following equations:
winjx(k + 1) = winje(k) + vam;c(k)
wWoHmn (k + 1) = worrmn (k) + u2tmn (k)
writ(k + 1) = wra(k) + vra(k)
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or, in matrix notation:

WlH(k +1)= le(k) + UlH(k)
Won(k +1) = Wag(k) + Uzg (k)
Wi(k + 1) = Wi(k) + Uy (k)

where Uig(k) € R™M#EX"e Uyy(k) € RM#EX™H  and
Ur(k) € R™1xm2# are the correction matrices updating the
weight matrices at time k. In Fig. 4 we represent schematically
the thrée-layer adaptive perceptron using the above notation.
The proposed matrix representation of the considered neural
network greatly facilitates its further analysis.

" B. Description of the Algorithms

The following lemma will be used in the subsequent con-
siderations.

Lemma 1: The error vector E(k) satisfies the following
difference equation as a function of the input and hidden layers
matrix update control weights Uy g (k), Usg (k), and Uy (k):

E(k+1) - E(k)

= [WlH(k)]T{SGN Yim(k) - SGN{[WZH(Ic)

+Uan ()] SGN(Yan (k) + Wk X) }}
- [ )T SGN{[WZH(k) + Uan(k)T

' SGN(Yam (k) + [U,(k)]TX)} )

Proof: One can check that the following string of equal-
ities is satisfied

E(k+1)~ E(k)=Y,(k) - Yo(k+1)
= Win(b)]" Z1a(k) = [Win(k+ D))" Zia(k + 1)
= [Wia ()] Z1u(k)
= [Win(k) + Uin(0))” Zia(k +1)
= [Win (k)" [Z1r (k) - Ziu(k + 1)]
=[O (k)] Zin(k +1)
= [Wia(k)] TISGN Yiu(k) — SGN Yig(k + 1))
~ U1 (K)]"SGN Yig(k +1). ®

Note that
Yin(k+1) = [Wag(k + )|" Zog(k +1)
= [Wan (k) + Uzn (k)] "SGN Yau(k + 1)
= [Wan(k) + Ugy(k)]TSGN([WI(k + 1)]Tx)

= (War (k) + Uz (k)]
-SGN([W,(k) +Ur (k)7 X).

Substituting this equation into (8) yields
E(k+1)-E(k)

| =[WlH(k)]T{SGN Vi (k) = SGN{ (Wan (k)

+ Un(k)T SGN([Wi(k) + UI(k)]TX)}}

- [Ulg(k)TSGN{[WQH(k)+ Uan (K)]7
 SGN([Wi(k) + Ur(W)TX) }.

Upon substitution of (5), the last equation is seen to coincide
with (7).

We shall now present the new training algorithm for the
three-layer perceptron (see Fig. 3) in the following theorem.

Theorem 3: If the weight correction matrices Uy (k), Uag (K),
and Uy y(k) are, respectively, chosen as

2[SGN X|[Yau (k)"

Urlk) = ==~ yrsaN x ®
__2[SGN Zoy(D)|Vin(W)I”
Uz (k) = — ZL (k) SGN Zyy(k) (o
and
[SGN Ziu(K)[AEK)]T '(11)

k)= 5 -
Urn( )-k 7T (k) SGN Zy (k)
then the learning error vector E(k) satisfies the following

asymptotically stable difference equation
E(k+1)=(I - A)E(k) (12)

where A is an n, X n, diagonal matrix chosen as

(431 0 0

0 0
A= o2

0 0

0 0 o

such that {1 — ax]| < 1, & = 1,2, -, ng (Practical range for
ay is (0.1,1.0)).

Proof: Note that the transpose of the weight correction
matrix Uz(k) is given by
_ 2 (R)SGN X]” -

[SGN X]TX
Substituting this last expression into the error difference equa-
tion (7) gives

E(k+ 1)~E(k)

[Ur(k)T = (13)

=[ng(k)]T{SGN Yiu(k) + SGN{[WgH(k)’

-+ UzH(k)]T SGN YQH(E)}}

+ [Um(k)]TSGN{[WzH(k)
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+U,n (k]T) SGN You (k)}
=[W1H(k)]T{ZlH(k) + SGN(YIH(k)
+ [Uan () Zan ()}
+ [U@(k)lTscN{m(k)

" [Uw(knTzw(k)} e

Upon substituting the transpose of the weight correction matrix
U, (k) into (14) yields
E(k +1) - E(k) = ~[U1a(k)|"SGN Yin (k)
= ~[U1g(k)]” Z1u (k). (15)
Finally, substituting the transpose of the weight correction
"matrix Uyg(k) into (15) we obtain (12).
Remark 1: Notice that A may also be chosen as an arbi-
trary nondiagonal matrix such that the matrix [I — A] has its

eigenvalues in the open unit circle of the complex plane.
Remark 2: Observe that
SGN Z;y(k) = Z;u(k), i=1,2
and that .
(Z:(K)]"SGN Zin (k) = Z; (k) Zins (k)
=Ny, 1=1,2.

Utilizing the above relations we can represent the weight
correction matrices Upg(k) and Upg(k) in the following
form:

Uanr(k) = _2_32!!%2):&@ o
T
Ui (k) = %Eﬁk)] ar)

Observe also that instead of the weight correction matrix
Uy (k) given by (9) one may utilize the following alternative
form:

2X Y (k)

Ul(k) = XTX

)

IV. APPLICATION EXAMPLE

In this section we test the proposed training algorithms
given in Theorems 1 and 3 on an application example. In this
example we will be dealing with the problem of the inverse
dynamics identification of an unknown dynamical system
according to the scheme shown in Fig. 5. For more details
about the inverse modeling problem, the reader is referred to
{7, p- 30]. In the simulations, the “unknown” dynamical system
is described by the following equations:

) = T2
T =221 —2x2+u
y=2x.
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y.4
input
signal * Unknown v’ Yn
- Dynamical p—» Perceptron -
ulty System

Adaptive
Algorithm o)

(optional delay)

Fig. 5. Block diagram of the inverse dynamics identification scheme.

input signal=y

delay = 0.1 sec.

output .
signal  yp

Adaptation
Algorithm

error signal
e

Fig. 6. Structure of the single-layer perceptron used to identify the
: inverse dynamics of the unknown system.

AN
o u)
“ ynlt) g
‘ -
0
) sec
0 10 20 30

Fig. 7. Time history of (u)t and ya(t) for the single perceptron. The
program where the three-layer perceptron is used as an inverse dynamics
identifier in Appendix 1L

The input signal to the perceptron is provided by means of
the delay elements arranged in a transversal filter scheme as
depicted in Fig. 6. .

The input signal to the system u(t), and the output yy(t)
of the perceptron are shown in Fig. 7. The program for
the inverse dynamics identification using single perceptron is
attached in Appendix I.

The structure of the three-layer perceptron used to identify
the inverse dynamics is depicted in Fig. 8. For more details
see Appendix IL

In Fig. 9 we show a discontinuous input signal u(¢), and
the perceptron output signal y,(t) corresponding to the output
of the dynamical system inverse which tries to reconstruct the
original input signal.
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Fig. 8. A three-layer perceptron used in the simulation experiment (s¢¢ Appendix 1I for more details).

The program where the three-layer perceptron is used as an
inverse dynamics identifier is listed in Appendix II.

V. CONCLUSION

In this paper we have proposed new adaptation algorithms
for single and multilayer perceptrons with discontinuous non-
linearities. The behavior of the proposed algorithms was
tested on the application example and simulation results were
included. The simulations shown in this paper were performed

using the SIMNON package developed by the Swedish re--

searchers for the purpose of simulation of nonlinear systems.

The obtained results in this paper can be used to control
unknown dynamic systems using neural controllers. Indeed,
many robust control algorithms utilize the inverse dynamics of

«

ArpENDIX |

2 :
N ( \ '

¥alt)

time (sec)

0 5 10 15 20

Fig. 9. Time history of u(t) and y.(t) for the three-layer perceptron.

the plant to be controlled. Thus, the proposed structures where
the perceptrons are the inverse system model identifiers should
constitute a part of the controller. Research in this direction
is now underway.

SIMNON program for the inverse dynamics identiﬁcatioh using single perceptron.

Discrete System Perceptron-1

input u y .
state wl w2 w3 wd wd wb z1 22 23 24 25 26

new nwl nw2 nwd nw4d nwb nwb nzl nz2 nz3 nzd nz5 nz6

time ¢

Atsamp ts

‘nzl = 22

nz2 = 23

nzd =24 .

nzd = 26

nz6 =y

nwl = wl + ul
nw2 = w2 4+ u2
nwd = w3 + u3
nwd = w4 + ud
nwd = wd 4+ ud
nwé = w6 + ub



SIRA-RAMIREZ AND ZAK: ADAPTATION OF PERCEPTRONS 641

ul = a*e*sign(z6)/d

u2 = a*e*sign(z5)/d

u3 = a*e*sign(z4)/d

ud = a*e*sign(z3)/d

ub = a*e*sign(22)/d

ub = a*e*sign(z1)/d

d = z1*sign(z1) + 22*sign(z2) + z3*sign(z3) + z4*sign(z4) + z5*sign(z5) + z6sign(z6)
e=yd—y

y = wl*z6 + w2*25 4+ w3*24 + wi*23 + wh*22 4+ wb*z1

yd=1u

Continuous system Plant Connecting system Invcon 1
output u y time ¢

state g1 22 u[Perceptron-1] = ufPlant]
der drl dz2 y[Perceptron-1] = y[Plant]
time ¢ : end

drl = z2

dz2 = -2%21 - 2*22 4+ u

y==zl ’

u= if t < 5 then 1 else if £ < 10 then 2 else 1

end

Appenpix 11
SIMNON program for the inverse dynamics identification using three-layer perceptron.

Continuous system Perceptron-3

input u y

state w1l w12 w13 w21 w22 w23 w3l w32 w33 wil w2 wi3d w5l wd2 ws3

state w61 w62 w63 woll wol2 wol3d wo2l wo22 wo23 wo3l wod2 wo33

state 22 23 z4 25 26 wsl ws2 ws3

new nwll nwl2 nwl3 nw2l nw22 nw23 nw3l nw32 nw33 nwdl nwi2 nwild nwdl nwsd2 nwi3
new nwbl nw62 nwé3 nwoll nwol2 nwold nwo2l nwo22 nwo23 nwo3l nwo32 nwo3d

new nz2 nz3 nzd nzb nz6 nwsl nws2 nws3

time ¢ S

tsamp £s (continued)

21=v : ud2 = ~2*(y2*sign(z4))/d
nz2 = z1 udd = ~2*(y3*sigu(z4))/d
nz3 = 22 ubl = ~2*(yl*sign(25))/d
nz4 = 23 , u52 = —2*(y2*sign(z5))/d
nzd = 24 . ub3 = —-2*(y3*sign(25))/d
nz6 = 25 ubl = —2*(y1*sign(z6))/d
nwll = wil + ull u62 = —2*(y2*sign(26))/d
nwl2 = wl2 + ul2 ; u63 = —2*(y3*sign(z6))/d

nwl3 = wl3 + ul3
nw2l = w2l + u2l
nw22 = w22 + u22
nw23 = w23 + u23
nw3l = w3l + u3l
nw3d2 = w32 + u32
nw33 = w33 + u33
nwil = wil + udl
nwd2 = w42 + u42
nwdd = w43 + ud3
nwbl = wbl + u51
nwS2 = w52 + u52
nwb3 = wh3 + u53
nwb6l = w6l + ubl

ql = (ss1*a*e)/3

q2 = (ss2*a*e)/3

g3 = (ss3*a*e)/3

rll = —2*yol*s1/3
712 = —2*y02*51/3
713 = —2*y03*s1/3
r21 = —2*yol*s2/3
722 = —2*y02*s2/3
r23 = —2*yo3*s2/3
r3l = ~2*yo1*s3/3
732 = —2*y02*s3/3
733 = —2*y03*s3/3

yl = wil*z1 + w21*22 + w3l*2z3
+w4l*z4 + w51*z5 4+ w61* 26
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nw62 = w62 4+ u62
nw63 = w63 + ub3
nwoll = woll 4 rll
nwol2 = wol2 + rl12
nwol3 = wol3 + r13.
nwo2l = wo2l + r21
nwo22 = wo22 + r22
nwo23 = wo23 4 r23
nwodl = wo3l + r31
nwold2 = wo32 + r32
nwo33 = wo33 + r33

nswl = wsl + ql
nsw2 = ws2 + q2
nws3d = wsd 4 ¢3

ull = —2*(y1*sign(z1))/d
ul2 = -2*(y2*sign(21))/d
ul3 = ~2*(y3*sign(z1))/d
u2l = ~2*(y1*sign(22))/d
u22 = —2*(y2*sign(22))/d
u23 = ~2*(y3*sign(22))/d
u3l = —2*(y1*sign(z3))/d
u32 = ~2*(y2*sign(23))/d
u33 = ~2*(y3*sign(23))/d
udl = —-2*(y1*sign(z4))/d
Continuous system Plant
output u y
state z1 22 ~
der dx1 dz2
time ¢
drl = -
dr2= -2l -2'224u
y==zl
u=if t < 5 then 1 else if £ < 10 then 2 else 1
end
REFERENCES
[1} I.s. Albus, “A New approach to manipulator control: The cerebellar

121
3]
4]
5]
(61

7

8

-—

9

f10]
(11]

model articulation controller (CMAC)” Trans. ASME, J. Dyn. Syst.
Measurement Contr., vol. 97, series G, no. 3, pp. 220-227, Sept. 1975.
K.1. Asttom and B. Wittenmark, Adaptive Control. Reading, MA:
Addison-Wesley, 1989.

S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Networks, vol. 11, no. 1, pp. 17-61, 1988,

R.P. Lippmann, “An introduction to computing with neural nets,” JEEE
ASSP Mag., vol. 4, pp. 4-22, Apr. 1987. :

Y. H. Pao, Adaptive Pattern Recognition and Neural Networks. Read-
ing, MA: Addlson-Wesley 1989,

S.H. Zak and H.J. Sira-Ramirez, “On the adaptanon algorithms for
generalized perceptrons,” in Proc. 8th Int. Congress of Cybemettcs and
Systems, New York, June 11-15, 1990.

B. Widrow and R. Winter, “Neural nets for adaptive filtering and
adaptive pattern recognition,” Computer, vol. 21, no..3, pp. 25-39,
Mar, 1988. - :
D.E. Rumelhart, J.L. McClelland, and the PDP Research Group,
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. Vol. 1: Foundati Cambridge, MA: MIT Press, 1986.
S.S. Rangwala and D.A. Dornfeld, “Learning and optimization of
machining operations using computing abilities of neural networks,”
IEEE Trans. Syst. Man Cybern., vol. 19, no. 2, pp. 299-314, Mar./Apr.
1989.

S.‘Haykin, Introduction to Adaptive Filters.
1984,

S.Z. Sarpturk, Y. Istefanopulos, and O. Kaynak, “On the stability
of discrete-time sliding mode control systems,” IEEE Trans. Automat.
Contr., vol. AC-32, pp. 930-932, Oct. 1987.

New York: Macmillan,

y2 = wl2*21 + w22*22 + w32*23
+w42*z4 + w52* 25 + w62*26
y3 = wi3*21 + w23*22 + w33*23
+w4d3*24 + w53* 25 + w63"26
s1 = sign(yl)
$2 = sign(y2)
83 = sign(y3)
ss1 = sign(yol)
832 = sign(yo2)
883 = sign(yo3)
yol = woll*sl + wo21*s2 + wo31*s3
yo2 = wol2*sl + wo22*s2 + wo32*s3
y03 = wol3*sl + wo23*s2 + wo33*s3
dl = z1*sign(z1) + 22*sign(22) + 23*sign(23)
d2 = z4*sign(z4) + z5*sign(z5) + 26*sign(26)
d=dl+d2
yn = wsl*ssl + ws2*ss2 + ws3*ss3

yd=u
e=yd—yn
ts=t+h
h:01
a:0.6

end

Connecting system Invcon3
time ¢

u[Perceptron-3] = u[Plant}
y[Perceptron-3] = y[Plant] ’
end
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