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Differential algebraic approach in non-linear dynamical
compensator design for d.c.-to-d.c. power converters

HEBERTT SIRA-RAMIREZ} and PABLO LISCHINSKY-ARENAS}

A non-linear dynamical compensator design, based on Fliess’ generalized con-
troller canonical form for non-linear dynamical systems, is proposed for the
asymptotic stabilization of output load voltage, or current, in pulse-width-modu-
lation controlled d.c.-to-d.c. power supplies. The technique rests on the recently
introduced differential algebraic approach to the study of controlled dynamical
systems.

1. Introduction

In recent years, differential algebra (see Kolchin 1973, Kaplansky 1957) has.
been introduced as a general tool in mathematical physics and control theory.
Major contributions in these application fields are mainly due to Pommaret (1987)
and Fliess (1988, 1989 a, b, c, 1990). In a series of outstanding recent articles Fliess
has used differential algebra for the study of linear and non-linear lumped, or
distributed, controlled dynamical systems. A number of long standing problems in
automatic control theory, such as feedback decoupling, invertibility, model match-
ing and realization, have been conceptually clarified and generalized by Fliess in a
powerful and most elegant manner. Crucially based on the extension to differential
fields of the theorem of the primitive element (Kolchin 1973, p. 103), any controlled
dynamical system, described by a set of forced ordinary différential equations, was
shown to possess a generalized controller canonical form (GCCF) depending on the
input and a finite number of its time derivatives (Fliess 1989 b). Such canonical
form is obtainable by means of state co-ordinate transformations which are, in
general, control-dependent and, possibly, including a finite number of the control
input time derivatives. As a direct consequence of this result, the problem of
feedback linearization of a controlled dynamical system is always trivially solvable,
in a local manner, using non-linear dynamical feedback. The linearizing compensa-
tor is clearly suggested by the canonical form itself. However, the asymptotic
stability of the linear closed loop dynamics, around an equilibrium point, crucially
depends on the minimum phase character of the non-linear GCCF on such a point.

In this article, Fliess’s GCCF (Fliess 1989 b) is used for synthesizing non-linear
dynamical compensators which asymptotically stabilize, to a preselected desirable
constant value, the output (load) voltage, or current, of typical configurations of
pulse width modulation (PWM) controlled d.c.-to-d.c. power converters. Due to
stability considerations on the non-linear compensator dynamics, the output load
voltage must be indirectly controlled via input inductor current control in all the
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converter cases studied here. The non-linear compensator design is based on the
infinite frequency average model of the PWM regulated converter (see Sira-Ramirez
1987, 1989 a, b, 1990a, b, Sira-Ramirez and Ilic 1989). In such an average model the
piece-wise smooth feedback control action is represented by the duty ratio function
of the PWM actuator. An exact dynamical feedback linearization is simply accom-
plished by equating the last differential equation, in Fliess’s GCCF of the average
PWM model, to a stabilizing linear state feedback controller equation (see Fliess,
1989b). This equality yields a dynamical compensator represented by a non-linear
time-varying differential equation for the required stabilizing duty ratio function.
The transformed linear average plant dynamics is chosen so as to yield asymptoti-
cally stable responses toward the desired equilibrium point. The corresponding
actual discontinuous PWM controller design is then easily obtained, in a well-
known fashion (Sira-Ramirez 1990 a), in terms of the derived average stabilizing
controller.

The load voltage stabilization of the Cuk converter, the Boost converter, and
the Buck-Boost converter cases are treated in full detail in this paper. Simulations
are provided which assess the local nature of the stabilizing properties of the
proposed non-linear dynamical controller design. It should be pointed out that if
direct output load voltage control is attempted for any of the above mentioned
converters, the average dynamic linearlizing compensator is unstable around the
desired equilibrium point. This is due to the non-minimum phase characteristics of
the GCCF of the non-linear converters plant when the output load voltage, or
current, is used to generate the output error (load voltage, or current, control
mode). On the other hand, indirect average output load voltage control is entirely
feasible through an input inductor current control mode strategy. This is possible
thanks to the minimum phase character exhibited by the input—output plant
behaviour when the input inductor current is taken as the output variable to be
regulated.

Section 2 presents Fliess’s derivation of the GCCF form and demonstrates, via
linearized analysis, that in order to obtain a stabilizing compensator design, a
minimum phase plant behaviour is required. Section 3 obtains the compensators
which exactly linearize the converters dynamics and presents some simulation
examples. Section 4 is devoted to the conclusions. The required background on
differential algebra, used in § 2, is presented in the Appendix.

2. Differential algebra approach to systems dynamics

In this section, Fliess’s derivation of the GCCF for non-linear dynamical
systems is presented. The results are directly taken from Fliess (1989 b), but they
are presented here for the sake of self-containment, The background results on
differential algebra (sec also Kolchin 1973, Kaplansky 1957) are contained in the
Appendix.

2.1. Fliess’s generalized controller canonical form for non-linear systems and
exact dynamical feedback linearization (Fliess 1989 b)

Let u be a differential scalar indeterminate and let k be a ‘differential field’, with
derivation denoted by d/dt. A ‘dynamics’ is defined as a ‘finitely generated differen-
tially algebraic extension’ K/k {u) of the differential field k{ud. The input u is said
to be independent if u is a ‘differential transcendence basis’ of K /k. Suppose
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X =(xy, X5, ..., X,) is a non-differential transcendence basis of K/k<{u). It follows
that the derivatives dx,/dt (i =1, ..., n) are k{u)-algebraically dependent on the
components of x. Thus, there exists exactly #n polynomial differential equations of
the form

P,(dx;/dt, x,u,duldt, ... ,duldt)y =0; i=1,..,n (2.1)

implicitly describing the controlled dynamics. Under the assumption that such
equations can be locally solved in ‘normal form,’ i.e. as

dx;[dt =p,(x,u,dufdt, ... duldt"); i=1,..,n (2.2)

one obtains a non-redundant description of the dynamics. Such is not the case if
one uses a generator system of K/k{u) which strictly contains a transcendence
basis. Any other transcendence basis, say z =(zy, z,, ..., z,) also qualifies as a
‘state’ and similar expressions can be obtained for the given dynamics. The
.components of x are k (u )-algebraically dependent upon the components of z, and
vice versa. Such transformations, from one state to another, involve equations
dependent upon the control input » and its derivatives. It should be pointed out
that even if (2.1) is in polynomial form, it may happen, in general, that (2.2) is not.

According to the theorem of the differential primitive element (Kolchin 1973),
there exists an element ¢ € K such that K =k{u, ¢). The (non-differential) tran-
scendence degree n of K/k{u) is the smallest integer such that £ is k (u)-alge-
braically dependent on &, d&/dt, ..., d"~VEfdt™ =D, We let q, = ¢, q,=dE|dt, ...,
g, =d"~VE[dt" =V, 1t follows that ¢ =(q,, ..., g,) is also a transcendence basis of
K/k{u). One, hence, obtains a non-linear generalization of the controller canonical

form
-
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where C is the polynomial with coefficients in k. If one can locally solve for the time
derivative of g, in the last equation one obtains an explicit system of first order

differential equations, known as the generalized controller canonical form (GCCF)
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‘Exact dynamic feedback linearization’ is simply achieved by equating the
expression in the last differential equation to a (stable) linear equation in
the components of g, possibly including an external reference input signal », as
follows

C(q, u, a’ il', CEER! u(")) = =0 gy — %= . — 0, g, +Kv (25)

The last equation implicitly defines a dynamical non-linear state feedback law
which accomplishes an exact linearization of the non-redundant dynamics. In some
instances, the implicit equation (2.5) does not globally admit a state space represen-
tation and may even exhibit impasse points, typical of some non-linear dynamical
circuit examples (see Fliess and Hassler 1989). The obtained linear system has
prespecified asymptotic stability properties chosen by means of the a’s. However, u
and its time derivatives must be synthesized.

2.2. Stability considerations on exact dynamical feedback linearization

It is evident that the non-linear dynamical feedback linearization presented
above is based on exact cancellation of the non-linear plant dynamics by means of
the proposed controller. One intuitively expects that the cancellation may lead to
internal instabilities in some special instances. That such is, indeed, the case can be
easily demonstrated by performaing a straightforward linear analysis of the GCCF
and of the proposed dynamical feedback scheme around a constant equilibrium
point.

Consider y = g, as the output of the system (2.4) and let @, and U be a constant
equilibrium point for y and u, respectively. Let @ =(@,,0, ... 0) denote, then, the
state equilibrium vector, i.e. ¢«(@;, 0, ... 0, U, 0, ... 0) = 0. Linearization about (Q, U)
yields

~

d

E g51 =45

d

ar 952 =495
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where y;i=y — Q1 dui=i =0, i=2,..,n; u(:=u—U, and u) = dOuldt®,
i=1,2,...,v. The constant coefficients in (2.6) are obtained from

0
‘y‘.=—c- N i=1,2,...,n
6qi g=0,u=U
oc
B._—.——j‘ 5 j=1,2,...,v
7 oul) = 0.u=U
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Model (2.6) can be conveniently described in terms of the rational transfer
function

Bo+Bis+..+Bs"
G(s) = ys(8) Jus;(s) =—— — 2.7
®) = @us(s) =22 2.7
Notice that, due to minimality of the state dimension, a pole-zero cancellation

in (2.7) is not possible.

Definition

The non-linear plant (2.4) is said to be minimum phase in a neighborhood of the
equilibrium point (Q, U), if and only if the linearized transfer function G(s), in
(2.7), is minimum phase, i.e. poles and zeros of the transfer function G{s) lie in the
left half of the complex plane.

The incremental transfer function of the exactly linearized plant is easily seen to
be given by
1
G0 = =— — 2.8
4O =¥sOfeslS) =2 | s+ T (2.8)

On the other hand, the linearized transfer function of the compensator is given
by

us(s) = §

Bot+Bis+,....,+ B85
i (0 — 2451 (8) + (2 = %2)452(5) + - + (¥ — ¥ )G5n(5)
B0+ﬂls +9 CEEN) +ﬁvsv

whose stability characteristics crucially depend upon the nature of the roots of the
polynomial equation

vs(s)
(2.9)

Bo+Bis+, ...+ Bs" =0 (2.10)

which just yields the zeros of the linearized transfer function G(s) of the plant.

We have thus proved the following proposition.

Proposition 2.1

The dynamical compensator (2.5) yields a stable closed loop linearization
around a given equilibrium point if and only if the GCCF (2.4) is minimum phase
at such point.

Remark

Evidently, the exactly linearized closed loop system is made locally asymptoti-
cally stable via exact pole—zero cancellation imposed by the compensator dynamics.
Such a cancellation is valid only if the linearized transfer function of the plant, G(s),
is minimum phase. Otherwise, the controller design is unstable. Thus, in order to
obtain a locally asymptotically stable behaviour of the closed loop system, toward
the required equilibrium point, the open loop linearized plant transfer function G(s)
in (2.7) must be minimum phase. The local stability implications of these facts,
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corresponding to the original non-linear case (2.4)-(2.5), depicted in proposition
2.1 are obvious, by virtue of Lyapunov’s first stability theorem (see for instance
Verhulst 1990, Chap. 7).

3. Nonlinear controller design by exact dynamical feedback linearization in
d.c.-to-d.c. power converters
3.1. Cuk converter
Consider the Cuk converter model (Middlebrook and Cuk 1981) shown in Fig.
1. This ubiquitous converter, which is the topological dual of the boost converter,
is described by the following bilinear state equation model

dx,|dt = —w x;, + uw, x, + b
dx,/dt = o X, — uw x| — Uw, X, (3.1
dx;[dt = — X3+ uw, x,

where, x, =1, \/ L,x,= VZ\/ C,and x; = 13\/ L, represent normalized input induc-
tor current, transfer capacitor voltage and output inductor current variables,
respectively. The quantity b = E /\/ L, is the normalized external input voltage. The
converter parameters are defined as w, = 1/\/L, Gy, wy= 1/\/L3 C, and w, = R/L;,
these are, respectively, the L - C input circuit natural oscillating frequency, the L-C
output circuit natural oscillating frequency and the R-L output circuit time
constant. The variables u denotes the switch position function, which acts as a
control input, taking values in the discrete set {0, 1}. We demonstrate that, in order
to apply the dynamical feedback linearization design method, a convenient output
variable y is represented by the normalized input inductor current x,(#).

The discontinuous feedback control strategy is usually specified on the basis of
a sampled closed loop PWM control scheme of the form (see Skoog and Blanken-
ship 1970)

Yy {1 for t, <t <t + ulx(@)IT

3.2
0 for t, +ulx(IT <t <, +T (3.2)

where p[x(t,)] is known as the duty ratio function, which is generally represented by
a piecewise smooth feedback function of the converter state (or of some related
variables such as sampled output error e(t;):=y, — y(t) = ya — X,(t,)) which sa-
tisfies the natural bounding constant: 0 < ux(#,)] < 1, for all sampling instants #,.
T is known as the duty cycle determining the time elapsed between sampling
instants, i.e. t, ., =t +T.

L, ]
Tl g
E —_ 1 '\ To R

I —

Figure 1. The Cuk converter.
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Remark

The ‘average PWM model’ of the controlled Cuk converter is simply obtained
from (3.1) by replacing the discontinuous control function u by the duty ratio
function u (sec Sira-Ramirez 1990 b). The average model has been shown to be a
useful tool for non-linear controller design in discontinuous PWM controlled
dynamical systems (see Sira-Ramirez 1987, 1989 a, b, 1990 a). The average model is
an idealized version of the controlled system when the sampling frequency is
increased without bound (i.e. when the duty cycle T —0). Its fundamental design
value lies in the fact that finite but large sampling frequencies in a PWM actuator
based control system can be made to produce output responses which are arbitrar-
ily close to those of the average idealized responses. Hence, the stability properties
of the average PWM controlled system can be arbitrarily closely reproduced by the
actual discontinuous controller responses, provided the sampling frequency is
sufficiently large. The proof of this fact, and important connections with sliding
mode control (Utkin 1978), as well as a method to obtain an estimate of the
required sampling frequency appear in several recently published articles (sec
Sira-Ramirez 1989 ¢, 1990 b).

The average PWM model of the Cuk converter is then given by

dz,ldt = —w,25 + pw,z, + b
dz,|dt = w2, — pwz, — pw,z, (3.3)
dzyldt = — w2y + pw,z,

where we have used z;(i =1, 2, 3) to denote the corresponding ‘averaged’ compo-
nents x; of the normalized state vector x describing the Cuk Converter.

In order to assess the feasibility of asymptotic statilization of the average
normalized output load current in the converter via the dynamical exact lineariza-
tion approach, the minimum phase features of the linearized model, around an
equilibrium point, must be studied, as implied by the results in § 2.2.

The ‘equilibrium points’ of the average model (3.4) are obtained from (3.3)
assuming a constant value U for the duty ratio function p (see Sira-Ramirez 1990 a)

u=U; Z,(U)=03bUwiol(l - V)%
Z,(U) =blo (1 =U); z3(U) = 0,bUjw,0,(1 - U) (3.4

The linearization of the average PWM model (3.3) around the constant equi-
librium points (3.4) results in an incremental model, parameterized by U, of the
form

d Z1s 0 —(1 -V, 0 Zis
2; 225 = (l - U)a), 0 - UO)2 2215
Z3s 0 Uw, —Wq [ 735
w,2,(V)
(3.15)
+| ~ @ Z,(U) — 0, Z5(U) |ps
0, Z,(U)

where z,,(1) =z,() = Z,(U); i=1,2,3; pu(t)=p() - U.
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The transfer functions relating the average incremental output to the incremen-
tal duty ratio p; on the given equilibrium point depend on the chosen output
variable which is to be regulated.

If the average incremental output load current, zy;, is taken as the output
variable deviation to be regulated, the corresponding transfer function is found to

2,.2
2o Ue s+ (1 = U)o}
G.(s5) =z_3!5(i) ___».,,bw2 I 7,Llff U),wi [
“ us(s) (1 — Do, 8° + 045 + [0} + (1 = U)’wy)s + (1 = U)’wiw,

(3.6)

which is evidently non-minimum phase and, according to the results of §2.2, it is
not suitable for exact dynamical feedback linearization. Direct output current
regulation is therefore not feasible by the proposed method. The same situation
occurs if one takes the incremental average transfer capacitor voltage z,; as the
output variable deviation to be regulated in the plant. In this case the correspond-
ing transfer function is obtained as

72(8) _ ‘7bUw§7

Gl ="~ " U= Do,

RN PP L4 N2 TR

_ U [ Uez
3+ wys? + [U03 + (1 — U)2w,)s + (1 — U)ot

Average normalized input inductor current z, is actually the only output
variable that can be asymptotically regulated toward its equilibrium point, using the
proposed exact linearization scheme. The corresponding minimum-phase transfer
function relating the incremental input inductor current to the incremental duty

ratio is found to be
03U+ 0l
st | A+ 203U
2o() _ b 0, ’

1) (1= U)5* + wus? + [UP03 + (1 = U)’w,)s + (1 — U) 0}y

Gy(s) =

Constant average normalized input inductor current regulation indirectly ac-
complishes a desirable constant value for the average normalized output load
current, or, equivalently, normalized output load voltage. Indeed, from the equi-
librium point expressions (3.4), given a desirable constant equilibrium value Z; for
the normalized output load current, the corresponding set point value for the
normalized input inductor current Z, is given by

Wy

2, =23 (3.9)

We propose a stabilizing nonlinear dynamical feedback controller scheme which
considers the average normalized value of the input inductor current, z,, as the
converter output that needs to be regulated. Such regulation scheme will be referred
to as the ‘input current control mode’. The relevant formulae leading to the
non-linear dynamical controller specification are summarized below.
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Control-dependent transformation for expressing the Cuk converter in generalized
controller canonical form

Let Z, be a desirable constant average normalized input inductor current
possibly computed in terms of a desirable average normalized output load current
z, as in (3.9). It is easy to verify that ¢, = z, — Z, is a ‘differential primitive element’
that allows one to write the normalized average model (3.3) in a GCCF of the form
(2.4) with v = 2.

g9.1=z,—Z%,
gr= —W, 2, + uw,z, + b (3.10)
g3=—(1—plwiz + pw z; + p(1 - Pw,0,2;

The inverse transformation is given by

Zy=¢,+z
b—gq,

- 3.11
270 - o, Ead
2 =g—ﬂ)w1q1 o iq, . 9 Q‘f‘)wlzl___rlbi )

’ Haw; (1l — o0, Kl —po, 0, Hw, u(l— plw o,

The Cuk converter dynamics in generalized controller canonical form
G1=¢,
42=4; (3.12)
g3 = —c (i, i, g — 2(p, &, f)g2 — c3(p, fis fi)gs + calp, 1, fi)

with

o 12 __a
e, )y =(1—p) w?[au #(1_#)}

iy | et (1wt e~ _ﬂw4__9&3ﬂl]
¢ (1, 1, ) = +(1 - po ta-pta-p m-p?
[ (1 —3
a o =— 2.2 _J__‘ 'L'l(l)4 _(_/1)2(1—3&]

2,..2 ﬂ
+(1—p wl[ﬂ(l ) wA]Zl
Notice that the GCCF for the Cuk converter is linear time-varying in the
transformed variables ¢,, g, and ¢; and includes a time varying forcing term
represented by c,(u, fi, p). The forcing term collects the influence of the desirable
constant set point Z,, as well as the constant external voltage source b. If the last
differential equation in (3.12) is equated to a linear combination of the state
variables, say —a, ¢, — 2,4, — %345, as in (2.5) (with « = 0) an asymptotically stable
closed loop linear system is obtained which guarantees, for suitable chosen ,’s, that
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lim,_ . ¢, =0. This guarantees asymptotic convergence of z, to the desirable
equilibrium point Z,. The linearization procedure described above yields a differen-
tial equation characterizing the non-linear dynamical compensator which synthe-
sizes the computed duty ratio f.

Non-linear dynamical compensator in input current control mode for the average
PWM controlled Cuk converter '

€|=fz T
=G of G
2—q2_b{[°‘1 (1 51)2w1<w4 £ (1—¢) :Iql

_ 201
+ LOtz— (f%w%+(l —&)’wi +"§2(DL‘ - 35]3):]‘]2

(1-¢&) &O-=¢&)

[ & (1 —38)
[ (GG e AR

$r004 5_%(1 - 351)]b

2,..2 _»e L
M RTINS S Sy

vl —
+(1 él)w][f;(l—fl) w4:|21}

ﬁ:é] J

The output /i of the non-linear compensator is to be regarded as the specifica-
tion of the needed stabilizing duty ratio function p for the average PWM closed
loop converter. However, depending on the proximity of the initial states to the
desirable constant average normalized input inductor current (acting as an equi-
librium set point), the actual values of ji may violate the natural constraints
imposed on the duty ratio function . Namely, 0 < i < 1. Therefore, a limiter of the
following form:

0 for fi(t) <0
w() =<f() for 0 < f(r) <1 (3.15)
1 for () =1

has to be enforced on the output /i of the non-linear dynamical compensator. This
procedure yields the physically meaningful duty ratio function u. In actual opera-
tion, ;4 may be subject to saturation, during certain intervals of time. Typically, an
antireset-windup schem (see Astréom and Haggliind 1988, pp. 10-14]) would be
used in combination with the non-linear controller to avoid overshooting effects on
the average controlled output.

The PWM actuator induces undersirable high frequency discontinuous signals
(chattering) for the converters states and output variable. In order to further
approximate the average closed loop designed behaviour, a suitable Low Pass filter
must then be placed at the sensing arrangement used to obtain the actual input
inductor current x,(f) and the other states used for feedback purposes. One may,
for instance, propose simple first order R—C circuits, with a sufficiently small time
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constants, 1/T;, (equivalently, sufficiently small cut-off frequencies) as follows )
df.(nfdt = ~(NT ) fi(1) —x,(1)); Z;()=f(D); i=1,23 (3.16)

One may regard the filters outputs, 2,(r) (i = 1, 2, 3), as approximations to the
ideal average normalized state signals z,(f) required by the non-linear dynamical
feedback controller (3.10), (3.14).

The complete discontinuous non-linear dynamical feedback regulation scheme
for stabilization of the normalized output load current in the Cuk converter, based
on dynamical exact feedback linearization, is presented in Fig. 2. Notice that the
control-dependent state coordinate transformation requires the use of ji and dj/dt,
which represent the dynamical controller state (&,, &,).

A simulation example

A non-linear controller indirectly regulating the output load current via input
inductor current regulation to a desirable set point was designed for the Cuk
converter circuit with parameter values R =20 Q, C, = 6071 uF, L, =24-539 mH,
L;=2-9038 mH and £ =20V. The desirable normalized constant output current
was set at Z; = 0-2. The corresponding constant operating value of u is U = 0-7877.
The poles of the linearized closed loop system were chosen at: —4000s™',
—4000s~', —3000s~'. Figure 3 shows the average normalized controlled output
current step response. Figure 4 shows the actual PWM controlled step response and
the corresponding filtered output response for the actual output load current x,.
The sampling frequency for the PWM actuator was chosen as 20 kHz and the low
pass filters cut-off frequency was set at 1570 rad s~'.

3.2. Boost converter

Consider the Boost converter model shown in Fig. 5. This circuit is described by
the bilinear state equation model

(3.17)

dx [dt = —wyx, + uwyx, + b
dx,[dt = wox; — 0, x5 — uwyx,

where, x, =I\/L, Xy = V\/E' respresent normalized input current and output

setpoint [ ] 9 T X4
z, ’ control-Dependent
& 2
— le—-2_] state coordinate PASS ~{pc -To- DC
Nonlinear q 3 FILTER | X3
[— Transformation (average) = POWER
Dynamical . W o S
Feedback CONVERTER
PUS—
Compensator " (CUK)
» 1
— | Ho f ! Ylewull,
& & e 6
— s o - —==—i = dt . L, — i
dt

Limiter

Figure 2. Non-linear PWM dynamical fecdback regulation scheme for the Cuk converter.
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Figure 3. Average normalized output load current step response in PWM dynamically
feedback controlled CUk converter.
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Figure 4. Actual and filtered PWM controlled normalized output load current step
response in PWM dynamically feedback controlled Cuk converter.

voltage variables, respectively. The quantity b =E /ﬁ is the normalized external
input voltage and, wy=1 /\/L—C and o, = 1/RC are, respectively, the LC (input)
circuit natural oscillating frequency and the RC output circuit time constant. The
variable u denotes the switch position function, acting as a control input, and
taking values in the discrete set {0, 1}. We now summarize, according to the theory
presented in the previous section, the formulae leading to a non-linear dynamical
controller design for the average model (3.17).
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)L

Figure 5. Boost converter.

Average Boost converter model
dz, |dt = —wyz, + pwyz, + b }

3.18
dz,dt = — ez, — 02, — PWoZ, ( )

Constant operating equilibrium points
p=U; Z\(U)=bofloj(1-U)%; Zy(U) =bllo(1-01)]  (3.19)

Linearized Boost converter model about the constant operation point

g[zwm]_[ 0 —(I—U)mo][z.,s(t)}[ bi(1 - U) ] _
dt |z | Ty —or Nz || =boy (1 = U)2we] P2
with

25() =2(0) — Zi(U); i=1,2 ps(t) = u(t) — U.

Incremental transfer function parametrized by operating point

If the average normalized output capacitor voltage, z,, is taken as the converters
output, the resulting linearized transfer function, given by

A

25(8) _ i
s24 w5 + (1 — U)’w}

Gy(s) =—="" = —woZ,(V)

v 1s(s) o
is non-minimum phase and hence the proposed compensator design approach is not
feasible. On the other hand, if the average normalized input inductor current z, is
taken as the output of the system the resulting incremental transfer function is

indeed minimum-phase and given by
2)5(8) _ $4+20,
1s(s) + o5 + (1 - U)’wf
Input inductor current must then be taken as the output variable to be
regulated. One usually pursues constant average normalized input current regula-
tion to indirectly obtain a desirable controlled constant average normalized output
voltage at the load. Indeed, given a desirable constant equilibrium value Z, for the
average normalized output load voltage, one can compute from (3.19), the corre-

sponding set point value for the normalized average normalized input inductor
current Z,. This value is given by

(3.21)

Guls) = woZ(U) 3 (3.22)

)

z:jzg (3.23)

We now propose an ‘input current control mode’ stabilizing non-linear dynam-

ical feedback controller scheme. We only summarize the relevant formulae leading
to the non-linear dynamical controller specification.
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Average Boost converter model for input current control mode
dz,|dt = —wyz, + pwez, + b
dz,[dt = wyz, — 0,25 — pwyz, (3.24)
y=1z

Control-dependent transformation for expressing the Boost converter in
generalized controller canonical form

Let Z, be a desirable constant average normalized input inductor current,
possibly computed in terms of the desirable constant average normalized output
load voltage z, as in (3.23). It is easy to verify that ¢, =z, —Z, is a ‘differential
primitive element’ that allows one to write the normalized average model (3.24) in
a GCCF of the form (2.4) with v = 1.

g =z2—-2
g,=—(1— p)w022+b} )

The inverse control-dependent transformation is simply

z21=q,+ 2, (3.26)
,oo b7
2T (1 = wao

Boost convecter in generalized controller canonical form

4, =4 } (3.27)

g, = —c¢ (i, g, — c2(u, g, + ey, 1)
with

e (p, ) = (1 = p)’wf

ealps 19 = [(Tf—u) + w} (3.28)

alp, ) = b[_ﬂ‘ + wl] — (1 - p)’wiz
(I—-m

Notice that the GCCF for the boost converter is lincar and time-varying in
the transformed varibles g, and ¢, and includes a time varying forcing term
represented by c;(u, fi). The forcing term collects the influence of the desirable
set point Z,, as well as the constant external voltage source b. If the last
differential equation in (3.27) is equated to a linear combination of the state
variables, say —a,q, — %,q,, as in (2.5) (with k =0) an asymptotically stable
closed loop linear system is obtained which guarantees, for suitable chosen «,’s,
that lim, ¢, = 0. This guarantees asymptotic convergence of z, to the desirable
equilibrium point Z,. This linearization procedure yields a differential equation
characterizing the non-linear dynamical compensator which synthesizes the com-
puted duty ratio f.



Non-linear dynamical compensator design 125

Non-linear dynamical compensator in current control mode for the average
PWM controlled Boost converter

1__
¢ =i;b {l:al —(1-8wdlg) + (2 — ))g2 + [0, — (1 — &) *wiz,]}
: :‘22 (3.29)

The complete discontinuous non-linear dynamical feedback regulation scheme for
stabilization of the normalized output load voltage in the boost converter, based on
dynamical exact feedback linearization, is conceptually the same as in Fig. 2. The
difference lies in the fact that since (3.29) is a first order system, only the computed
duty ratio function is needed for the synthesis of the control-dependent state
coordinate transformation yielding the GCCF of the normalized average boost
converter model (see equation 3.25).

A simulation example

A boost converter circuit with parameter values R =30Q, C=20uF,
L=20mH and E=15V was considered for non-linear dynamical controller
design. The desirable normalized constant output voltage is Z,=0.1677 which
corresponds to a constant value U = 0-6 for the duty ratio u. The corresponding set
point for the average normalized input inductor current is z,(0.6) = 0.4419. The
poles of the linearized closed loop system were chosen at: —1500s~' and
—3000s-'. Figure 6 shows several normalized average state trajectories corre-
sponding to different initial conditions set on the ideal average boost converter
model controlled by the non-linear regulator of the form (3.29). The average
controlled state variables, z, and z,, are shown to converge toward the desirable
equilibrium point. Figure 7 shows the normalized state trajectory response of the
actual PWM controlled circuit superimposed on the corresponding filtered normal-
ized state variable responses. The sampling frequency for the PWM actuator was
chosen as 10 kHz and the low pass filters cut-off frequency was set at 628-3 rad/s~".

4
0.3

22

0.2

z4

T T
0.4 0.5

Figure 6. Average normalized state portrait for dynamically feedback PWM controlled
Boost converter
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Figure 7. Actual and filtered PWM controlled normalized output load current step re-
sponse in dynamically feedback controlled Boost converter.

3.3. Buck-Boost converter
Consider the Buck—Boost converter model shown in Fig. 8. This circuit is
described by the time-invariant bilinear state equation model
dx|dt = wyx, — uwex, + ub
l/ 0-+2 042 . ( 330)
dx,|dt = —wex) — 0 X + UWX,

where, x, =1 \/ L, x,= V\/ C represent normalized input current and output
voltage variables respectively, b = E /\/ L is the normalized external input voltage
and it is here assumed to be a negative quantity (reversed polarity) while
Wy = 1/\/ (LC) and w,=1/RC are, respectively, the LC (input) circuit natural
oscillating frequency and the RC output circuit time constant. The switch position
function, acting as a control input, is denoted by u and takes values in the discrete
set {0, 1}. We now summarize the formulae leading to a nonlinear P —/1 controller
design for the average model (3.30).

Average buck-boost converter model
dz,|dt = wgzy — pozo + pb
dz,|dt = —wgz) — W12 + 10y Z, (3.31)
Y=z

oL
L 9T

Figure 8. The Buck—-Boost converter.
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Constant equilibrium points
p=U; Z\(U)=bUn[[oj(1 - U)Y; Zy(U)=-bU[[w,(1-U)] (3.32)

Linearized Boost converter model about a constant equilibrium point

d [zla(’)] =[ 0 (r— U)wo:ll:zla(t):l+|: b/(1—U) ] 5
dt| 20 | T (=D, —o, |z | T | U0, 11 = UYwe] [

(3.33)
with
2z =z()—Z,(U); i=12; p(ty=p(t)-U

Linearized Buck —Boost converter transfer functions

If the average normalized output capacitor voltage z, is taken as the converters
output the resulting linearized transfer function, given by
Z35(5) s =b[Z, ()]
Gy(8) =—""=wZ(U)—5— = =" 3.34
U() u,;(s) 0 l( )s2+w,s+(l—U)2w(2) ( )
is non-minimum phase and hence the proposed compensator design approach is not
feasible. On the other hand, if the average normalized input inductor current z; is
taken as the output of the system the resulting incremental transfer function is
indeed minimum-phase and given by
25(8) b s+ (1+0)
Hs(s)  (1=U)s>+ s +(1 = U)’w}
Average normalized input inductor current z, must then be used as the output
variable to be regulated. One usually pursues constant average normalized input
current regulation to indirectly obtain a desirable controlled constant average
normalized output voltage, z,, at the load. One can compute from (3.32), the
corresponding set point value for the normalized average normalized input inductor
current Z,. This value is given by

Gy(s) = (3.35)

g
bU

In this part we propose an ‘input current control mode’ scheme based on a
non-linear dynamical controller which regulates z, via exact linearization. We
summarize below the relevant formulae leading to the non-linear controller specifi-
cation.

Z, =72 (3.36)

Average Buck — Boost converter model for input current control mode
dz,[dt = woz; — peyzy + pb
dz,ldt = —woz, — w2y + pw,z, (3.37)
Y=z

Control-dependent transformation for expressing the Buck — Boost converter in
generalized controller canonical form

Let Z, be a desirable constant average normalized input inductor current
possibly computed in terms of the desirable constant average normalized output
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load voltage z, as in (3.36). It is easy to verify that ¢, =z, — Z, is a ‘differential
primitive element’ that allows one to write the normalized average model (3.3) in
GCCF of the form (2.4) with v =1.

q9,1=2z2,—%
(3.38)
q2=(1—pwoz; + ﬂb}
The inverse control-dependent transformation is simply
5 =q,+Z
Il
(1 — W,

(3.39)

2

The Buck —Boost converter in generalized controller canonical form

di1=q
. . . . 3.40
G2 = —c(u, g, — ¢, (1, g, + c3(u, u)} S5

with
ai(p, 1) = (1 — p)’wj
~ |8
e, ) = [(1 - w.] . (3.41)
cs(u,ﬂ)=[ s +uw.]b—(1—#)2w32.
(1=

Notice that, as in the Boost case, the GCCF for the Buck-Boost converter is
linear and time-varying in the transformation variables ¢, and ¢, and includes a
time-varying forcing term represented by c;(y, ). This forcing term collects the
influence of the desirable set point Z,, as well as the constant external voltage
source b. If the last differential equation in (3.40) is equated to a linear combination
of the state variables, say —a,q, — a,¢,, as in (2.5) (with x = 0) as asymptotically
stable closed loop linear system is obtained which guarantees, for suitably chosen
o’s, that lim, g, =0. This guarantees asymptotic convergence of z; to the
desirable equilibrium point Z,. This linearization procedure yields a differential
equation characterizing the non-linear dynamical compensator which synthesizes
the computed duty ratio f.

Non-linear dynamical compensator in current control mode for the average
PWM controlled Buck —Boost converter

4 =ql —_i {lor = (1 = &3, + (0 — 0)2 + [béw;, — (1 — O)*wiZ,1)
ﬁ=2 (3.42)

As before, the discontinuous non-linear dynamical feedback regulation scheme
for stabilization of the normalized output load voltage in the Buck—Boost converter
is conceptually the same as that of Fig. 2. Since (3.42) is a first order dynamical
system only the computed duty ratio function /i is needed for the synthesis of the
control-dependent state coordinate transformation yielding the GCCF of the nor-
malized average Buck—Boost converter model (see equation 3.38).
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Figure 9. Average normalized state portrait for dynamically feedback PWM controlled
Buck-Boost converter.

A simulation example

A Buck-Boost converter circuit with the same parameter values as in the Boost
example was considered for non-linear dynamical controller design. The desirable
normalized constant output voltage is .Z, = —0.084 which corresponds to a con-
stant value U = 0-556 for the duty ratio u. The corresponding set point for the
average normalized input inductor current is Z,(0-556) =0-2. The poles of the
linearized closed loop system were chosen at: —1500s~' and —3000s~"'. Figure 9

02371 (rea1)

-« filtered

time (msec)
s S SRy I i
0 b4 2 3 4 5

ANAAAAAAAAATAA A

-~ filtered

time (msec)
s e S T (A 1
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Figure 10. Actual and filtered PWM controlled normalized output load current step
response in dynamically fecdback controlled Buck-Boost converter.
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shows several normalized average state trajectories corresponding to different initial
conditions set on the ideal average Buck-Boost converter model controlled by the
non-linear regulator of the form (3.41). The average controlled state variables, z,
and z,, are shown to converge toward the desirable equilibrium point. Figures 10
shows the normalized states trajectory response of the actual PWM controlled
circuit superimposed on the corresponding filtered normalized state variable re-
sponses. The sampling frequency for the PWM actuator was chosen as 10 kHz and
the low pass filters cut-off frequency was set at 628-3rad s~'.

4. Conclusions and suggestions for further research

In this article a new design method, based on exact non-linear dynamical
feedback linearization, is proposed for the regulation of output load voltage, or
current, in pulse-width-modulated controlled d.c.-to-d.c. power converters. The
design method is based in Fliess’s generalized controller canonical form (GCCF)
for non-linear dynamical systems. ‘

Computing the explicit GCCF for the different switch-mode controlled bilinear
converters, such as the Boost, Buck-Boost and Cuk converters, a non-linear
dynamical compensator is immediately suggested which exactly linearizes, in a
local fashion, the closed loop controlled system with arbitrarily imposed stable
dynamics. Such linearization, can be easily carried out on the basis of the infinite-
frequency average PWM controlled model of the bilinear converter. However, we
have shown, in full generality, that the local stability of the closed loop linearized
system, toward a desirable reference set point, crucially depends upon the mini-
mum-phase character of the linearized transfer function of the system model
around the preselected equilibrium point. According to these result, in all the cases
studied in this article, only the average input inductor current can be effectively
regulated by means of the proposed technique. Thus, average output load voltage,
or current, regulation is accomplished, indirectly, via regulation of the average
input inductor current.

The GCCF for all three cases result in a linear time-varying model including a
forcing term which, in general, depends on the desirable set point and the value of
the external voltage input source. Particularly, the GCCF’s of the Boost and the
Buck-Boost converters are almost identical with a difference in the time-varying
forcing term (i.e. they belong to the same equivalence class, of second order
dynamical feedback linearizable systems, which has the same GCCF modulo the
external forcing term).

An interesting topic, to be pursued in the future, lies in the area of practical
implementation of the proposed controllers via non-linear solid state analog
electronics. Further theoretical studies can be carried out for the d.c.-to-d.c. power
converters establishing, for instance, the relevance of Conte’s et al. (1988) general-
ized input—output representation of non-linear systems in compensator design.
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Appendix

This appendix presents the background defintions on differential algebra needed
to understand the first part of § 2. The material here collected closely follows the
presentations given in Fliess’s remarkable contributions (Fliess 1988, 1989 a, b, c,
1990) where the reader is referred for more thorough details. Some portions are
directly taken from Fliess’s articles.

A.1l. Some definitions and results from algebra

A field is a ring whose non-zero elements form an abelian group under
multiplication. The set of rational numbers Q, the set of real numbers R, and the
set of complex numbers C, are well known examples of fields. Also, the set of
rational functions in an indeterminate x, with coefficients in R or Q, constitutes a
field. A field is said to be of ‘characteristic zero’ if in the underlying ring not two
non-zero elements yield zero as their product (finite fields are typical examples of
fields with non-zero characteristic but, for instance, R is of characteristic zero). All
fields here considered are of characteristic zero.

Let F be a field, then K is said to be an ‘extension’ over F, denoted as K [F, if
K contains F. Thus, C/R is an extension over R and R/Q is an extension over Q.
It is easy to see that if K/F is an extension over F, then, under the field operations
in K, F also qualifies as a ‘vector space’. K/|F is said to be a ‘finite extension’ over
F if K is ‘finite dimensional’ as a vector space over F. The dimension of K/F is
called ‘the degree, of the extension K/F over F. For instance, C/R is a finite
extension over R of degree 2, but R/Q is an infinite extension over Q.

An element a of K is said to be ‘algebraic’ over F if there exists a polynomial P,
with coefficients in F, such that P(a) = 0. K/F is an ‘algebraic extension’ over F if
any element of K is algebraic over F. If there exists, at least, one element in K which
is not algebraic over F, then K/F is said to be a ‘transcendental extension’ over F.
For example: R/Q is transcendental over Q, but C/R is algebraic over R. Let I be
any finite index set with cardinality v. A set of elements {x;,iel} in K is
‘F-algebraically dependent’ if and only if there exists, at least, one polynomial
P(x,, ..., x,), with coefficients in F, such that P(x,, ..., x,) =0. A set is said to be
‘F-algebraically independent’ if it is not F-algebraically dependent. F -algebraically
independent sets in K, which are maximal with respect to inclusion, constitute the
‘transcendence basis’ of the extension field K/F. The cardinality of such a basis is
the transcendence degree’ of K/|F. Such a quantity is denoted by tr d°K|F. For
example, the transcendence degree of C/R is zero. Let F(x, y) denote the field of
rational functions in the indeterminates x and y, with coefficients in the field F. The
sets {x}, {y} and {x, y} are F-algebraically independent over f. However, {x, y}is
a transcendence basis of the extension field F(x, y)/F. In this case tr d°F(x, y)/
F=2

Let K/F be an extension over F and let « be an element in X, then F {a> denotes
the smallest subfield of K containing both F and «. It should be clear that F{a) not
always coincides with K. The subfield F{« is also called the ‘field generated by F
and o’. Evidently, F{a)/F is an algebraic extension over F and, hence, tr d°
F{a)|F =0. A field generated by F and a finite collection of elements {o,li e I} in
K is a ‘finitely generated field’, denoted by F{a,...,a,). If {,eKliel} is a
transcendence basis of K over F then the extension K/F{a,, ... , o, is algebraic, i.e.
trd® K[F{o;,...,0,»=0.
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Let K/F be a finitely generated algebraic extension over F. The ‘theorem of the
primitive element’ states that there exists a single element ¢ € K, called the ‘primi-
tive element,” such that K is exactly generated by F and &, i.e. K= F{&).

A.2. Some defintions and results from differential algebra (Fliess 1990)

A derivation ‘d{dt’ over a field F is a linear map d/dt : F — F which satisfies the
Leibnitz rule over products of elements in F. A ‘differential field’ is a commutative
field in which a derivation is defined. The field R(s) of rational functions in the
variable s with coefficients in R is a differential field when d/ds is defined as its
derivation. An element in F is a ‘constant’ if its derivative is zero. A ‘field of
constants’ is a differential field in which every element is a constant. R and C are
trivially fields of constants.

All definitions presented in § 2.1 extend to differential fields.

Let F be a differential field, then K/F is said to be a ‘differential extension’ over
F, if K contains F and F inherits its derivation from X, i.e. if the restriction of the
derivation in K over the elements in F coincides with the derivation defined on F.
As an example, consider the differential extension R(s)/Q(s) with d/ds as the
derivation.

An element o of a differential field X is said to be ‘differentially algebraic’ over
F if the element « satisfies a polynomial differential equation with coefficients in F,
ie. P(a,dajdt, ... ,d"a/dt') = 0. K/F is a differential algebraic extension of F if any
element of K is differentially algebraic over F. If there exists, at least, one element
in K which is not differentially algebraic over F, then K/F is said to be a
‘differentially transcendental extension” over F. A set of elements {x,;|i € I} in K is
differentially F-algebraically dependent’ if and only if there exists, at least, one
polynomial differential equation P(x,, dx,/ds, ..., x,, dx,/dt, ..., x,,dx,[dt ..} =0,
with coefficients in F. A set is said to be ‘differentially F-algebraically independent’
if it is not differentially f-algebraically dependent. A set of differentially F-algebraic
independent set of elements in K which is maximal with respect to inclusion
constitutes a ‘differential transcendence basis’ of the differential extension K/F. The
cardinality of such a basis is the ‘differential transcendence degree’ of K/F. Such a
quantity is denoted by: diff tr d® K/F. For example, differentially algebraic exten-
sions have zero differential transcendence degree. On a differential field extension
K/[F one defines the non-differential transcendence degree as the transcendence
degree of K over F.

Let K be a differential extension of F and let o be an element in K, then F{a)
denotes the smallest differential X containing both F and a. As before F<{a) not
always coincides with K. The subfield F{a) is also called the ‘field differentially
generated by F and o.’

A finitely generated differential extension is differentially algebraic if and only if
its nondifferential transcendence degree is finite.

Assume F is not a field of constants. Let K/F be a finitely generated differen-
tially algebraic extension over F. The ‘theorem of the differential primitive element’
states that, there exists a single element ¢ € K, called the ‘differential primitive
element’ such that K = F{&).
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