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Dynamical variable structure systems approach to switched capacitor
circuit models

HEBERTT SIRA-RAMIREZ+t, MARCO TULIO PRADA-RIZZO}
and PABLO LISCHINSKY-ARENAS§

A new model, of a dynamic nature, is proposed for the basic analysis of switched
capacitor circuits. The model represents a significant conceptual departure from the
traditional frequency-dependent equivalent resistor model. Using Filippov’s con-
cept of solution for systems governed by right-hand side discontinuous differential
equations, such as those regulated by a pulse-width modulation control strategy, a
general and more realistic dynamical model is proposed for switched capacitor
circuits. The traditional model is easily rederived and reinterpreted as the outcome
of a sequential singular perturbation procedure carried on an idealized version of the
proposed dynamical model.

1. Introduction

The outstanding feature of switched capacitor circuits (SCC) is the possibility of
replacing integrated resistors by a suitable combination of capacitors and frequency
controlled switched arrangements. This possibility is largely responsible for the
overwhelming development, in modern electronics, of resistorless integrated circuits
using only MOS controlled switches, capacitors, and operational amplifiers as the
basic constitutive elements. For a reasonable account of the history and background
about SCC the reader is referred to the many articles appearing in the Special Issue
of LE.E.E. Circuits and Systems Magazine (1984), the LLE.E.E. Press book by Moschytz
(1984) and the excellent text book written on the subject by Allen and Sanchez-
Sinencio (1984).

For years, SCC have been studied from a purely discrete-time viewpoint based on
the static voltage-charge conversion model of the involved capacitors (Caves et al.
1977, Hostika er al. 1977, Liou and Kuo 1979, Scanlan 1981, Tsividis 1979, 1983).
Thanks to the very small capacitor-switch time-constants associated with the non-
zero resistances present in non-ideal MOS switches, discrete-time models of SCC have
perfectly suited the analysis and design needs for this outstanding class of circuits.
The approach bears, however, some intrinsic limitations related to the frequency-
dependent nature of the equivalent resistor model in the elementary SCC. Other
limitations include the demands of highly involved discrete-time analysis schemes,
which usually resort to not well-justified approximations.

From a dynamical viewpoint, SSC constitute a special class of variable structure
systems (VSS) (Utkin 1978, Sira, Ramirez 1989 a) in which the structural changes are
periodically executed by a switching process with, possibly, frequency modulation
capabilities. From a different but related perspective, and assuming a fixed duty
cycle frequency, the traditional structural changes in SCC can be viewed as the
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outcome of a pulse-width modultation (PWM) scheme with fixed duty ratio (Skoog
and Blankenship 1970, Sira-Ramirez 1989b). By discarding the fixed duty ratio
assumption, and allowing it to become a smooth feedback function of the circuit state,
or even a constant externally regulated value, new properties of SCC can be studied
on a more rigorous and exact basis using the theory of VSS. The crucial theoretical
advantages of this approach not only reside in the possibilities of using the well-
developed theory of dynamical VSS and its wealth of results, but also in the possibilities
of practical analysis and design schemes entirely based on smooth continuous-time
average models for which a vast amount of regulatory schemes are readily available
(Sira-Ramirez 1987, 1990). VSS undergoing sliding motions can be effectively studied
by means of averaging techniques. Such techniques are genuinely represented by
Utkin’s method of the equivalent control (Utkin 1978) and by Filippov’s geometic
averaging (Filippov 1988). These average models have been shown to capture all
relevant qualitative features of the discontinuous controlled system.

In this article we propose the use of the thoery of VSS in establishing the most
salient features of dynamical SCC controlled by a general PWM switching strategy.
Our treatment includes both ideal and non-ideal switching devices. The proposed
discontinuous dynamical models of several basic elementary configurations will also
allow us to rederive the known useful static properties of SCC as a limiting case.

It will be first shown in full generality, that on a variable structure system
undergoing structural changes, regulated according to a pulse-width modulation
(PWM) scheme, an infinite duty cycle frequency assumption results, precisely, in
Filippov’s geometric average model of the discontinuous dynamical system. The
associated Filippov scalar convex combination functions are shown to be coincident
with the prescribed smooth duty ratio function of the original PWM scheme. It
immediately folows that a corresponding sliding regime is exhibited by the actual
PWM controlled system trajectories about integral manifolds of the infinite duty cycle
frequency average (Filippov) PWM model (simply referred to as the average PWM
model). Hence, the average PWM model has the primordial characteristic of entirely
capturing all the relevant qualitative features of the actual discontinuously PWM
controlled system, much in the same manner that the ideal sliding dynamics (Utkin
1978) capture the essential qualitative features of the actual (chattering) sliding
motions about the sliding surface.

Using the general results stated above, dynamical models of elementary configur-
ations in SCC are proposed and studied. Such models result from Filippov’s averaging
technique when applied to the PWM controlled dynamics representing the SCC. The
steady-state characteristics of the proposed average models indicate that the resulting
resistor-equivalent model is duty ratio-dependent, rather than frequency-dependent
as in traditional SCC models. This bestows a greater flexibility in special SCC
applications where controlled equivalent resistor values of a frequency-independent
nature may be needed. As added bonuses, our model (a) circumvents the need for
discrete-time approximations and (b) makes available a vast amount of continuous-
time linear dynamical system results for the analysis and design tasks in the area of
SCC (either from the state-space, or the frequency domain techniques viewpoint).
The model is also sufficiently general, and realistic enough, to rederive the traditional
(static) resistor-equivalent model as an idealized model which requires (a) a two-step
sequential singular perturbation approximation carried on our proposed dynamical
model and () the hypothesis of ideal switches (i.e. infinite open-switch resistance) (see
Koehler 1969, Hirano and Nishimura 1972, Orfei and Pallotino 1973).
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Section 2 of this article contains a general theory of variable structure systems
(Sira-Ramirez 1989) of the PWM type. In this section it is shown that Filippov’s
geometric averaging technique is totally equivalent to an infinite frequency duty cycle
assumption on the PWM controlled switch regulating the system’s structural changes.
Section 3 views SCC as dynamical VSS. The consequences of applying the relevant
results of §2 to such a class of dynamical systems are thoroughly reported in that
section. Section 4 contains the conclusions. Appendix A contains general background
material on sliding regimes associated with variable structure systems. Appendix B
presents program listings for the SIMNON package (Elmquist et al. 1987), used in the
simulations presented in this article.

2. Discontinuous dynamical systems
2.1. General background results on PWM systems
Consider the non-linear dynamical system locally defined on an open set N of R":

dx
i Jx) 2.1

with structural changes regulated according to the PWM policy

x), forr, <t <t T(x(t
P {f]() ‘ o + )T o
filx), fort, + tx(NT <t < t, + T
where f|(x) and f,(x) are smooth (C*) vector fields with f;(x) # f(x) locally in N,
while t(x) is, in general, a smooth scalar function of x, known as the duty ratio
function. The scalar smooth function t(x) takes values in the open interval (0, 1). The
duty ratio values are usually determined at the beginning of the duty circle interval,
I, on the basis of the sampled vector value x(,). The parameter T is the sampling
period, assumed to be sufficiently small with respect to the system dynamics and
F = 1/T is addressed as the sampling frequency.
System (2.1), (2.2) may be equivalently represented in terms of an ideal discrete
switching functions u € {0, 1}, as follows:

R AC R AE) @3)

where
1, fort <t <t + t(x(t,)T

u = { 2.4
0, fort + t(x(e NT St<u+T

The following lemma is a straightforward consequence of the fundamental
theorem of calculus.

Let f be a smooth vector field and let
%
b = [ 0o
0
Then, for any smooth strictly positive function (x),

lim {I(t, + t[x(T) — L)}T = <[x(D1f(x(1))

T—=0.1; >t
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Theorem 1

As the sampling frequency F tends to infinity in system (2.3), (2.4), the discon-
tinuous model (2.3), (2.4) is substituted by Filippov’s average model (sec Appendix A)
with a corresponding convex combination function represented by the duty ratio 7(x).
Moreover, a sliding regime is exhibited by the actual PWM controlled system (2.3),
(2.4) on integral manifolds of the average PWM controlled dynamics.

Proof ,
From (2.3), (2.4), the state x at time ¢, + 7 is exactly computed as

e+l OT e+ T

Sl do + f Slx(e)] do

i +tx(NT

x(t, + T) = x(4,) + ‘[

%
T NUSYE yw+T te + 1T

() + j Si@lde + | Alxe)do - J Silx(o)] do

3 4 I
that is, using the result of Lemma 1,

lim [_x(i + T;;i“l]

T—0.1 >t

= lm |[— H*—- ¢ :
70,4 1 T

o+l T n+T o+l )T
*(t) + j filx@)]do + f fix()]do — j Hlx(@)do

= t(x(0) /(D) + [1 — 1(x(D)] £2(x(0))

or

B S+ 11— A 2.5)

dr

i.e. that is the infinite frequency model of (2.3), (2.4) coincides with Filippov’s
geometric average model (see Appendix A) in which the convex combination func-
tions are taken, precisely, as the smooth duty ratio function 7(x). By definition, the
duty ratio is bounded in the open interval (0, 1). From the results of Theorem A.2,
it follows that a sliding regime locally exists on the manifold S for the variable
structure system (2.3), (2.4). The equivalent control uQ(x) associated with such a
sliding regime is simply obtained from the ideal sliding dynamics of (2.3) on St

% = (ds, " () + (1 = w0
= s, fi()) + [1 = 4O ds, fi(x)) = 0
or
O s, /1(x))

s, fi(0) = £
It follows from the uniqueness of the equivalent control and (A7) that

) = t(x) (2.6)
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that is, the equivalent control of the sliding motion associated with (2.3), (2.4) is
precisely constituted by the duty ratio associated with the PWM control scheme. The
corresponding ideal sliding dynamics is then represented by

dx
a 1200 fi(x) + [1 = w0 L) = 1(x) fi(x) + [1 — 1) fo(x)
which is just the infinite frequency average dynamics (2.5).

The region of the existence of a sliding motion is, according to the results of
Theorem A.1, determined by the region interesected with S where

0 <1(x) = ux) <1

which is, by definition of duty ratio, globally satisfied along the integral manifold S
in all regions of the state space. Hence, the sliding motion on S does not only locally
exist but it exists globally about S.

3. Average dynamic analysis of switch capacitor circuit models
3 1. A basic example

Consider the elementary switch regulated circuit of Fig. 1, where the switch
position function u is prescribed according to a PWM control law of the form (2.2)
with constant duty ratio ¢. The non-ideal switch is assumed to have resistance R when
it is closed and resistance kR when it is open (evidently, & > 1). The differential
equations governing the system behaviour in each case are given by

Switch closed: dw —w) _ n -
dt CR
d(v ;) v v (G2L)
i - G
Switch open: dr CKR
A single differential equation may be written in terms of the switch position function
ue {0, 1} as
dv, — v3) _ Uy — U U3 — Uy
o = T er + (1 — ) CkR (3.2)

The results of §2 indicate that an infinite frequency PWM average model, or
Filippov’s average model, of the discontinuous system is obtained formally by sub-
stituting « by the duty ratio function 1. Rewriting the resulting expression as

div, — v vy — v
o —w) _ L2 (3.3)
dt CR (1, k)
< o c v :
vl o_«ie o V3 10———|€—70 3 vl° ﬂVa
' R (T,%) R (7K
eq eq
v
vZ vz 2
(@) ® (c)
Figure 1. (@) Elementary switch capacitor circuit. (b) Average PWM dynamic equivalent

model. (¢) Steady-state resistor equivalent model.
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Figure 2. (a) Grounded capacitor. (b) Grounded switch. (c) Parallel switch-capacitor
combination.

with

kR
Req(‘l’, k) = [m] (34)

one obtains the average PWM controlled model of (3.2) (see Fig. 1(d)).

The infinite frequency average model of the original PWM controlled SCC is then
obtained by formally replacing the switch by the finite duty ratio-dependent resistance
R, (1, k) given by (3.4). In steady-state conditions the capacitor is fully charged and
its corresponding branch acts as an open branch. The circuit is then simply replaced
by the voltage sources and the resistor R (z, k) (Fig. 1(c)).

If the switch has infinite resistance when it is open, then one lets k — oo and the
equivalent resistor, replacing the switch in the average dynamical model, has the value

: R,
R,(1) = 1!112 R (t, k) = - (3.5)

The above ‘series’ switch model of a switch-capacitor combination is sufficiently
general to generate, as particular cases, several important basic configurations com-
monly appearing in SCC topologies (see Fig. 2 (a)~(c)). We briefly summarize those
particular cases below.

Grounded capacitor: v, = 0, —v; = v, (3.6)
Grounded switch: v, = 0,9, —v; = v, 3.7
Parallel switch: », = v,,v, — v, = v, 3.8)

In either of the above cases, the equivalent resistor value of the average PWM
dynamical network, obtained ir. (3.4) or (3.5), is exactly the same, as can be easily
verified. The equivalent resistor value substituting the controlled switch is hence a
topological invariant for the three basic configurations contained in the basic switch
arrangement described by (3.1).

Thus the basic rule in obtaining the average PWM model of SCC simply consists
of a direct, formal, substitution of the controlled switches by its resistor equivalents
(3.5) (or (3.6), if an infinite open switch resistance assumption is valid) while leaving
the capacitor branches untouched.

It is important to stress that, in the above rule, the duty ratio ¢ is the one precisely
corresponding to the substituted switch. In arrangements of switches acting in a
complimentary fashion, some duty ratios have the value t while in their complements
the duty ratio is (1 — 7). In such cases the non-ideal switches are substituted respect-
ively by R (1, k) = kR/[tk + (1 — 7)] and R(z, k) = kR/[(1 — 1k + 1].

Although the above rule could be systematically used throughout the paper in the
derivation of the equivalent dynamical circuits of the basic arrangements to be
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studied, we prefer to derive, from scratch, the equivalent average PWM circuit of each
basic SCC arrangement treated in this paper, namely; the parallel switched capacitor
circuit, the series switched capacitor circuit, the series-parallel combination, the
bilinear arrangement (or series inverter) and the parallel inverter (Allen and Sanchez-
Sinencio 1984).

3.2. An average PWM parallel switched capacitor circuit model with non-ideal
switches

Consider the parallel switched capacitor circuit model (Allen and Sanchez-Sinencio
1984) shown in Fig. 3(a). The model includes finite (but large) open switch resistances
with synchronous operation of the switches acting in a sequentially complementary
fashion. The constant k represents the ratio of open-switch resistances. It will be
assumed that the switches are governed by a PWM scheme with a duty ratio function
that may, in general, depend upon the capacitor voltage (closed-loop duty ratio) or
may be externally controlled to a constant value (open-loop duty ratio). We refer to
the left-hand side switch as the ‘input’ switch and to the right-hand side switch as the
‘output’ switch.

The differential equations governing the capacitor voltage on each one of the two
intervening structures are given by

Input switch closed and output switch open:

v, v —v) (v —1v)

e o M Vel - . 3.9

dt R C kR,C (3:9)
Input switch open and output switch closed:

d, _ @ —v) (@ — )

d ~ kRC R,C e

Using the convention established in (2.3), (2.4), one may represent the underlying
variable structure system in terms of a single differential equation with discontinuous
right-hand side determined by the value of an ideal switch position function x, taking
values on the discrete set {0, 1}. Such a dynamical model is described by

‘% - u [(ﬁr‘”cﬁ H (12,:2,,"% ] 4+ = [(llkR—l C‘”) " (L’ZR:C”Q}
(3.11)
with the switch position function regulated by means of a PWM scheme with duty
ratio t(v,) given by
I, fort, <t <t + t()T

u = (3.12)
0, forty, + tw)T<t<t, + T

v, leq v, l.':Zeq v, vy eq V,
T TRAT AL ALY
/’L\- C 1\ C

(@) &) (0)

Figure 3. (a) Parallel SCC. (b) Average PWM model of parallel SCC. (c¢) Steady-state resistor
equivalent model.
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According to the results in §2, the infinite frequency average model is readily
obtained by using Filippov’s geometric average model of system (3.11), (3.12), in
which the discontinuous control function u is formally replaced by the prescribed duty
ratio function 7. One then obtains

N Ik AU CE) ) BN [ R AR LY
@ r(v")[ RC T TkRC ]+ . T(v‘)][ kRC T T RC ]
- (3.13)

The equivalent dynamical circuit leading to the average model (3.13) may be
deduced by rewriting (3.13) as

dv. | (v — 7). (v — v,)
dr [R.Cq(r,k)c + th(r,k)c:| (3.14)

with

_ kR, _ | kR
Rt k) = [}E e T)] Ry(t. k) = [r e T)] (3.15)

where the argument o, in the duty ratio function has been dropped just for convenience.

The resulting dynamical model (3.14), (3.15), shown in Fig. 3(b), constitutes an
infinite frequency average PWM dynamical model, or simply Filippov’s model, of the
parallel SCC of Fig. 3(a). Notice that the basic rule derived in (3.1) is directly
applicable.

Under the assumption of a constant duty ratio t (traditionally this value is fixed
at 0-5), the steady-state conditions of the circuit imply that the capacitor C is fully
chrged and its branch may be considered as open. One then obtains the steady-state
resistor equivalent of the parallel SCC (se Fig. 3(c)) with R (z, k) as given by

_ KR kR
thk+(0 -1 4+ k(1-171)
(3.16)

If the duty ratio function ¢ is a non-linear smooth function of the capacitor
voltage, i.e., T = 1(»,), then the equivalent steady-state model is still constituted by
a resistor equivalent. Its value must, however, be deduced from the solution of (3.6),
(3.7), with respect to v, and dv,/dt = 0.

Rlcq(ra k) = Rleq(r’ k) + RZeq(T’ k) =

Example

Figure 4 (a) shows several simulated average PWM trajectories of system (3.14),
(3.15), on an appropriately scaled time axis, for several constant values of the duty
ratio function 1. In thse simulations, standard switch resistance values and capaci-
tance values were used (open-switch resistance 100 MQ, closed-switch resistance
10kQ, C was taken as 1 pF).

The nature of the actual PWM controlled response of the dynamical model (3.11),
(3.12) is, according to the results of § 2, constituted by a sliding regime which chatters
above the average PWM controlled trajectories of system (3.14), (3.15). The existence
of such a sliding motion is clearly portrayed in Fig. 4(b) where a simulated trajectory
of the actual PWM controlled dynamical system (3.11), (3.12) is superimposed on the
time response of the average PWM controlled system (3.14), (3.15), for a constant
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Figure 4. (a) Transient and steady-state response of parallel SCC average PWM dynamical
model for several constant duty ratio values. (b) Superimposed actual and average PWM
responses of parallel SCC.

duty ratio T = 0-5. The computer programs for the PC version of the SIMNON
package, used in obtaining these graphs, are presented in Apprendix B.

An ideal infinite open switch resistance model can be obtained by simply letting
the parameter k be infinitely large in (3.15). The equivalent resistor values in the
average PWM dynamical model of the parallel SCC are given by

Rlcq(r) = l!in] Rleq(r’ k) = Rl/r
o (3.17)
RZeq(r) = AIIII;I RZeq(ra k) = RZ/(1 - T)

The dynamical model associated with this case exhibits an equivalent resistor of
value R,/ in place of the controlled input switch and a resistor of value R,/(1 — 1)
in place of the controlled output switch. This dynamical model makes perfect sense
in the limits 1 —» 0 or T — 1 since, in each case, the corresponding equivalent resistor
on each side of the capacitor branch acts as an open resistance when its corresponding
switch is assumed to be open and it acts as a pure resistance when its corresponding
switch is closed. This is certainly a capability that the traditional SCC model simply
does not have.

The steady-state resistor equivalent model for the parallel SCC is obtained from
(3.16) as

}Lnl Rleq(rv k) = Rleq(t) + RZcq(T) = Rl/r + RZ/(] - ‘[) (318)
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Notice that this (static) resistor equivalent model precisely coincides with the idea
of having a variable resistor smoothly changing its value according to the duty ratio.
The fact that the model is frequency independent constitutes a significant departure
from the traditional model.

3.3. An average PWM series switched capacitor circuit model with
non-ideal switches

Consider the elementary series SCC model (Allen and Sanchez-Sinencio 1984)
shown in Fig. 5(a). As before, the left-hand side switch is referred to as the ‘input’
switch and the right-hand side switch is referred to as the ‘output’ switch.

The differential equations governing the capacitor voltage on each one of the two
intervening structures are given by

Input switch closed and output switch open:

dv, —v) _ (@ —v) (v, —v)

i~ kRC T TRC (3.19)
Input switch open and output switch closed:
d(v, — v;) (v —v) (v —1v)
a = D TRl O 20
dt RC T TkrC (3.20)

The underlying variable structure system is represented in terms of a single
differential equation, with discontinuous right-hand side, by

dv, — v;) @ -2)  @—-2) _ @ —v) v —v)
a0 "[ krc T TR ]“L(l “)[ rRc T kRZC]
(3.21)

with « regulated by means of a PWM scheme with duty ratio () given by (3.12).
Using the results in § 2, the infinite frequency average model, is readily obtained

dv, — v,) _ (v, —v) (v; — v)
~a T [_kR,C " TRe ]

+ 1 = (@) [(—”'—R]—C”") + (—1’%] (3.22)

as

The equivalent dynamical circuit leading to the average model (3.22) may be
deduced by rewriting (3.22) as (see Fig. 5(b))

dw, — v;) _ [(v. —v) (o~ v,-)_] (3.23)

dt Ry (1, K)C  Ryey(r, O)C
v, _ VY v v
il E R VL BTSRRIV G
LF\- ' R]eq L_/\/_‘ R
RZeq =
(a) &) (©)

Figure 5. (a) Series SCC. (b) Average PWM model of series SCC. (c¢) Steady-state resistor
equivalent model.
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with

kR kR,
Ry (1, k) = [TkT(ll—r)']’ Ryg(t, k) = [T—+ k(1 _?J (3.24)

where the argument v, in the duty ratio function has been dropped just for con-
venience. Notice once again that the basic rule of § 3.1 is still valid for this case.

The equivalent values replacing the non-ideal input and output switches precisely
coincide with those derived for the parallel SCC model. This is as it should be, since,
in steady-state conditions, both resistor-equivalent average models are topologically
coincident.

In steady-state conditions and under the assumption of a constant duty ratio 7, the
capacitor C is fully charged and its branch may be considered as open. One then
obtains the steady-state resistor equivalent of the series SCC (see Fig. 5(c)) with
R., (1, k) as given by

kR kR
ch(T, k) = Rleq(‘c9 k) + R2eq(ra k) = Ei*_*alj)' + ?-{-7/;(71;———‘[)‘
(3.25)

As in the previous case, the same general remarks apply regarding non-linear
smooth duty ratio functions and the sliding character of the actual PWM controlled
response about the average PWM trajectories (similar computer programs to those of
Appendix B can be used to illustrate this fact). Again, the ideal switch model (infinite
open-switch resistance) can be obtained by simply letting the parameter k be infinitely
large in (3.19), (3.20). The equivalent resistor values in the average PWM dynamical
model and the steady-state resistor equivalent model for the series SCC are still given
by equations (3.17) and (3.18), respectively.

3.4. An average PWM parallel-series switched capacitor circuit model with
non-ideal switches

Consider the elementary parallel-series SCC model (Allen and Sanchez-Sinencio
1984) shown in Fig. 6(a). The left-hand side switch is the ‘input’ switch and the
right-hand side switch is the ‘output’ switch. The differential equations, governing the
capacitor voltage on each intervening structure, are given by

Input switch closed and output switch open:

dlv, — v,) _ (@ —v) G d'U; (v; — v3)
a - rRc, T¢ @ T TkRrC (3.26)
Input switch open and output switch closed:
dv, — v,) (v —v)  GCdv, (v, —v)
—= = = — = = .27
dt kR,C, C, dar R,C, (3:27)

Directly using the results in §2, the infinite frequency average PWM dynamical
model is readily obtained as

51_(%77;@ = 1 [_ (v, — v) (v, — vs):l

dr “rc, YT Trrc

+ -1 [_ (v},{R—Cvz) + (sz—Cva] + %‘% (3.28)
1~1
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Figure 6. (a) Parallel-series SCC. (b) Average PWM model of parallel-series SCC. (c) Steady-
state resistor equivalent model.

The equivalent dynamical circuit leading to the average model (3.28) may be
deduced by rewriting this equation as (see Fig. 6(b))

dv, — v,) (v, — v;) (v; — v3) C, dv,
— “ = = e T 3.29

dt R\ C, kR,.,C, C, dt (3.29)
with

kR, kR,
R|eq(f, k) = [m ‘C).:|’ R2eq(‘[, k) = [?_*— k(l— ‘[)jl (330)
Notice, once again, that the basic rule of § 3.1 is still valid for this case.

The equivalent values replacing the non-ideal input and output switches precisely
coincide with those derived for the previous models. Thus far all resistor-equivalent
average models are steady-state topologically coincident.

In steady-state conditions and under the assumption of a constant duty ratio t, the
capacitors are fully charged and their branches may be considered as open. One then
obtains the steady-state resistor equivalent of the parallel-series SCC (see Fig. 6 (c))
with R (7, k) given by

_ kR KRy
thk+( -1 14+k( -1
(3.31)

ch(ts k) = Rleq(rs k) + Rleq(r’ k) =

3.5. An average PWM bilinear switched capacitor circuit model with
non-ideal switches
Figure 7(a) shows the bilinear SCC model (Allen and Sanchez-Sinencio 1984).
The relations describing such a model, including non-infinite open-switch resistances,
are given by
Switches A and B closed, switches C and D open:

d(vy — v,) _ (v, — vy) (v, — fx) _ (v~ vy) (v, — vy)
a -~ " rRC T TkreC T “re T krec ©3?

Switches A and B open, switches C and D closed:

o, —v) _ @ —9) (@0 —v) _ (@ —v) @ -v)
&~ TkRC RC - krRc T RrRc G

Filippov’s PWM average dynamical mode! (Fig. 7 (b)) is obtained in accordance
with the results of §2 and using the same general procedure presented in the three
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Figure 7. (a) Bilinear SCC. (b) Average PWM model of bilinear SCC. (¢) Steady-state resistor
equivalent model.

previous cases, as

d(v; — ) (o — ) + (@ —v) _ (0 —v) + (v, v)) (3.34)

dt R..,C ReC R C Ry, C
with

kR, kR,
R,cq(‘f, k) [J + (]ivajl, chq(f, k) = [;—{-—k(]—j):‘ (335)
i.e., that is, the same general rule of §3.1 applies to each controlled switch of the
circuit.
Under steady-state conditions, the capacitor branch is open and the resistor
equivalent model of the bilinear SCC model is constituted by the parallel of a resistor
of value R, (7, k) + Ry (1, k) with itself (Fig. 7(c)). In other words

ch(rv k) 05 [Rlcq(r’ k) + chq(‘f, k)]
0 [ ,kB‘ kRz

I

— - — 3.36
th + (1 — 1) r+k(1-r)] (3.36)

If an infinite open switch resistance can be assumed then the equivalent resistor
model of the SCC arrangement is simply given by

Ry(®) = 05[R () + R (] = OS[R/r + RJ(1 — 1] (3.37)

3.6. A rederivation of the traditional resistor equivalent model

Here we rederive the traditional model using elementary concepts from singular per-
turbation theory of dynamical systems described by differential equations (Kokotovic
et al. 1986), as applied to the basic parallel SCC configuration. The other configur-
ations can be similarly treated.

Consider the basic parallel SCC configuration of Fig. 3 (@), with switching taking
place once within a duty cycle of T'(=: 1/f) seconds (the duty ratio is hence assumed
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to be T/2). Under the assumption of ideal (infinite open-switch resistance), and
idential input and output switches, the governing differential equations for each
intervening structure can be written as (see (3.9), (3.10))

edv |dt = (v, — v,.) (3.38)
edv ldt = (v, — v,.) . (3.39)

with ¢ = R, C Assuming ¢ to be very small as compared with T2, the first equation
leads, in the slow time scale, to the equilibrium condition », = wv,. It is easy to see that
in the fast time scale, ' = t/¢, v, asymptotically approaches v, with scaled time
constant equals to 1. A singular perturbation of (3.38) (i.e. letting ¢ = 0) indicates
that the capacitor C is already charged to voltage v, (total stored charge ¢ = Cv,)
when the switch is about to change to its new position in the middle of the switching
period T. Using the same procedue and assumptions, we conclude that », acquires
voltage v, by the end of the switching cycle. The net transferred charge from the
left-hand side terminal to the right-hand side terminal of the circuit is then
C(v, — v,). The pulsed current begins and ends its flow, from the first to the second
circuit terminal, in a period of T seconds. The average current is then approximated
by C(v, — ©,)/T that is, the capacitor acts as a resistor of value R,, = T/C = /fC.

4. Conclusions

Fundamental SCC models have been examined from the viewpoint of variable
structure systems and their associated sliding regimes using Filippov’s average
dynamics concept. A dynamical model approach for SCC analysis has been proposed
which includes finite open-switch resistances. The structural changes were assumed to
be operated under a suitable arrangment of synchronous complementary switches
regulated by a pulse-width modulation strategy. The underlying duty ratio was
considered either as a constant, or as state-dependent feedback function. Indepen-
dently of the nature of the duty ratio, the results for the basic SCC models indicate
that the general rule for building a dynamical infinite frequency average model of the
discontinuously controlled network, consists of formally replacing the controlled
switches by duty ratio-dependent resistors. The average models capture all essential
transient and steady-state features of the actual discontinuous dynamical systems by
identifying themselves with the ideal sliding dynamics related to the associated sliding
motion exhibited by the actual PWM controlled system responses. This fact alone
may represent a crucial advantage in the transient and steady-state analysis as well as
in design tasks related to PWM controlled SCC. The steady-state behaviour of the
basic SCC models (series, parallel, parallel-series and bilinear SCC) yield duty-ratio
resistor equivalent models of a more flexible and, possibly, a more useful nature than
the traditional model.

ACKNOWLEDGEMENTS
The first author is highly indebted to Dr K. K. D. Young of the National
Livermore Laboratory for kindly suggesting to the author to conduct research in
this field. The research was supported by the Consejo de Desarrollo Cientifico,
Humanistico y Tecnoldgico of the Universidad de Los Andes under Research Grant
1-325-90.



Switched capacitor circuit models 1491

Appendix A
Consider the n-dimensional variable structure system
dx
7 = v+ - u) f2(x) (A1)
with

{1, for s(x) > 0 )

0, fors(x) <0

with § = {x:s(x) = 0} being a smooth regular (1 — 1)-dimensional manifold
defined in the open set N of R”, with locally nowhere zero gradient ds/dx, denoted
from now on by ds.

Definition A.1
A sliding regime is said to locally exist on the manifold S whenever the following
conditions are satisfied (see Utkin 1978, Sira-Ramirez 1989 a):

lim 1{ =: lim {ds, fi(x)) <0

s=+0 dt 5 +0

. ds (A3)
Ylqm_10 7 =E xl_lgl() ds, f,(x)> > 0

where {ds, f,> is a shorthand notation for the chain rule [0s/dx]"f,(x).

Proposition A.1 (Sira-Ramirez 1989)

If a sliding regime locally exists on S then, necessarily, for all x € § where the
sliding regime exists, the following transversality condition is satisfied:

ds, fi(x) — f2(x)> <0 (A4)

Proof m]

Obvious upon subtracting the expressions in (2.7) evaluated on §.

Being a necessary condition, (A 4) determines the extent of a region which properly
contains the region of existence of a sliding regime on the surface S provided the
switching policy (A 2) is used on (A 1).

If a sliding motion locally exists on S, the state trajectories undergo a chattering
motion about the switching (sliding) manifold. An idealized version of such a motion
is obtained by assuming that the trajectories smoothly evolve on the sliding manifold.
To describe such an ideal sliding dynamics two general methods have been proposed:
Utkin’s method, based on the so-called method of the equivalent control and the
method of Filippov’s geometric averaging (Filippov 1988).

The method of the equivalent control is based on defining a smooth control
function, called the equivalent control and denoted by u*(x), locally defined along

S, for which the following invariance conditions (Utkin 1978) are satisfied:
Zi: =0 ons = 0 (A5)

Using our shorthand notation, these conditions are expressed as

g_j- = (ds, if,(x) + [| — #R]f,(x)> = 0 ons(x) = 0  (A6)
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The geometric interpretation of (A 6) should be clear: the vector field ¥*%(x) f,(x) +
[1 — u"°(x)]f,(x) must be locally orthogonal to the surface gradient ds at every point
x € Slocated in the region of existence of the sliding mode. From (A 6) one finds the
unique value of the equivalent control, for x € S, as

(ds, (0
I Send B e - A7
Tds, /() — f-(0)> (A7)

To see that «°(x) is indeed unique (Sira-Ramirez 1989 a), assume u(x) is a different
smooth function also satisfying (A 6) that is, {ds, u(x)f,(x) + [1 — pu(x)]f,(x)> =
0. Subtracting from (A 6) the obtained expression with u(x) one obtains (ds,
[WR(x) — u())fi(x) — [190x) — p(]L(0)) = W2 () — p(x)] ds, /i (x) —
f(x)> = 0. Since necessarily {ds, f(x) — fi(x)> < 0, it follows that uR(x) =
1(x) which is a contradiction.

When (A 7) is formally substituted in place of the discontinuous control u in (A ),
the obtained dynamics, constrained to evolve on S, is known as the ideal sliding
dynamics (Utkin 1978). Its explicit expression is readily obtained as

dx _ = ds, A L) + <ds. £ f()] e

uR(x) =

dr {ds, f1(x) — fr(x)>

Theorem A.1 (Sira-Ramirez 1989 a)

Let the transversality condition (A 4) be locally satisfied on S. The necessary and
sufficient condition for the local existence of a sliding regime of (al), (A2) on S, is
that the equivalent control u*?(x) satisfies

0 <u®x) <1 ons(x) = 0 (A9)

Proof

Suppose (A 9) holds locally valid on S. Then inverting the expression in (A 7) and
according to (A 9) one has

ds, fi(x) = f2(x))

- = Cds, Fy(0)> >1. xeS (A 10)
that is,
_ Sds, fi(x))
s, fu()d >0, xe8

Hence, {ds, f,(x))> and {(ds, f5(x)) have opposite signs on S. Since the numerator of
expression (A 10) is positive, according to the validity of the transversality condition
(A4), then ds, fo(x)) is necessarily positive and hence {ds,f (x))
< 0, locally on S. Therefore there exists an open neighbourhood surrounding S where
conditions (A 3) remain valid. A sliding regime locally exists on S.

To prove necessity, suppose a sliding regime locally exists on S and conditions
(A 3) are locally valid on S. Then there exists a smooth positive function 0 < u(x) <
1, such that u(x) {ds, f,(x)> + [1 + u(x)] {ds,f2(x)> = 0. Solving for pu(x) and by
virtue of the uniqueness of the equivalent control then u(x) = u*?(x) and the result
follows. a

In Filippov’s geometric averaging method of solution (Filippov 1988), the basic
result can be phrased as in the following theorem.
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Theorem A.2

A sliding regime locally exists on S for system (A 1), (A 2} if an only if there exists
a smooth scalar function 0 < u(x) < 1 defined on S such that S(x) is a local integral
manifold for the smooth dynamics

dx
5 = HEOAE) + 1= #(x)] fo(x) (A1)
Proof

Filippov’s basic resuit (Filippov 1988) is now an immediate consequence of the
previous theorem.

One immediately concludes that Filippov’s convex combination function u(x) is
none other than the equivalent control and that therefore Filippov’s average dynamics
coincides with the ideal sliding dynamics. This result is not at variance with those of
Utkin (1978). The crucial reason being the ‘artificial’ control-linearization procedure
(elsewhere called pre-linearization) by which a general variable structure system (say,
of the form dx/dt = F(x, u)) is written in the form (A 1), (A 2) (with F(x, 1) = fi(x)
and F(x, 0) = f,(x)). For the control-linearized system, both Utkin’s and Filippov’s
approaches yield the same results (otherwise, it is obvious that u(x)F(x, 1) + [1 —
u(x)F(x, 0) = F(x, u®9(x)) does not necessarily imply ¥*?(x) = u(x)).

Appendix B
SIMNON program listing for average PWM controlled parallel SCC
Continuous system SCC

state vc “State variable
der dvc “Derivative definition
dve=(v] —vc)/{(C*RIEQ)+ (v2—vc)/C*R2EQ) “Average PWM model
RIEQ=k*R1/((1 —tau)+k*tau)) “Equivalent resistor R1 (W)
R2EQ=k*R2/(tau+ k*(1 —tau)) “Equivalent resistor R2 (W)
vl:10 "Voltage V1 (Volts)
v2:5 “Voltage V2 (Volts)
R1:10E3 "Closed-switch resistance R1
R2:10E3 “Closed-switch resistance R2
k:10E3 “Open to closed-switch
resistance ratio
C:100E-12 “Capacitance C (farads)
tau:0-5 “Duty ratio
end

SIMNON program listing for actual PWM controlled parallel SCC
Continuous system SCC

state vc “State variable

time t “Time definition

der dvc “Derivative definition

stl =(vl —vo)/(R1*C) + (v2 —v¢)/(k*R2*C) "Structure #1

st2=(v]l —ve)/(k*R1*C) + (v2 —vc)/R2*C) “Structure #2

dve=u*stl + (1 —u)*st2 ”Actual PWM controlled model
u=if int(t*fr)+ tau > t*fr then 1 else 0 “PWM control law

vl:10 "Voltage V1 (Volts)
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v2:5 "Voltage V2 (Volts)
R1:10E3 “Closed-switch resistance R1 (W)
R2:10E3 “Closed-switch resistance R2 (W)
k:10E3 "Open to closed-switch
resistance ratio
C:100E—12 "Capacitance C (farads)
tau:0-5 “Duty ratio
fr:4E6 “Switching frequency
end
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