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Nonlinear P-I Controller Design
for Switchmode dc-to-dc
Power Converters

Hebertt Sira-Ramirez, Senior Member, IEEE

Abstract —In this article, extended linearization techniques are pro-
posed for the design of ] proportional-integral (P-1) controllers
stabilizing, to a constant value, the average output voltage of pulse-width
modulation (PWM) switch-regulated dc-to-de converters. The Ziegler—
Nichols method is employed for the P-I controller specification, as
applied to a family of parametrized transfer function models of the
linearized average converter behavior around a constant operating equi-
librium point of the average PWM controlled circuit. The boost and the
buck-boost converters are specifically treated and the regulated perfor-
mance is illustrated through ter simulation experi t

Keywords: dc-to-dc power converters, extended linearization, nonlinear
P-I controllers, pulse-width medulation.

1. INTRODUCTION

ULSE-width modulation (PWM) control schemes usually

regulate dc-to-dc power converters in a variety of differ-
ent arrangements, involving a high sampling frequency of the
required feedback signals. The available regulator design
techniques are based on approximate linear incremental
models of discrete-time nature (see Severns and Bloom [1],
Middlebrook and Cuk [2], Csaki et al. [3], etc.). Nonlinear
control schemes have been recently proposed for this class of
circuits, which do not necessarily resort to the discrete-time
approximation scheme. Instead, the properties of suitable
nonlinear continuous average models, obtained by imposing
an infinite sampling frequency assumption, are conveniently
exploited. The proposed design schemes are, among others:
Sliding mode control strategies, with switching surfaces pre-
scribed on the basis of properties associated to the “ideal
sliding dynamics” (see Venkataramanan et al. [4] and Sira-
Ramirez [S]); discontinuous control strategies, such as PWM,
based on singular perturbation considerations related to
time-scale separation properties of the converters’ average
responses and their associated slow manifolds (see Sira-
Ramirez and llic [6] and Sira-Ramirez [7]); regulation
schemes based on exact linearization of the average PWM
circuit model (Sira-Ramirez and Ilic [8]); and pseudolin-
earization techniques applied on the nonlinear continuous
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average PWM converter model (see Sira-Ramirez 9D. A
comparison of the various proposed designs methods, con-
tained in [5]-[9], is carried out in Section 3.3 of this paper.

A new, nonlinear regulator design scheme is proposed in
this article for the stabilization of output variables in dc-to-dc
power converters. The extended linearization control tech-
nique, developed by Rugh and his co-workers (see [10]-{12]),
is applied to nonlinear infinite frequency average models of
the PWM controlled converters. Feedback controller design
by means of the extended linearization approach constitutes
a highly attractive nonlinear design technique with potential
for many practical applications. The method is based on the
specification of a linear regulator inducing desirable stability
characteristics on the behavior of an entire family of lin-
earized plant models. The family of linear models is
parametrized by constant operating points of a smooth sur-
face of equilibrium points defined in the input-output space
of the system. The linear design constitutes the basis for
(nonuniquely) prescribing a nonlinear regulator that exhibits
the fundamental property that its linearized model, com-
puted about the same generic operating point, coincides with
the specified stabilizing controller. The obtained nonlinear
regulator is known to exhibit the advantageous property of
“self-scheduling” with respect to constant reference operat-
ing equilibria which may be subject to sudden (and purpose-
ful) changes in their nominal values.

Nonlinear P-I controllers are proposed here for the regu-
lation of the output voltage in dc-to-dc power converters
such as the boost and the buck-boost power supplies. The
frequency domain version of the Ziegler—Nichols prescrip-
tion [13] is used for the determination of the linearized P-I
regulator gains, which result in a stable family of closed loop
parametrized transfer functions relating the incremental out-
put voltage to the incremental duty ratio function of the
converter. The nonlinear P-I controller is directly specified
from the linear design in a manner entirely similar to that
proposed in [18]. In contrast to sliding mode control tech-
niques, it should be remarked that constant output voltage
regulation cannot be successfully accomplished by means of
sliding mode behavior induced on surfaces representing zero
output errors. Within such a control technique, constant
output voltage control may be achieved only when a combi-
nation of the state variables is formed in a sliding line or,
alternatively, indirectly through constant input current regu-
lation [5). Similarly, it is easy to verify that direct use of
PWM controllers, processing the same error signals, do
perform constant output voltage regulation for a limited (but
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unnaturally restricted) range of desirable set points. Quite
on the contrary, the nonlinear P-1 controller here proposed
efficiently handles the output voltage regulation problem, in
a direct manner, without noticeable instability effects, valid
at least in a local sense. Since the designed regulator is to be
used in combination with an actual PWM actuator, produc-
ing highly discontinuous signals, a proportional-integral-
derivative (P-I-D) controller does not seem feasible due to
large controller output values produced by the derivative
action performed on the discontinuous error voltages.

A brief review of nonlinear P-I controller design, by means
of the extended linearization technique, is presented in Sec-
tion II. The class of systems treated there corresponds to
general time-invariant bilinear systems. In Section III we
present the procedure for synthesizing nonlinear P-I regula-
tors for dc-to-dc converters of the boost and buck-boost type.
These nonlinear P-I controllers are designed on the basis of
the average models of the PWM controlled converters. Here,
the form in which the designed nonlinear P-I controllers are
to be used in the actual discontinuous PWM feedback scheme
is also indicated. This section also presents some computer
simulation experiments illustrating the performance of the
nonlinear P-I controller. The last section contains some
conclusions and suggestions for further work.

II. BACKGROUND RESULTS

The extended linearization technique is reviewed in this
section and applied to time invariant discontinuously con-
trolled bilinear systems of the form

dx/dt = Ax +u(Bx+g)+h

y=cx

(21)

with x € R", g and h are constant n-dimensional vectors,
while A4, B, and ¢ are matrices of appropriate dimensions.
The variable u represents a switch position function acting
as the control signal and taking values on the binary set
{0, 1}. The output y is assumed to be a scalar function.

The feedback control strategy regulating the system is
assumed to be of the discontinuous type and specified on the
basis of a sampled closed loop PWM control scheme of the
form

1, fort,<t<t+p[x(t)]T

me=
0, fortp+u[x(t)]T<t<t,+T

(22)

where p[x(¢,)] is the duty ratio function; which, generally
spedking, is constituted by a smooth feedback function of the
state variables (or of some related variables such as sampled
output error e(t;) =y, — y(t,) =y, — cx(t,)) satisfying the
following natural bounding constraint: 0 < u{x(¢,)1<1, for
all sampling instants ¢,. T is the duty cycle prescribing the
time period between the regularly spaced sampling instants,
ie, e =t +T.

Remark 1: An average model of (2.1)-(2.2) can be ob-
tained by assuming an infinite sampling frequency (i.e., letting
the duty cycle T — 0) on (2.2) as it has been rigorously shown
in Sira-Ramirez [14] (see also [7] and Sira-Ramirez [15]). The
fundamental property of the resulting average model trajec-
tories is to accurately represent all the qualitative properties
of the actual PWM controlled system (2.1)-(2.2). This was
demonstrated in [15] by showing that there always exists a
sufficiently small sampling period T for which the deviations
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between the actual PWM controlled responses and those of
the average model, under identical initial conditions, remain
uniformly arbitrarily close to each other. Conversely, for
each prespecified degree of error tolerance, a sufficiently
high sampling frequency may be found such that the actual
and the average trajectories differ by less than such a given
tolerance bound. The error can be made even smaller if the
sampling frequency is suitably increased. Moreover, from a
purely geometric viewpoint, in those regions of nonsatura-
tion of the duty ratio function w, integral manifolds contain-
ing families of state responses of the average model consti-
tute actual sliding surfaces about which the discontinuous
PWM controlled trajectories may exhibit sliding regimes [14].
Outside the region of nonsaturation, the trajectories of both
the actual and the average PWM models entirely coincide.
The average model dynamics plays then the role of the ideal
sliding dynamics (see Utkin [16] and Sira-Ramirez [17]) in the
corresponding variable structure control reformulation of the
PWM control strategy [14].

One formally obtains the average model of system
(2.1)-(2.2) by simply substituting the duty ratio feedback
function p in place of the actual switch control function u
[14]). In order to differentiate the actual state vector x from
the average states, we shall denote the average of the actual
state vector x by means of the vector z:

dz/dt=Az+p(Bz+g)+h
(2.3)

By means of Z, we denote an equilibrium state vector for
the average system (2.3). If such an equilibrium state exists
then it must, necessarily, correspond to a constant value of
the duty ratio feedback function x. We could express such a
value by u(Z). We prefer, however, to denote such a con-
stant input value as U. It is also easy to see that for a given
U, the equilibrium state vector can, in turn, be expressed as a
function of U by means of a function Z(U). This value Z(U)
coincides with the previously given equilibrium state Z if and
only if the matrix (A + UB) is invertible. In such a case we
obtain

y=cz.

Z(U)=(A+UB) '(Ug +h). 2.4)
We prefer to use this last convention, in the same spirit of
[10]-[12], rather than expressing U as a function of the
equilibrium state Z. Notice that preliminary feedback can
always render an invertible matrix 4 + UB if such is not the
case, for a particular U, in the original average system (2.3).

The traditional linearization of (2.3) about a given equilib-
rium point (U, Z(U)) results in

dzg/di =[ A+ UBlzys4[BZ(U)+ glus
(25)

with  z5(t) = 2(t) = Z(U), ys(t) == y(£)— Y(U) := v(¢) -
cZ(U), and p(t)=pu(t)-U.

The linearized system (2.5) actually constitutes a family of
linearizations of (2.3) parametrized by the constant input
equilibrium point U. Taking Laplace transforms in (2.5) one
obtains, under zero initial conditions, the family of
parametrized scalar transfer functions relating the incremen-
tal output transform y,(s) to the incremental input trans-

Vs =C2s
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form p4(s) as

Gy(s) = y,(8)/o(s) =c(sI - [ A+ UBY) "'[BZ(U) +¢].
(2.6)

The description of the linearized system as a proper ratio-
nal transfer function is only valid in the region of nonsatura-
tion of the duty ratio function, i.e., for 0 <U<1.

The extended linearization approach suggests, at this point,
the use of a P-I controller which accomplishes stabilization
to zero for the incremental output response associated to an
arbitrary element of the parametrized family of systems
represented by (2.6) (see also Rugh [18]). The Ziegler—
Nichols design recipe (see [13], p. 55) can be readily used for
determining the P-I gains upon determination of the design
parameters known as the ultimate frequency, here denoted by
Wo(U) (or, equivalently, the ultimate period, defined as
P(U)=2m/WU)) and the ultimate gain, denoted by
Ky(U), corresponding to system (2.6). These parameters are
obtained from the following relations:

AtgGy(JWy(U)) = —m; Ko(U) =|Gu(iWe(U)) |~
(2.7)

These design parameters, in turn, specify the gains of the
P-1 controller which efficiently regulates the incremental
error function eg(U)=0- ys(U) to zero. Such a P-I con-
troller is described by its transfer function Cy(s) as

Cy(s) = nrs(s)/es(s) = Ky(U) + Kp(U) /5. (28)

The above gains are easily computed in terms of the
ultimate frequency and the ultimate gain as prescribed by
the Ziegler—Nichols design rules:

K(UY=04Ky(U), Ko(U) = K (U)Wy(U)/1.6m. (2.9)

Following [18], a nonlinear P-I controller may then be
specified by considering the dynamical regulator:

di(t)/dt = K[ £(¢)]e(1)
m(t) =(0)+ K, [4(1)]e(r)

where m(t) is the nonlinear controller output signal that is to
be taken as the specification of the duty ratio function, for
the PWM actuator, only in the region where such an output
signal m(t) does not violate the saturation limits naturally
imposed to the duty ratio function as 0 < & <1. We refer to
m as the computed duty ratio function.

Linearization of the nonlinear state equations, describing
the dynamical controller represented by (2.10), around the
operating point e(U) =0, {(U)=U, prod}ces an incremental

(2.10)

model whose transfer function entirely coincides with (2.8).
The operation of the average nonlinear controlled system
(2.3) in the vicinity of the given equilibrium point (U, Z(U))

thus exhibits the same stability characteristics that the lin--

earized P-I controller (2.8) imposes on the family of lin-
earized plants represented by (2.6). By the results com-
mented upon in Remark 1, the behavior of the actual
discontinuous PWM controlled system (2.1)—(2.2) in conjunc-
tion with the designed nonlinear P-I controller will exhibit
the same qualitative stability characteristics caused by the
stabilizing design on the average PWM closed loop system,
provided a sufficiently high sampling frequency is used in
2.2).

A physically meaningful duty ratio w(¢) must not violate its
natural bounding constraints: 0 < u(¢) <1. One may then
obtain the actual duty ratio function p by properly bounding
the computed controller output signal m(¢) by means of a
limiteQ as follows:

1 for m{t)>1
w(t)=(m(t) for0<m(t) <1
0 for m(t) <0.

(2.11)

This bounding scheme may cause saturation effects on the
PWM actuator, especially for those initial conditions which
are far from the required equilibrium point. The use of
anti-reset windup schemes ([13], pp. 10-14) may be at-
tempted in such cases. We do not give further consideration
to this topic here since it implies only a minor modification
of the control scheme proposed here.

The high-frequency discontinuous trajectories induced by
the PWM actuator on the system state and output variables
(known as “chattering”) requires some additional processing
to further approximate the proposed control scheme to that
of the designed average system. The feedback design pre-
sented above is based on the infinite frequency averaged
output values; one can thus approximate the ideal smooth
performance by using a suitably designed low-pass filter at
the system output before feeding this signal back to the P-1
controller. This procedure approximates the characteristics
of the idealized design when the cut-off frequency of the
filter and its associated phase lag is made sufficiently small.

I1. P-I ConTROLLER DESIGN FOR dc-To-dc
PowerR CONVERTERS

3.1. Boost Converter

Consider the boost converter model shown in Fig. 1. This
converter is described by the following bilinear system of
controlled differential equations:

de,/dt = — wogx;+ uwgx, + b
dx, /dt = wgx|— wXy — UwgX,
3.1

where x,=I/L, x,=VyC represent normalized input cur-
rent and output voltage variables, respectively. The quantity
b=E/JL is the normalized external input voltage, and
wp=1/yLC and w;=1/RC are, respectively, the LC (in-
put) circuit natural oscillating frequency and the RC (output)
circuit time constant. The variable u denotes the switch
position functign, acting as a control input, and taking values
in the discrete set {0,1). System (3.1) is of the same form as
(2.1), with g=0 and h=[b 0. We now summarize, ac-
cording to the theory presented in the previous section, the
formulas leading to a nonlinear P-I controller design for the
average model of (3.1). ’

y=x;

Average boost converter model:
dz, /dt = —wgz, + pwyzy + b
dz, /dt = wgz,~ w12, — pwyzy

y=2;. (3.2)
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Fig. 2. A nonlinear P-1 control scheme for the output voltage regula-
tion of the boost converter.

Boost converter.

Constant operating equilibrium points:
n=U; Z,U) = ba, /[ 03(1-U)’]
Z,(U)=b/[w(1-V)]. (3.3)

Parametrized family of linearized systems about the constant
operating points:

—wy(1-U)

- w,

z,5(t) 0 715(1)
d’[zza(t) [wo(l‘U) Zzs(t)]
b/(1-U)

* [ —bwU/[w(1-U)] 2

v5() = 225(1) (34)
with

1) = )= Z(V); 1.2

Ys(£) =y (1) = Y(U) = 2o(1) = Zy(U); mo(1) = (1) = U.

Family of parametrized transfer functions:

ys(s s=b[zW)]™!
Guls)= :Z((S)) =eZdU) G, a)ls[+ L()O()1] Uy
3.9
Crossover frequency:
Wo(U) =y2a4(1- ). (3.6)
Ultimate period and ultimate gain:
PyU) =27/ Wo(U) =y27 /[ wo(1- V)]
Ko(U) = 0o(1-U)?/b. (3.7

Ziegler — Nichols P-I controller gains for the linearized family
of converters:

K{(U)=04w,1-U)"/b; K,(U) = w3(1-UY /(227b).

(3.8)
Norilinear\\P-I controller:
di(t)/de = [wd(1-£(1))/(2y2mb) ] (1)
(1) = £(1)+ [0.406(1- £(1))*/b]e(1)
e(1) =y (U) = y(£) = Z,(U) - 25(t).  (3.9)
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0.4

1)

Fig. 3. State trajectories of the ideal average boost converter model
controlled by a nonlinear P-I regulator.

zi(t)
1.5
1
8.3
— 22(t)
9 . time [s}
.15 8.2 .25 8.3 8.35

Fig. 4. Average controlled state response of the boost converter sub-
ject to a sudden change in the set point value.

In this case, upon integration of the differential equation
for £(t), an explicit expression can be obtained for the
nonlinear P-1 controller in terms of the error signal integral.

(1) = £(1) +[0.404(1- £(1))?/b]e(r)

(t)—l—__._;_(,_li o) S

Y 1+2k(1=£) fe(é)da

2

with

[(0)=¢, and k—gﬁb

(1) = ya(U) = y(t) = Zy(U) ~ 25(1)-
Low-Pass filter: A first-order low-pass filter may be used
to yield an approximation to the ideal average output func-
tion z, required by the nonlinear P-I controller. Such a filter

is characterized by a sufficiently small time constant of value
(1/T,), and a state f.

df (t)/dt = = (1/ T)(f(£) = x2(1))» 22(2) = f(1). (3.10)

The proposed regulation scheme corresponding to the
boost converter is shown in Fig. 2.

3.4. A Simulation Example

A boost converter circuit with parameter values R =30 (3,
C=20 uF, L=20 mH, and E =15 V was considered for
nonlinear P-I controller design. The constant operating value
of p was chosen to be U=0.6 while the corresponding
desirable normalized constant output voltage turned out to
be Z,0.6)=0.1677. Fig. 3 shows several state trajectories
corresponding to different initial conditions set on the ideal
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Fig. 5. State response of the actual PWM-controlled boost converter.
83,
(filtered output)
0.15
[ B}
(X}
[ ) tine (ns)
] ] [] ] 1]

Fig. 6. Filtered output response of the actual PWM boost converter
controlled by a nonlinear P-I regulator.

Fig. 7. Buck-boost converter.

avergge boost converter model controlled by the nonlinear
P-I regulator of the form (3.9). The figure represents the
projection of the closed loop system three-dimensional state
onto the z, — z, average state plane. The average controlled
state variables, z, and z,, are shown to converge toward the
desirable equilibrium point represented by Z(U)=0.4419
and Z,(U)=0.1677. Fig. 4 shows the average controlled
variables evolution when subject to a 100% step change in
the output set point value, from 0.1677 to 0.3354 (the corre-
sponding change in the operating point of the duty ratio was
from 0.6 to 0.8). Figs. 5 and 6 show, respectively, the state
response of the actual (i.e., discontinuous) PWM controlled
circuit and the filtered output response. The sampling fre-
quency for the PWM actuator was chosen as 1 kHz and the
output low-pass filter cut-off frequency was set at 0.1 rad/s.

3.3. Buck — Boost Converter

Consider the buck—boost converter model shown in Fig. 7.
This device is described by the following constant bilinear
state equation model:

dx, /dt = wyx, — uwoXx, + ub
dx, /dt = —wyx,~ w X, + UwgX,

y=1x; (3.11)
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where x,=i/L, x,=Vy/C represent normalized input cur-
rent and output voltage variables, respectively, b= E /JL is
the normalized external input voltage (here assumed to be a
negative quantity, i.e., reversed polarity) while wy=1//LC
and w,=1/RC are, respectively, the LC (input) circuit
natural oscillating frequency and the RC (output) circuit
time constant. The switch position function, acting as a
control input, is denoted by u and takes values in the
discrete set {0,1}. System (3.11) is of the same form as (2.1),
with h=0and g =[b 0. We now summarize the formulas
leading to a nonlinear P-I controller design for the average
model of (3.11).
Average buck —boost converter model:

dz/dt = wgz, — pwozy+ pb

dz, /dt = — w21~ 02, + pwgzy
y=2z,. (3.12)
Constant equilibrium points:
w=U; Z(U) = bUw, /[ w}(1- U]
Z,(U)=—-bU/[we(1-U)]. (3.13)

Parameterized family of linearized systems about the con-
stant operating points:

_‘i[zm(t) _[ 0

dr | z55(t) - —wg(1-U) oy z5(t)

wo(l_U)Hzla(t)
b/(1-U)

" bou /[wg1-vy] 12
ys(t) = z25(¢) (3.14)
with
2;5(1)=2,(1)-Z,(U); i=1,2
y5(1) = y(1) = Y(U) = 25(t) = Zo(U); ps(2) = n(1) - U.

Family of parametrized transfer functions:

) _sblzo)”
Guls) = ua(s) @oZ(U) s2+ w5+ 03(1-U)* (3.15)
Crossover frequency:
Wo(U) = wo(1-U)(1+1/u)'? (3.16)

Ultimate period and ultimate gain:
Py(U) =27/ Wo(U) =27 / [ wp(1-U) (1 +1/u) "]
Ko(U) = [wg(1-U)?] /(bI). (3.17)

Ziegler — Nichols P-I controller gains for the linearized family
of converters:

K(U) = [0.40,(1-U)?] /(1b1U)
Ky(U) = [03(1- UY(1+1/0)"] /(4nlblU). (3.18)
Nonlinear P-I controller: )
dg(1)/de = [ W3 (1- £(0)) (1+1/4(1)) 7]
/[4m1blZ()]e(t)
u(t) = £(0) +{[0.400(1- £(0))’] /(101E(1)) Je(0)
e(1) = yy(U) = y(1) = Z,(U) — 2(1) (3.19)
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Nestnes P-4 P
Convolle ““““’

Fig. 8. A nonlinear P-I control scheme for the output voltage regula-
tion of the buck-boost converter.

[ %]
2

8.2

[ B}

-t 2l
0.4 44 -8.2 [] 0.2

Fig. 9. State trajectories of the ideal average buck-boost converter
model controlled by a nonlinear P-1 regulator.

N T
’
X]
M)
ne - tine [s]
Yy 02 ¥ "

Fig. 10. Average controlled state response of the buck-boost con-
verter subject to a sudden change in the set point value.

(in this case an explicit closed-form expression for {(¢) is
impossible to obtain).

Low-Pass filter: A simple first-order low-pass filter may be
proposed to yield an approximation to the ideal average
output function z, required by the nonlinear P-1 controller.
Such a filter is characterized /by a sufficiently small time
constant of value (1/T,) and a state variable f.

df(2)/dt = = (1/TY(f(1) = x2(1)); 22(1) = f(2). (3:40)

The proposed regulation scheme corresponding to the
buck-boost converter is shown in Fig. 8.

3.4. A Simulation Example

A buck-boost converter circuit with the same parameter
values as in the previous example was considered for nonlin-
ear P-I controller design. The constant operating value of u
was again chosen to be U =0.6 while the corresponding
desirable normalized constant output voltage turned out to
be Z,(0.6) = 0.1006. Fig. 9 shows several state trajectories
corresponding to different initial conditions set on the ideal
average buck-boost converter model controlled by the non-
linear P-I regulator of the form (3.19). Fig. 9 represents the
projection of the closed loop system three-dimensional state
onto the z, — z, average state plane. The average controlled
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.._‘ zZ(C) (filtered sutpat)

-0.2
u(t)
4 tine [ns)

8 10 20 k. ] L]
Fig. 11. State response of the actual PWM controlled buck-boost
converter.

[ Bt
12(¢)
(filtered output)
[ B
0.6
.
8 tine {ns)
18 o] k] “

Fig. 12. Filtered output response of the actual PWM buck-boost
converter controlled by a nonlinear P-I regulator.

state variables, z, and z,, are shown to converge toward the
desirable equilibrium point represented by Z,(U) = —0.2652
and Z,(U)=0.1006. Fig. 10 shows the ideal average con-
trolled state variables evolution when subject to a 100% step
change in the output set point value, from 0.1006 to 0.2012
(the corresponding change in the operating point of the duty
ratio was from 0.6 to 0.75.) Figs. 11 and 12 show, respec-
tively, the state response of the actual (i.e., discontinuous)
PWM controlled circuit and the filtered output response.
The sampling frequency for the PWM actuator was chosen
as 1 kHz and the output low-pass filter cut-off frequency was
set at 0.1 rad/s.

3.5. Discussion and Review of Some Controller Design
Techniques for dc-to-dc Converters

An overview and comparison of some recently published
techniques for regulating dc-to-dc power converters seems to
be in order at this point, especially those appearing in
[5]-{9], published by the author of this paper.

Regulation circuits for dc-to-dc power supplies have been
traditionally designed by a combination of approximate lin-
earization exercised on discretized converter models, and
PWM actuators used as simple proportional controllers
[1]-[3], [20]. The techniques are analytically cumbersome and
valid over a rather limited range of regulating conditions. In
[5]-[9], nonlinear design techniques were proposed on the
basis of rigorous analytical developments with some discus-
sion about practical implementation from two fundamental
viewpoints: sliding mode control and PWM. The sliding
mode approach, extensively used in [5], explores the funda-
mental advantages and limitations of control schemes based
on active switching of the converter about linear sliding
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“surfaces” that guarantee either constant input current or
constant output voltage regulation for the different convert-
ers. It was shown, by using Lyapunov stability analysis of the
resulting nonlinear ideal sliding dynamics, that some of these
schemes result in stable sliding motionis (particularly those
pursuing regulation of input current to a constant value) and
some do result in unstable sliding motions (basically those
pursuing regulation of output voltage to a constant value).
The class of proposed stable sliding modes were particularly
simple to achieve since only one state variable of the con-
verter need be measured. Sliding regimes, on the other hand,
are known to be robust with respect to parameter variations
and are easy to implement from a hardware standpoint.
However, only indirect constant output voltage control can
be stably achieved by constant input current regulation in all
of the convertet cases. The associated transients may be
significant and thus undesirable for certain applications. In
order to overcome some of these limitations, sliding mode
control performed on affine switching lines was proposed in
[6] and [7]. The resulting controlled action naturally led to a
decoupling of the input current and output voltage dynamics
with predetermined exponential convergenice of the state
variables toward the equilibrium point. In this respect, [6]
and [7] showed that time scale separation properties could be
made inherent to the converter by appropriate circuit param-
eter specifications. This could be advantageously exploited,
in case of input source or parameter perturbations, for
diminishing undesirable effects of transients toward the sta-
ble equilibrium point. However, the techniques in [6] and [7]
call for the accurate measuring of all state variables of the
converter circuit and more elaborate hardware for the
switching line synthesis as compared to the methods in [5].
The sliding mode techniques basically tried to achieve lin-
earization of the circuit dynamics in the range of existence of
the sliding motion. But, of course, this can also be achieved
without use of sliding modes. With the advent of the geomet-
ric theory of nonlinear systems and the spur of theoretical
results dealing with the possibilities of feedback regulation
for nonlinear plants, a new avenue of nonlinear controller
design techniques was initiated in [8], [9], and the present
paper for dc-to-dc power supplies. Such techniques are based
on the possibilities of feedback regulation of the converter
variables by means of exact lmeanzatlon [21), pseudolin-
earization [22], and extended inearization [11], [12] of the
average PWM controlled converteéf model. Aside from show-
ing in [8] and [9] that modern nonlinear feedback design
methods based in the geometric theory of nonlinear systems
could be easily handled from an analytical viewpoint for the
converters case, the simplicity of regulating a linear system in
Brunovsky controllable canonical form is highly attractive
from both the conceptual and practical standpoints. Of
course, the limitations of the approach are referred to the
non-globality of the state and input coordinate transforma-
tions needed to achieve linearization, and the hardware
complexity for synthesizing the tequired state-space coordi-
nate transformations. Even though such limitations are being
overcome, day by day, with the advances of modern electron-
ics, the approach in [8] is still highly dependent upon the
constant operating point of the converter and its lack of
desirable self-scheduling properties may be significant. In [9],
a controller design based in pseudolinearization of the aver-
age PWM model is proposed so as to free the linear design
from the equilibrium point dependence present in the tech-

niqué developed in [8]. (For a discussion, see [9, p. 864,
remark 3].) The present paper gives a more concise and
complete answer to the nonlinear feedback regulation of
state variables in dc-to-dc power converters, yet with a tradi-
tional flavor. Only averaged input-output data is needed,
classical linear design techniques are exploited, and a conve-
nient degree of self-scheduling, characteristic of extended
linearization, is also achieved. This is highly desirable in
cases where the reference output voltage is subject to sudden
changes, a feature not considered before in [S]-{9]. This
article thus constitutes a partial completion of the picture of
utilization of the available nonlinear feedback regulator de-
sign techniques for dc-to-dc power converters. Each nonlin-
ear controller design method proposed thus far implicitly
bears the advantages and limitations of the underlying non-
linear design technique.

IV. CONCLUSIONS AND SUGGESTIONS
FOR FURTHER RESEARCH

Output voltage regulation in PWM controlled dc-to-dc
power supplies of the boost and the buck-boost types has

* been demonstrated through use of nonlinear controllers de-

sigried on the basis of extended linearization techhiques in
conjunction with classical control methods. The stabilizing
design considers nonlinear proportional-integral regulators
derived from a linearized family of transfer functions
parametrized by constant equilibrium points of idealized
(infinite-frequency) average PWM controlled converter mod-
els. The nonlinear controller scheme is shown to comply with
the sanie qualitative stabilization features imposed on the
average model, provided the output signal used for feedback
purposes is properly low-pass filtered and a suitably high
sampling frequency is used for the PWM actuator. As a
research topic that deserves further work, one could investi-
gate the local character of the stabilizing properties of the
proposed nonlinear P-I regulation scheme.

The proposed control scheme can be extended to the Cuk
converter and to its various modifications. Application of the
method to higher order converters requires the use of sym-
bolic algebraic manipulation packages such as REDUCE,
MAPLE, or MATEMATICA. Other classical compensator
design techniques can also be proposed. In particular, the
use of the frequency domain observer—controller regulator,
or even the classical analytical design theory [19] and its
associated integral-square error minimization, could be an
alternative to the Ziegler—Nichols design recipe for the
nonlinear P-I controller specification. The feasibility of these
approaches remains to be demonstrated. Actual laboratory
implementation of the nonlinear controllers looks promising,
but elaborate with present day technology. Efforts should be
conducted in such a direction.
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