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Abstract: Implications of Fliess’s differential algebraic ap-
proach for the study of systems dynamics are explored in the
context of sliding regimes of nonlinear systems. This viewpoint
directly leads to the possibilities of dynamically generated
sliding mode controllers, characterizing sliding motions which
are generically devoid of undesirable input chattering. A
definite connection between controllability and the possibility
of creation of ‘higher order’ sliding regimes is also established
using differential algebra.
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1. Introduction

Sliding mode control of dynamical systems has
undegone a wealth of theoretical and practical
developments over the last 50 years. Recently, a
thorough chronological collection of journal arti-
cles, and conference presentations, has been
gathered by Professor S.V. Emelyanov [6]. De-
tailed and informative surveys have also been
produced by Utkin over the years (see, for in-
stance, [30]). Background on the subject may be
acquired from the books written by Emelyanov
[4], Utkin [31,32], Itkis [16] or Biihler [2].

Recent developments in nonlinear systems in-
clude the use of Differential Algebra for the for-
mulation, understanding, and conceptual solution
of long standing problems in automatic control.
Contributions in this area are fundamentally due
to Prof. M. Fliess [7,8]. Some other pioneering
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works were also independently presented by
Pommaret [18,19].

Sliding mode control, and discontinuous feed-
back control, in general, have also received the
influence of the differential algebraic approach.
A seminal contribution, in the use of differential
algebraic results for sliding mode control, was
given by Fliess and Messager [14]. In that article,
a system was presented for which no continuous
feedback controller can achieve asymptotic stabil-
ity of the motion to the origin, while a discontinu-
ous feedback controller, based on sliding modes,
does result in asymptotically stable behavior,
modulo some small chattering. These basic re-
sults were later extended, and used, in several
case studies, by Sira-Ramirez and his colleages in
[20-23] where smoothed sliding regimes were
proposed. A most interesting article dealing with
multivariate linear systems and the possibilities of
regulation of non-minimum phase systems is that
of Fliess and Messager [15]. Extensions to pulse-
width-modulation and pulse-frequency-modula-
tion control strategies have been contributed by
Sira-Ramirez [24-26].

This article presents a reapproachment to slid-
ing mode control theory, from the perspective of
Differential Algebra. Section 2 presents some of
the implications of this new trend in sliding mode
controller synthesis. In particular, a connection is
established between ‘higher order’ sliding mo-
tions and controllability. The issue of robustness
is also explored in some detail. Some directions
for further research are suggested at the end, in
the conclusion section.

2. A differential algebraic approach to sliding
mode control of nonlinear systems

2.1. Nonlinear controlled dynamics and sliding
regimes

In this section, for the basic definitions and
results, we closely follow the contents of Fliess’s
contributions [7,8].
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Definition 2.1. Consider an ordinary differential
field k of characteristic zero. A system is any
finitely generated differential field extension of
k, denoted by K /k.

Let u be a differential transcendence element of
the system K/k. u is then a differential indetermi-
nate representing the input to the system. By
itself, u is then assumed not to satisfy any alge-
braic differential equation with coefficients in k.
We say that u qualifies as a differential transcen-
dence basis, of K/k.

The field extension k{u) denotes the smallest
differential field containing both & and u. The
field extension k{u) is also referred to as the
field generated by k and u.

Definition 2.2. A dynamics is defined as a finitely
generated differentially algebraic extension K/
k{u) of the differential field k{u).

It is well known that if u is a differential
transcendence basis of K/k, then the extension
K/k{u) is differentially algebraic.

Proposition 2.3. Suppose x =(x,, X,,...,%,) is a
nondifferential transcendence basis of K/k{u).
Then the derivatives dx;/dt (i=1,...,n) are
k{u)-algebraically dependent on the components
of x.

The proof is immediate.

One of the consequences of the last result,
obtained in [8), is that a more general and natural
representation of nonlinear systems requires im-
plicit algebraic differential equations. Indeed, from
the above proposition, it follows that there exist
exactly n polynomial differential equations with
coefficients in k, of the form
P(%;, x,u, ,...,u'?)=0, i=1,...,n, (2.1)
implicitly describing the controlled dynamics.

It has been shown by Fliess and Hassler {12]
that such implicit representations are not entirely
unusual in physical examples. The more tradi-
tional representation of the state equations,
known as normal forms is recovered, in a local

fashion, under the assumption that such polyno-
mials locally satisfy the following rank condition:

oP,
— 0 0
X,
rank| . .o |=n. (2.2)
0 0 P,
ox

The time derivatives of the x;s may then be,
locally, solved for as

£=px, u, i,...,u'?)=0, i=1,...,n.
(2.3)

The representation (2.3) is now known as the
generalized state representation of a nonlinear dy-
namics.

Consider a (nonlinear) dynamics K/k{u). Let,
furthermore, ¢ =({y,...,{,) be a non-differential
transcendence basis for K, i.e., the (non-differen-
tial) transcendence degree of K/k{u) is, then,
assumed to be n.

Definition 2.4. A first order sliding surface is any
element ¢ of the dynamics K/k{u) such that its
time derivative do/dt is not k-algebraic and it is
k{u)-algebraically dependent on ¢{. That is, there
exists a polynomial S over k such that

S(6, &y ty iy, u®) =0. (24)

Remark. A more traditional definition of sliding
surface coordinate function is related to the fact
that no input signals, nor any of its time deriva-
tives, were customarily allowed to be part of the
expression defining such a sliding surface candi-
date. In this unnecessarily restricted sense, the
sliding surface was allowed to be an (algebraic)
function of the state components only. Moreover,
for systems in ‘Kalman form’, described by a state
vector x, the time derivative of the sliding surface
was required to be algebraically dependent only
on x and u. Hence, all the resulting sliding mode
controllers were, necessarily, of static nature. The
differential algebraic approach naturally points to
the possibilities of dynamical sliding mode con-
trollers, specially in nonlinear systems where
elimination of input derivatives may not be possi-
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ble at all (see Fliess et al. [13], for a physical
example of this nature).

One generalizes the above definition by con-
sidering ‘higher order’ sliding surface candidates.

Definition 2.5. A p-th order sliding surface is any
element o of the dynamics K/k{u) such that its
p-th order time derivative is k{u)-algebraically
dependent on { and its lower order derivatives.
That is, there exists a polynomial 3 over k such
that

3P, o, 8 u, b, u)=0. (2.5)

This definition gives rise to the possibilities of
a smoothed asymptotic approach to the zero ‘level
set’ of the sliding surface o through a discontinu-
ous feedback policy. The implications will be
explored in detail in Section 2.3, below. Notice
that the integer p is not necessarily the first
higher order time derivative of o for which a
k{u)-algebraic dependence on { may be estab-
lished. Thus, a p-th order sliding surface candi-
date might have also qualified as a lower order
sliding surface candidate.

Suppose o is a first order sliding surface can-
didate. Imposing on o a discontinuous sliding
dynamics of the form

o= —Wsign(o), (2.6)

one obtains, from (2.4), an implicit dynamical
sliding mode controller given by

S(-Wsign(o), L, u, u,...,u®)=0 2.7)

which is to be viewed as an implicit, time-varying,
discontinous ordinary differential equation for'the
control input u.

The two ‘structures’ associated to the underly-
ing variable structure control system are repre-
sented by the pair of implicit dynamical con-
trollers:

S(-W, ¢ u,u,...,u®)=0 foro>0, (2.8a)
S(W, &ouyth,...,u®) =0 for o<0, (2.8b)

each one valid, respectively, on one of the ‘re-
gions> o >0 and o <0. Precisely on the condi-
tion o = 0 neither one of the control structures is
valid.

We formally define the equivalent control dy-
namics as the dynamical state feedback control
law obtained by letting do/d¢ become zero in
(2.4), and considering the resulting implicit differ-
ential equation for u:

80, ¢, ugqg» ligg,--- uy) =0. (29

Suppose now that in (2.4), 35/¥do/d¢) # 0,
then one locally obtains

g=s({,u, u,...,u®) (2.10)

and the corresponding dynamic sliding mode con-
troller, complying with (2.6), is given by

s(¢, u, ... ,uP)y=—W sign(o). (2.11)

If, furthermore, ds/0u® is non-zero, one locally
obtains an explicit time-varying state space repre-
sentation for the dynamical sliding mode con-
troller (2.11), in the form

u=u;,., i=12,...,86-1, (2.12a)
ig=0(uy,...,ug, ¢, Wsign(o)), (2.12b)
u=u,. (2.12c)

All discontinuities arising from the bang—-bang
control policy are seen to be confined to the
highest derivative of the control input through
the nonlinear function 6. The output u of the
dynamical controller is clearly the outcome of 8
integrations performed on such discontinuous
time derivative of u and, for this reason, the
signal u, emerging from the controller, is suffi-
ciently smoothed out.

2.2. Dynamical sliding regimes based on Fliess’s
generalized controller canonical form

The following theorem plays a fundamental
role in the study of systems dynamics from the
differential algebraic approach [8].

Theorem 2.6. Let K/k{u) be a dynamics. Then,
there exists an element ¢ €K such that K=
ku, &), i.e., such that K coincides with the small-
est field generated by the indeterminates u and &.

The (nondifferential) transcendence degree n
of K/k{u) is the smallest integer n such that
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£ is k{u)-algebraically dependent on
&, df/dt,...,d("_l)§/dt(_"_1).
We let

q,=¢, gq,=dé&/de, ...

It follows that g =(qy,...,q,) also qualifies as a
(non-differential) transcendence basis of K/
k{u). One, hence, obtains a nonlinear general-
ization of the controller canonical form, known as
the Global Generalized Controller Canonical
Form (GGCCF) [8]:

, qn — d(n_l)g/dt("-l).

d
aq,:q,-ﬂ, i=1,2,...,n—1, (2.13a)
C(Gps g, u, thy...,u') =0, (2.13b)

where C is a polynomial with coefficients in k. If
one can locally solve for the time derivative of g,
in the last equation, one locally obtains an ex-
plicit system of first order differential equations,
known as the Local Generalized Controller
Canonical Form (LGCCF):

d
Et‘qi=4;+n i=1;27---,n—], (214&)
d
g0 =@ u, iy b u). (2.14b)

The element g, = ¢ is known as the differential
primitive element [8]. Its physical meaning should
be adscribed to that of the particular element in
the dynamics which is of utmost interest to regu-
late. An output of the system, or a particular
tracking error, often, but not always, constitute
natural candidates for differential primitive ele-
ments. A simple rank test on the gradients (with
respect to the state) of the first n — 1 time deriva-
tives of a particular candidate may be used to
establish the k<{u)-independence of these time
derivatives. Such a simple test reveals whether or
not the chosen element qualifies as a differential
primitive element (see [20-23] for details and
examples).

Remark. We assume throughout that a > 1. The
case a = 0 corresponds to that of exactly lineariz-
able systems under state coordinate transforma-
tions and static state feedback. One may still
obtain the same smoothing effect of the dynami-
cal sliding mode controllers that we propose in

this article, by considering a suitable prolongation
of the input space. This is accomplished by succe-
sively considering the ‘extended system’ (see Nij-
meijer and Van der Schaft [17]) of the original
one, and proceeding to use the same differential
primitive element yielding the Generalized Con-
troller Canonical Form of the given smaller di-
mensional system.

The preceding general results on canonical
forms for nonlinear systems have an immediate
consequence in the definition of sliding surfaces
for stabilization and tracking problems in nonlin-
ear systems.

Consider the following sliding surface coordi-
nate function, expressed in the generalized phase
coordinates g previously defined:

o=c g+ " +c,_ 4,114, (2.15)

where the scalar coefficients ¢; (i=1,...,n~1)
are chosen in such a manner that the following
polynomial, p(), in the complex variable A, is
Hurwitz:

p(A)=c A+ -+, A2+ AL
(2.16)

Imposing on the sliding surface coordinate func-
tion o the discontinuous dynamics

o= —Wsign(o), (2.17)

then the trajectories of o are seen to exhibit, in
finite time T given by T=W~! [o(0)], a sliding
regime on o = 0. Substituting on (2.17) the ex-
pression (2.15) for o, and using (2.14), one ob-
tains, after some straightforward algebraic manip-
ulations, the following dynamical implicit sliding
mode controller:

c(q, u, u, i,...,u)
=0y~ " T4,

~ Wsign[c,q, + -+ +¢,_ +q,]. (2.18)

Evidently, under ideal sliding conditions o =0,
the variable g, no longer qualifies as a state
variable for the system since it is expressible as a
linear combination of the remanining states and,
hence, g, is no longer a non-differentially tran-
scendental element of the field extension K. The
ideal (autonomous) closed loop dynamics may
then be expressed in terms of a reduced non-dif-
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ferential transcendence basis K/k which only
includes the remaining n — 1 phase coordinates
associated to the original differential primitive
element. This leads to the following ideal sliding
dynamics:

d
PYSmk et i=1,2,...,n-2, (2.19a)
d
d_t"qn41= —Ciqy— " —Cph14p_1- (2.19b)

The characteristic polynomial of (2.19) is evi-
dently given by (2.16) and, hence, the (reduced)
autonomous closed loop dynamics is asymptoti-
cally stable to zero. Notice that by virtue of
(2.15), the condition o =0, and the asymptotic
stability of (2.19), g, also tends to zero in an
asymptotically stable fashion.

The equivalent control, denoted by ugq is a
virtual feedback control action achieving ideally
smooth evolution of the system on the constrain-
ing sliding surface o = 0, provided initial condi-
tions are precisely set on such a switching sur-
face. The equivalent control is formally obtained
from the condition do/dt = 0. After some simple
algebraic manipulations one obtains from (2.15),
(2.18) and 0 =0:

c(q, UEq, UEQ:---» UEL)
=ciC1q1 + (€26, —c)ap+ -
+(cn—ZCn—l -Cn—3)qn—2

+(C,,_1C,,_1'-C,,_2)q,,_1- (220)
Since g asymptotically converges to zero, the
solutions of the above time-varying implicit dif-
ferential equation, describing the evolution of the
equivalent control, asymptotically approach the
solutions of the following autonomous implicit
differential equation:

c(0, u, u,...,u) =0. (2.21)
Equation (2.21) constitutes the zero dynamics (see
(9] associated to the problem of zeroing the
differential primitive element, considered now as
an (auxiliary) output of the system. Notice that
(2.20) may also be regarded as the zero dynamics
associated with zeroing of the sliding surface co-
ordinate function o. If (2.21) locally asymptoti-

cally approaches a constant equilibrium point u
= [, then the system is said to be locally mini-
mum phase around such an equilibrium point,
otherwise the system is said to be non-minimum
phase. The equivalent control is, thus, locally
asymptotically stable to U, whenever the underly-
ing input—output system is minimum phase.

2.3. Higher order sliding regimes

Chattering reduction has been a major con-
cern in sliding mode controller design. A stan-
dard technique consists in replacing the switching
element by a high gain, saturation amplifier (see
Slotine [28]). Some other interesting and effective
variations of this idea have also been proposed in
Slotine and Li [29]. In recent times, however,
some efforts have been devoted to non-tradi-
tional smoothing of sliding regimes through the
so called ‘higher order’ sliding regimes (see Chang
[3] for a second order sliding mode controller
example). The ideas behind ‘binary control sys-
tems’, as applied to variable structure control, are
geared towards obtaining asymptotic convergence
in the direction of the sliding surface, in a man-
ner that avoids control input chattering through
integration (see Emelyanov [5]). These two devel-
opments are also closely related to the differen-
tial algebraic approach presented here. In the
following paragraphs we explain how the same
ideas may be formally derived from differential
algebra, in all generality.

Let o be a p-th order sliding surface candi-
date, i.e.
E(a“’),...,o,{,u,u,...,u”))=0 (2.22)
for some polynomial function 3. Let us assume
that (2.22) may be locally expressed as

oP = 17(0(""1),...,0', {,u, d,...,u"')). (2.23)
Let M be a positive constant. Moreover, let the
set of coefficients {m,,...,m,_,} be such that the
following polynomial in the complex variable A,

g(A)=AP+m,_A?"'+ o muA+my,

is Hurwitz. The following dynamical implicit slid-
ing mode controller achieves an asymptotic ap-
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proach to the zero level set of the sliding surface
o:

n(e® V.0, L u, b, u?)
=-—mo—my6— - _mp_lo.(p-l)
—Msign[mlcr+m20"+

+m, 0P P +oP7D] (224)
Since, generally speaking, the time derivatives of
o are k{u)-algebraically dependent on (, the
dynamical sliding mode controller (2.24) may be
ultimately expressed in terms of the (time-vary-
ing) state components.

Remark. A differential primitive element of the
finitely generated dynamics K/k{u), with (non-
differential) transcendence degree n, always qual-
ifies as a candidate for an n-th order sliding
regime.

An additional possibility of creating higher or-
der sliding regimes is represented by the consid-
eration of the input-sliding surface system as an
input—output system.

Consider the differential field extension
k{u, o)/k{u) as an input-output system. Evi-
dently since k{u, o) is finitely generated over
k{u), then k{u, o) is differentially algebraic over
k{u). The sliding surface candidate o satisfies
then an implicit algebraic differential equation
with coefficients in k{u), i.e.,

I(o,6,...,0%, u, i,..., u")=0. (2.25)

We may rewrite such an implicit differential
equation as the following Global Generalized
Observability Canonical Form (GGOCF) (see [7]:

G=0,, i=1,2,...,v—1, (2.26a)
I(oy,...,0,, 6,, u, ti,...,u*) =0, (2.26¢)
o=0, (2.26¢)
where

g=d"lo/d"t (i=1,2,...,v).

As before, an explicit Local Generalized Ob-
servability Canonical Form (LGOCF) can be ob-

tained for the element o whenever 8I1/&do,/
dr)#0:

g=0,,, i=1,2,...,v—1, (2.27a)
6,=p(0y,...,0,, u, it,...,u), (2.27b)
g=0,. (2.27¢)

One takes as a higher order stabilizing sliding
surface a suitable (algebraic) function of o and its
time derivatives, up to (¥ — 1)-st order. For obvi-
ous reasons, the most convenient type of function
is represented by a stabilizing linear combination
of ¢ and its time derivatives:

s=mo,+myo,+ - +m,_;to,. (2.28)
A first-order sliding motion is then imposed on
such a linear combination of generalized ‘phase
variables’, by means of the discontinuous sliding

mode dynamics:
§ = —Msign(s), M>0. (2.29)

This results in the following implicit dynamical
higher order sliding mode controller:

p(oy,...,0,, u, it ii,...,u")
= —mIUZ_ e _mu—la.v
— Msign[m,o,+ -+ +m,_j0,_,+0,].

(2.30)

As previously discussed, s goes to zero in finite
time and, provided the coefficients in (2.28) are
properly chosen, an ideally asymptotically stable
motion can then be obtained for o, as it is ideally
governed by the following autonomous linear dy-
namics:

gi=0;., i=1,2,...,v—2, (2.31a)

O, 1= —Mo|—~Myo,— " —Mm,_0,_y,
(2.31b)

o=0. (2.31¢)

Remark. The implicit dynamical controllers given
by (2.18), or by (2.30), constitute a substantial
departure from traditional sliding mode control
ideas. The validity of such controllers is necessar-
ily constrained to those regions where, respec-
tively, oc /0u‘® # 0 and 3p/3u™ = 0. Otherwise,
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singularities, known as impasse points [12], arise
for the underlying differential equation describ-
ing the controller. The avoidance of such singu-
larities, through possibly discontinuous feedback
and ‘jump’ strategies, has been a major concern
in the work of Fliess and his coworkers. The
reader is refered to Abu el Atta Dos et al. [1],
and references therein, for further details.

2.4. Sliding regimes and the controllability of non-
linear systems

The differentially algebraic closure of the
ground field & in the dynamics K is defined as
the differential field «, where K D« Dk, consist-
ing of the elements of K which are differentially
algebraic over k. The field k is differentially
algebraically closed if, and only if, k = k.

The following definition is taken from Fliess
[10] (see also [19)):

Definition 2.7. The dynamics K/k{u) is said to
be algebraically controllable if, and only if, the
ground field & is differentially algebraically closed
in K.

Algebraic controllability implies, then, that any
element of K is necessarily influenced by the
input u, since such an element satisfies a differ-
ential equation which is not independent of u
and of, possibly, some of its time derivatives.

Theorem 2.8. A higher order sliding regime can be
created on any element o of the dynamics K /k{u)
if, and only if, K/k{u) is algebraically control-
lable.

Proof. Sufficiency is obvious from the fact that
algebraic controllability implies that o satisfies a
differential equation with coefficients in k{u).
For the necessity of the condition, suppose, con-
trary to what is asserted, that K/k{u) is not
algebraically controllable and yet a higher order
sliding regime can be created on any element of
the differential field extension K/k{u). Since k
is not differentially algebraically closed, then,
there are elements in K, which belong to a differ-
ential field « containing k, which satisfy differen-
tial equations with coefficients found exclusively
in k. Clearly, these elements are not related to
the control input u through differential equa-
tions. It follows that a higher order sliding regime

cannot be created on such elements. A contradic-
tion is established. O

In this more relaxed notion of a higher order
sliding regime, one may say that a sliding regime
can be created on any element of the dynamic of
the system, if, and only if, the system algebraically
is controllable. This characterization of sliding
mode existence through controlability is a direct
consequence of the differential algebraic ap-
proach.

2.5. Robustness with respect to parametric and
external perturbations

An important feature of sliding mode control
is constituted by its traditionally outstanding ro-
bustness properties with respect to, both, unmod-
elled parametric variations and the influence of
external (bounded) perturbations. The first as-
pect has been treated, from an adaptive control
viewpoint, in Sira-Ramirez et al. [27], within the
same framework of dynamical sliding mode con-
trol as presented in this article. The second as-
pect is briefly treated below, using results in
Fliess [11]. Robustness results of dynamical slid-
ing mode controllers for linear systems are avail-
able from [15].

Let w be a differential indeterminate repre-
senting an (unmeasurable) external perturbation
input to the system. We assume, moreover, that
w and u are, each, differentially transcendent
over k and k-differentially algebraically indepen-
dent. Consider the nonlinear dynamics K/
k{u, w) and let { be a non-differential transcen-
dence basis of K/k{u, w) with cardinality n. We
consider differential k-specializations of the differ-
ential ring kf{u, {}, generated by u and ¢, into a
universal differential extension field @, as differ-
ential homomorphisms »°: k{u, {} —» &, that re-
spect time derivation. Let

Q(v(k{u, ¢}))

denote the quotient field of v®(k{u, {}). If, fur-
thermore, we assume that the differential tran-
scendence degree of the extension,

Q(v°(k{u, £}))/k,

is zero then, v%u, v%,, v°,,...,v%, are differ-
entially algebraic over k. One usually takes v° as
the identity. Differential specializations thus, nat-
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urally, conform to the idea of dynamical state
feedback (or output feedback) with, or, as in our
case, without, the use of an additional external
input (see [11] for further details).

Definition 2.9. A sliding surface candidate o of
K, is said to be robust with respect to w, if (1) o
is differentially transcendent over k, (2) o is
k{¢{, u)-algebraically independent of w, (3)
do/dt is either k{u) or k{u,w) algebraically
dependent on £, and (4) there exists differential
k-specializations v*, v~ of k{{, u} over @, with

diff tr deg Q(v*(k{¢, u})) /k

= diff tr deg Q(v~(k{¢{, u}))/k

=0,
i.e., there exist w-independent dynamical feed-
back control laws, (abusively) denoted here by
their closed form solutions: u*({), u~({), such
that the closed loop behavior of do/d¢ satisfies
(2.6), possibly for a sufficiently large value of W,
in a manner totally independent of the perturba-
tion signal w.

This means that w need not be known, in any
manner, to be able to synthesize the sliding sur-
face candidate o, but the possible influence of w
on the impossed dynamics (2.6) of & (which
maintains the desirable sliding condition o =0)
may be, somehow, counteracted by the control
input u in our desire to impose the condition
o =0, by means of dynamical feedback. Indeed,
the k{u, w) algebraic dependence of do/d¢ on
¢ implies the existence of a polynomial S over k
such that

S(o, &u iy u® w . wP) =0
(2.32)

which is locally valid as

o=s(L u iy, uP,w, w,...,w?).  (2.33)

Suppose there exist (dynamical) state-dependent
feedback controllers with outputs denoted by
u* (), u=(¢), with each controller acting, respec-
tively, on the regions o >0, and o <0, and such
that for all possible (bounded) values of w, and of
its time derivatives, one may locally guarantee
that

& =s(¢, u (£), (1)), () PAY),
w, W,...,w(’/))

<-W, (2.34a)

for all

Y

(W, w,...,w") e [100

j=0
and for all

LeN(a'(0) N {£: o()>0),
and that

6 =s(¢, 17 (£), (D)o () O(),

w, w,,..,w(”)
>W, (2.34b)

for all

y
(w, W,...,wM e [
i=0

and for all
{eN(a™(0))N{¢: o (L) <0},

where 20 is a compact set in R, bounding the
j-th derivative of w, and N(o~'(0)) represents a
small neighborhood of o =0 and (u*)¥(¢) (re-
spectively (u™)U(¢)) represents the j-th time
derivative of the dynamic controller output u*({)
(respectively u~({)) whose actions are valid only
on ¢ > 0 (resp. o < 0). Then, the sliding motion is
robust with respect to w in the sense that the
condition ¢ = 0 is locally achievable in finite time,
and indefinitely sustained, in spite of w. Compu-
tation of the dynamical controllers satisfying (2.34)
may be extremely difficult in the general nonlin-
ear case. Properness of a dynamical controller
directly computed from (2.32), specially in the
linear case, demands that 8 > vy, which is a well
known matching condition (see [29,32])). Evi-
dently, robustness is guaranteed whenever do/d¢
is only k{u)-algebraically dependent on the state
¢. In such a case the controller is computed as in
(2.11).

The robustness developments and characteri-
zations given above can be greatly simplified if
one takes an input—output viewpoint on the non-
linear system

kla, u,w)/k{u,w)

and resorts to higher order sliding regimes. In
such a case, sliding on o = 0 is easily shown to be
robust if ¢ is differentially algebraic over k{u).
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3. Conclusions and suggestions for further re-
search

The use of the differential algebraic methods
provides a firm theoretical basis to sliding mode
control of nonlinear systems. The results are seen
to point towards potential practical implications.
More general classes of sliding surfaces, which
include the presence of inputs and, possibly, their
time derivatives, were shown to naturally allow
for chattering-free sliding mode controllers of
dynamical nature. The theoretical simplicity, and
conceptual advantages, stemming from the differ-
ential algebraic approach, render new possibili-
ties to the broader area of discontinous feedback
control in general. Extensions of the theory, and
its implications, to other classes of discontinuous
feedback controlled systems, such as pulse-
width-modulated control strategies, are entirely
possible (see [24]). The less explored pulse-
frequency-modulated control techniques may be
shown to also benefit from this new approach
[26]. For other classes of systems, such as nonlin-
ear multivariable systems, infinite dimensional,
discrete time and differential-difference systems,
the extensions of the sliding mode control theory
remain largely unexplored, from this new view-
point. Robustness issues still deserve further re-
search and developments, specially in the multi-
variable cases.

It has been shown, in a most elegant manner,
in [15], that non-minimum phase linear systems
can be asymptotically stabilized using dynamical
precompensators in combination with dynamical
sliding mode controllers. Such result could be
extended to be nonlinear systems case with, pos-
sibly, some significant additional efforts.
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