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Dynamical sliding mode control strategies in the regulation
of nonlinear chemical processes

HEBERTT SIRA-RAMIREZ}

In this article, the use of variable structure fecdback control strategies is proposed
for the asymptotic stabilization of nonlinear dynamic systems describing chemical
processes. The proposed discontinuous controller is dynamic in nature and it
effectively eliminates the traditional bang-bang nature of the control input signals
and the associated chattering responses. The controller is based on recent results
of the differential algebraic approach to system dynamics; in particular Fliess’s
generalized observability canonical form is used in the derivation of the dynamical
discontinuous controller. Some illustrative examples, including simulations, -are
provided.

1. Introduction

Far-reaching understanding of dynamic controlled systems has recently
benefitted from research efforts accomplished by Fliess who proposed the use of
powerful techniques, based on differential algebra (seec Fliess 1989 a, b, a, b, ¢), in
the study of systems dynamics. Fliess’s remarkable studies have definitely con-
tributed to revise and clarify traditionally well-established concepts in the theory of
dynamic controlled systems, arising from Kalman’s fundamental state space ap-
proach. Among such revisions, it has been found that the concept of szate only has
a local validity and, hence, a more general setting is necessary to explain, detect and
possibly circumvent typical difficulties such as: impasse points and nonminimum-
phase regions, associated to the explicit state space variable description of certain
classes of non-linear systems. Implicit controlled ordinary differential equations
account for a more general, and enlightening, setting from which a unified treat-
ment, with far reaching implications, is possible. The approach yields the revolu-
tionary reformulation of basic concepts such as controllability, observability,
invertibility, model matching, realization, exact linearization and decoupling.
Within this viewpoint, natural canonical forms for linear and non-linear controlled
systems are allowed to exhibit explicitly time derivatives of the control input
functions on the state and output equations. In the case of linear systems only,
elimination of these input derivatives, from the state equations is possible via
control-dependent state coordinate transformations. In this manner the original
Kalman formulation is elegantly recovered (Fliess 1990 a, Diop 1991). The differen-
tial algebraic approach has also been successfully extended by Fliess to discrete-time
systems, differential-difference systems and infinite dimensional systems described
by partial differential equations.

The differential algebraic approach has also greatly improved the applicabil-
ity of discontinuous feedback strategies leading to sliding motions (Utkin 1978).
This is accomplished by eliminating some of its traditional disadvantages while
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enhancing its outstanding robustness and efficiency advantages over smooth stabi-
lization strategies in non-linear systems (Fliess and Messager 1990, Sira-Ramirez
1991, 1993, Sira Ramirez and Lischinsky-Arenas 1991, Sira-Ramirez et al. 1990).
Aside from the potential for possible conceptual advances in the theory of the
sliding mode control alternative, the differential algebraic approach naturally aliows
for defining dynamical variable structure feedback strategies in nonlinear systems
control. Dynamical sliding mode strategies definitely result in substantially
smoothed control input signals and, hence, the possibility of chattering-free con-
trolled responses without high gain approximations or additional tuning efforts on
some controller parameters (Slotine and Li 1991). This is particularly important in
the control of objects in which large input vibrations, or discontinuities, cannot be
simply allowed, while still demanding enhanced robustness features on the proposed
controller. Such is the case of some electromechanical systems including d.c.
motors, robotic manipulators, and some other devices subject to wear and tear
(Sira-Ramirez et al. 1990). Also, it is easy to recognize that hard discontinuities in
the control input signals cannot simply be provided by a large class of actuators
such as pneumatic and mechanically driven valves and dispensers, extensively used
by many industries today.

In this article we treat the asymptotic output stabilization problem via dynami-
cal discontinuous variable structure feedback control, or sliding mode control, and
explore the possibilities of its application to chemical process control (for some
typical non-linear control problems, treated by modern techniques, in such an area
the reader is referred to Kravaris and Chung (1987), Kravaris and Palanki (1988),
Kravaris and Wright (1989), Kravaris and Daoutidis (1988) and Limecq and
Kantor (1990). It should be remarked that chemical process control has becn an
area in which, traditionally, the sliding mode control techniques could not be
applied. The very nature of the regulation process, with the required smoothness
of the input variables and the inherent limitations in today’s actuators in the
chemical industry, did not allow naturally for discontinuous feedback strategies.
Moreover, the typical chattering responses, in sliding mode, of the discontinuously
controlled trajectories seem rather inappropriate for the delicate, and precise,
regulation of some of the output variables. All these without counting the typi-
cally slow response of some of these processes in which overshooting and ‘instan-
taneous’ correction caused by incipient errors, typical of sliding regimes, is simply
not possible. These facts naturally precluded, for a long time, the use of tradi-
tional sliding mode control in the regulation of chemical processes. On the other
hand, the fundamental robustness, simplicity, and ease of implementation associ-
ated with sliding mode control could not be taken advantage of in an area where
the need for controllers with such characteristics is always in high demand. At the
same time the lack of precise knowledge of model parameters and the ever-present
perturbations affecting the performance of the regulation schemes in chemical
process control led one to suspect that sliding mode control could be a useful
alternative provided some of its natural incompatibilities with chemical processes
were somehow overcome. However, as pointed out before, the use of differential
algebraic results in non-linear regulated dynamical systems allows for the intro-
duction of dynamical feedback control strategies which result in smooth, yet
sufficiently robust control inputs generated by integrated ‘internal’ sliding motions
taking place in the state space of the dynamical controller and not in the state
space of the controlled plant.
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The synthesis of the dynamical sliding mode regulator is entirely based on
. Fliess’s local generalized observability canonical form (LGOCF) for non-linear
systems (see Fliess 1989 b). In Section 2 of this article, we present the dynamical
sliding mode control solution to the output stabilization problem. In Section 3,
we present two application examples that illustrate the performance of the pro-
posed dynamical variable structure feedback strategies in chemical process control.
The examples are concerned with the control of continuously stirred tank reactors
(CSTR) in which controlled isothermal, liquid-phase, multicomponent chemical
reactions are accomplished via bounded molar feed rate control. The design
examples presented include computer simulations. Concluding remarks, and pro-
posals for further work, are collected at the end of the article in Section 4.
The Appendix deals with the special case of exactly linearizable non-linear
systems. In this special instance, the developments of Section 2 inevitably lead
to a chattering controller. The solution to this inconvenience rests on the consider-
ation of the GOCF of the ‘extended system’ (Nijmeijer and Van der Schaft
1990).

2. Dynamical variable structure feedback contro! in asymptotic output
stabilization problems
2.1. Fliess’s generalized observability canonical form of non-linear systems

Consider the following n-dimensional state space realization of a single-input
single-output non-linear analytic system of the form

X =f(x, u) }
y=h(x)

According to recent results by Conte et al. (1988), there exist, under quite mild
assumptions, non-uniquely defined input-dependent state coordinate transforma-
tions which eliminate the state vector x from any representation of the form (2.1).
In general, this procedure yields an input—-output representation, possibly given in
implicit form, for the above system as:

(2.1)

C(yD, . 3, v, u, 4, .., u®)=0 (2.2)

where d is defined as the smallest integer satisfying the following rank condition:

i Oh(x) T
0x
Bh(x) I Oh(x) ]
ox ox
oh(x)
’ _ ox
rank %(d,_d)(x’ ) = rank
ox
OB Ox, uy o u®
L dox J
oh'“~O(x, u, 4, ..., “(1)2
L O0x B



"4 H. Sira-Ramirez

By defining y¢“~ P =¢,; i =1, ..., d, and, under the assumption that oC/[oy?® is
locally non-zero, one obtains the following explicit local generalized observability
canonical form (LGOCF) for the system given (see Fliess 1989 b):

'f.l = 62
£2= 53 1
. > 2.3
Ci= Ea ol
Ey=cl& u, i, ...y u®)
y=1¢ J

where it is assumed that o =d — r) = 1 (for the case « = 0, see the Appendix) with
r being the relative degree or relative order of the output function y with respect to
the scalar control input  (this integer r is roughly defined as the minimum number
of times that the output signal has to be differentiated, with respect to time, for the
control input to explicitly appear in the output derivative expression (Isidori 1989,
p. 145).) We refer to & (i =1, ..., n) as the generalized phase variable coordinates.
Notice that if d < n, then the state realization (2.1) is non-minimal. We henceforth
assume, for simplicity, that d equals n (d = n).

Under such circumstances, the input-dependent state coordinate transformation
required is then given by the full rank map (Conte et al. 1988):

i h(x)
h(x)

=T(x,u, i, .. u® = :
¢ ( ) hOCx, u)

L h(n-— 1)(X, u, a7 CooE) u(u— l)) E

This implicit function theorem is responsible for the invertibility of the above
map. Thus, the new state coordinates are represented by the scalar output function
y and its first n — 1 time derivatives. An input—output representation follows
trivially from the state space representation (2.3) in transformed coordinates.

Let y = 0 be a constant equilibrium point for the system output y, in (2.3), and
let 8:=co0l(0, 0, ..., 0) denote the state equilibrium vector for such a dynamical
system. Suppose, furthermore, that the corresponding locally unique solution for u
of the nonlinear equation c¢(6, «, 0, ..., 0) =0, is given by u = U.

Under the assumption that d is exactly equal to n, we say that the nonlinear
system (2.1) is locally minimum phase at the given equilibrium point (6, U), if the
autonomous differential equation:

c® uu,..,u®)=0 2.9

is locally asymptotically stable to such an equilibrium point. System (2.4) is known
as the zero dynamics (Fliess 1990 c).

Remark: An equivalent definition of non-minimum phase system about an equi-
librium point, for a single input single output case, rests on the classical definition
using scalar transfer functions. System (2.1) is said to be locally minimum phase
about an equilibrium point—given by f(x(U), U) =0, with h(x(U)) = 0—if, both

’
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the numerator and denominator polynomials of the scalar input-outupt transfer
function of the linearization exhibit roots located in the open left half of the
complex plane. 0

2.2. Dynamical output stabilization in nonlinear systems by exact linearization

The asymptotic output stabilization problem consists in specifying a feedback
controller, possibly of dynamic nature, described in general by a locally explicit
time-varying scalar ordinary differential equation, which accepts as input functions
the generalized phase variables coordinates £;, and is capable of producing, as a
solution output signal, a scalar function u. The control signal 4 has the virtue of
locally forcing the system output, y = ¢, to converge asymptotically toward the
desired constant reference value of zero.

Let p(s) =s"+7%,_15" '+ ...+ 7,5 + 7, be a Hurwitz polynomial. Consider
imposing a linear time-invariant autonomous behaviour on the output function
dynamics y(f), and its first n — 1 time derivatives, represented by the controlled state
realization (2.3), in such a manner that p(s) exactly represents the characteristic
polynomial of the closed loop system, i.e.

YOO + 9,21y + A+ 25O + yox(t) =0 (2.9

By virtue of the definition of the transformed state £, the reproduction of the
asymptotically stable behaviour, represented by (2.5), may be clearly accomplished
by the nonlinear system given, as long as the control input function u(¢) satisfies the
non-linear implicit, time-varying, ordinary differential equation (Fliess, 1989 a):

n—1

& u i, .., u®) =— Z Yi€ivi (2.6)
i=0

This scalar differential equation implicitly defines a linearizing dynamical feed-
back controller which accomplishes asymptotic output error stabilization to zero, in
a manner entirely prescribed by the set of constant design coefficients
{05 V15 «-+s Yu_1}. Evidently, the synthesis of such a dynamical controller requires
that the signals represented by the components of the vector ¢ are fed, as inputs, to
such a controller. We assume that this may actually be carried out, explicitly, in
terms of the original state coordinates x.

The asymptotic equilibrium point of the controlled (i.e. closed loop) system:
N

5:1-‘—‘62
§2=53
&= ¢ > (2.7
énz - ni '})ifi+l
i=0
y=2¢ ‘ J

is simply given by & = 0. Hence, under such an equilibrium condition, i.e. under
perfect stabilization of y to the value 0, the resulting dynamic controller exhibits the
following remaining, or hidden, dynamics (Fliess 1990 c):

0, u, it ..., u®) =0 (2.8)
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It follows that the feasibility of the linearizing approach, in terms of the
stability characteristics of the dynamic controller and that of the resulting closed
loop system, is intimately related to the minimum phase character of the underly-
ing non-linear system (2.1), i.e. to the nature of the stability of (2.8) around its
local equilibrium value u = U.

It should be evident that the dynamic controller (2.6) has an interpretation in
terms of an inverse system which processes, as inputs, the output function y and
its time derivatives, in the form of the (input) vector &, and produces, in turn, as
an output function, the scalar control signal « which is responsible, in turn, for
leading and maintaining the output y of the original non-linear system (2.1), on
the desired equilibrium value of 0. Under the assumption that, locally, de/ou' is
non-zero, then no impasse points need be considered (Fliess and Hassler 1990, and
Fliess et al. 1990).

2.3. Dynamical output stabilization in nonlinear systems via sliding regimes

The fundamental idea behind the use of the zero level set of a scalar function
s:R"—>R of the state x, here denoted by S = {x :s(x) =0}, as a switching mani-
fold, or sliding surface, is to force the controlled motions, even if in a feedback
discontinuous manner, to adopt S as an integral manifold. The sliding manifold is
designed in such a manner as to induce a constrained dynamics which is desirable
in some well-defined sense. The available feedback control actions acting outside
the switching manifold, and leading the controlled trajectories toward the designed
sliding surface, could be fixed, or not, from the outset. In any case, two different
control polices are used on each one of the open regions of R” separated by S.
Upon reaching S, fast switching take plcae in the immediate vicinity of S, among
the available feedback control laws, triggered by incipient errors caused by the
‘overshoot and correct’ control actions, which try to keep the state motions
constrained to S. One of the advantages of the sliding mode control approach is
that the resulting constrained motions become intrinsically independent of the
original system dynamics, and of its associated parameters which, typically, are
not precisely known (i.e. robustness is achieved). Moreover, the resulting con-
strained dynamics become basically dependent only upon the features imposed on '
the designed switching manifold, which are entirely up to the designer’s will and
needs. The reader is referred to the extensive literature on this topic for more
details and applications (Utkin 1978, Slotine and Li 1991, Sira-Ramirez, 1987,
1988, 1989 a, b, c, 1990).

The following proposition describes a simple manner of obtaining a sliding
motion for a one-dimensional system. This simple result accounts for much of the
remaining developments in this article.

Proposition 2.1:  Consider the one dimensional discontinuous controlled system:
§=—us+v 2.9)

where the variable v acts as an external control input. Let u and W be strictly positive
quantities. Then, the discontinuous feedback control policy:

v = —uW sgn(s)

globally creates a sliding regime on s =0. Here ‘sgn’ stands for the signum function,
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defined as:
sgns=+1ifs>0
sgns=0 ifs=0 (2.10)
sgns=—11if s <0

Furthermore, any trajectory starting on the value s = s(0), at time t =0, reaches the
condition s =0 in finite time T, given by: T = =" In[1 + |s(0)|/ W).

Proof. Immediate upon checking that globally: s ds/df <0 for s # 0, which is a
well-known condition for the existence of a sliding mode (Utkin 1978). The second
part follows from the linearity of the two intervening system structures. ]

Let the set of real coefficients {my,...,m,_,} be such that the following
polynomial is Hurwitz:

S"T N m, _,8" 24 L+ mys +my (2.11)

Consider the system (2.1), or its GOCF. Define an auxiliary output variable s,
in terms of the components of the generalized phase coordinates vector £:

S = i miéléi::mTé (212)
i=1

with m,_, = 1.

A dynamical variable structure feedback controller is readily obtained for the
dynamical system (2.1) if we impose on the evolution of the auxiliary output
variable s the discontinuous dynamics considered in Proposition 2.1. Let A be an
n x n matrix in companion form with the last row constrituted by zeros. From
(2.3), (2.9) and (2.12) one obtains:

(& u, u®, ., u®) = —mTul + A& — uW sgnm™E (2.13)

which is to be viewed as an implicit scalar differential equation with discontinuous
right-hand-side. On each one of the regions s =m"¢ >0, and s =mTé <0, a
different ‘feedback structure’ is valid and the implicit controlled differential equa-
tion is to be solved for the controller #, on the basis of knowledge of the
transformed state £. Since s was shown to exhibit a sliding regime on ‘the
discontinuity surface s =0, Filippov’s continuation method (Filippov 1988), or,
equivalently, the method of the equivalent control (Utkin 1978), must be used for
defining the idealized solutions of (2.13) on the switching manifold given by the
condition: s =mT¢ =0.

According to the method of the equivalent control, the discontinuous motions
on the sliding surface s =0 can be described in an idealized fashion, by the
invariance conditions s =0 and ds/dt =0. The conditions: ds/df =0, allows -
the definition of a virtual control action, known as equivalent control, which
would be responsible for locally smoothly maintaining the evolution of the state
variables on any member of the family of manifolds s = const., should the mo-
tions started precised on any one such manifold. If the condition s =0 is locally
valid for the controlled system, then at least one of the transformed variables, say
&,, no longer qualifies as a state variable, since it is expressible in terms of the
remaining n — | state variables. The resulting autonomous dynamics, ideally con-
strained to the switching manifold s = 0 and ‘controlled’ by the equivalent control,
is known as the ideal sliding dynamics. It follows from (2.12) and the invariance
conditions, s =0, ds/dz =0, that such a, non-redundant, ideal sliding dynamics



8 H. Sira-Ramirez

is given by:
5:1 =&
& = & (2.14)

énfl = _mn—an—] _mn—3€n72_ ﬁm0€l

The dynamic system (2.14) exhibits an asymptotically stable motion toward the
origin of generalized phase coordinates ¢, with eigenvalues uniquely specified by the
prescribed set of coefficients {my, ..., m,_,}. In particular, the output function
y =h(x) = &, asymptotically converges to zero. From the invariance conditions
considered, the equivalent control, denoted by ugq, is defined as the solution of the
implicit differential equation:

o(&, ulldy, ., uly) = —mTAE (2.15)

In equilibrium conditions for the closed loop system, the definition of the
equivalent control coincides with that of the zero dynamics. The proposed variable
structure control scheme (2.13) produces an asymptotically stable controlled mo-
tion of the output y, provided the original system (2.1) is minimum phase.

The determination of the minimum phase character of the system (2.1) can be
carried out by studying the stability of the nonlinear zero dynamics around each of
its equilibrium points or, alternatively, by linearization about the operating point of
the system equations and computation of the input—output scalar transfer function.

Remark: Two important advantages about the dynamical variable structure con-
troller respresented by (2.13) can be readily established. The first one is the fact that
the output function y = A(x) asymptotically approaches 0 with substantially re-
duced or smoothed out, ‘chattering’. Notice that at least » integrators stand
between the output variable y and the regulated chattering behaviour of the
auxiliary output variable s. Therefore, with respect to the static variable structure
controller alternative (Sira-Ramirez 1989 ¢, 1990), n —r additional integrations
contribute to smooth out the controlled output signal further. Secondly, and this is
possibly the most important advantage, a canonical generalized phase variable
representation for the dynamical controller (2.13) indicates that the control input u
is the outcome of at least a ( =n —r) integrations performed on a non-linear
function of the discontinuous actions that leads the auxiliary output function s to
0. This means substantially smoothed control actions which do not result in a
bang—bang behaviour for the actuator, something that cannot be avoided in the
static controller alternative. Notice that none of the above smoothing features
applies to the case of exactly linearizable systems (ax =0, n =), as treated in this
section. This special case is dealt with, in full detail, in the Appendix. d

3. Some examples of sliding mode controlled chemical processes

In this Section we apply the results of Section 2 to two chemical processes
control examples. Even though the examples presented are academic, they are truly
representative of some chemical processes which can not be controlled by static
sliding modes. The examples deal with the output stabilization of continuously
stirred tank reactors (CSTR) in which controlled isothermal, liquid-phase, multi-
component chemical reactions are accomplished via molar feed rate control. The
mathematical models for this application of the theory are taken directly from
Kravaris and Palanki (1988).
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Example 1: Dynamical variable structure controller design for total concentration
control in a continuously stirred tank reactor. Consider the following simple
non-linear dynamical model of a controlled CSTR in which an isothermal, liquid-
phase, multicomponent chemical reaction takes place (Kravaris and Palanki
1988): :

Xo=(1+D,)x, +u
Xy =Dy x, _xZ_DaZX% (3.1)

y=x+x,—-%Y

Where x, represents the normalized (dimensionless) concentration Cp/Cpy Of a
certain species P in the reactor, with ¥ = Cpy being the desired concentration of
the species P and Q measured in mol m~3. The state variable x, represents the
normalized concentration Cp/Cpy of the species Q. The control variable u is
defined as the ratio of the per-unit volumetric molar feed rate of species P,
denoted by Ny, and the desired concentration Cpo, i.€. = Npp (FCpy) where F
is the volumetric feed rate in cubic metres per second. The constants D, and D,
are respectively defined as k, V/F and k, VCp/F with V being the volume of the
reactor, in inverse cubic metres, and k, and k, are the first order rate constants in
inverse seconds.

It is assumed that the species Q is highly acidic while the reactant species R is
neutral. In order to avoid corrosion problems in the downstream equipment, it is
desired to regulate the total concentration y to a prescribed set-point value specified
by the constant Y. It is assumed that the control variable u is naturally bounded in
the closed interval [0, U,.,] reflecting the bounded (physical) limits of molar feed
rate of the species P.

It is easy to verify that for the given system (3.1), the rank of the following 2 x 2
matrix (Conte et al. 1988):

%

ox 1 |

S: = 3.
bis [—1 x(1+2Da2xz)] 2
Ox

is everywhere equal to two, except on the line x, =0. Natural physical consider-
ations lead us to restricting x, to values greater than zero. The singularity of (3.2)
is therefore devoid of any physical significance.

A stable constant equilibrium point for this system is given by:

i __ v _ L 4D, D, U | '
u=Us xW=q7p,5 "Z(U)'zn.,z[ ”{”(HD,,,)} ] Eeed

It is easy to verify, by computing the linearized transfer function on the given
equilibrium point, that the above system is indeed minimum phase. The following
input-dependent state coordinate transformation:

=x,+x,—Y
él 1 2 } (3 4)

_ 2
& =—x;~x;— Dpxi+u



10 H. Sira-Ramirez

allows one to obtain a GOCF for the system in the form given by (2.3). The inverse
of this transformation is simply written as

X, =& — [E: (é; Gt Y)_] "
a2

u—(+&H+1) |
S R FE

(3.5)

Notice that the quantity inside the square root in (3.5) is never 0.
In transformed coordinates, the system is given by:

5.1 =&
b= =21+ Da)Ey = (3+2D,)6 — 2D DlEy + ¥) [“—1(5‘“2* L ] B

+zbzz[<u:(é'; 52+Y)>3} 21+ D+

a2

y=€| J
(3.6)

which is in LGOCF. i.e. (3.6) straightforwardly leads to the following input-output
representation of the given system (3.1):

~

u?—(y+}3+Y)_]”2

}"'+2(1+Dan)y+(3+2Da1)y+2DalDaz(y+Y)l: D
a2

_ + +Y 3701/2
_zuzz[<“~(yDy ))J =21+ D, )u+u
a2

(3.7)

The hidden, or zero dynamics associated to the output nulling in (3.7) is given,
according to (2.4), by:

— Y \Y2 —Y\3]u2
d+2(1+Dal)u—2DulDa2Y<uD ) +2D§2[<“~D—>] =0

a2 a2

It is easy to show, by means of an approximate linearization analysis of the
previous equation around the equilibrium point u = U, that the such a constant
equilibrium point, corresponding to Y = X, (U) + X,(U) as computed from (3.3), is
locally asymptotically stable. The system is, hence, minimum phase.

Consider the following auxiliary output function, with m, > 0:

s =& +mpé, (3.8)

Notice that if s is zeroed, in finite time, by means of a sliding mode controlled
strategy such that as in (2.9), then, under such sliding conditions, the respoinse of
the output function y = ¢, is ideally governed by the asymptotically stable linear
autonomous dynamics

5'1': —my, (3.9

Imposing on s the asymptotically stable discontinuous controlled dynamics
given by ds/dr = —u[s + W sgn (s)], one readily obtains the following stabilizing
dynamic variable structure feedback controller
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i = —2(1+ Dyt +[2(1 + Do) — pmolé, + 21 + D) ¥
_ 12
+ (342D, — Mg — W)Es + 2D D&y + Y) [“r et Qﬂ)] (3.10)
a2
u—(G+6tY)
—2D§2[; Da2

In original coordinates, the sliding surface is, evidently, a control input depen-
dent manifold. The proposed dynamical variable structure controller (3.9) adopts,
then, the following expression:

377172
:| ] — uW sgn (&, +my&,)

=1 —p—mohu — (1 — (1 —m)(x; + ;) + 2Dy Do Xy X, = (3 — 1t —mg)D,5x3
—2D2,x3 4 umy Y — uW sgn [ — (x, + x;) — Dpx3 4 u +mox, +x, — Y] (3.11)

Simulation results for Example 1
Simulations were performed for a reactor characterized by the following
parameters:

D,=10; D,=10

The simulated control task considered an output stabilization problem for the
total normalized concentration y in system (3.1). This was accomplished by means
of a dynamic variable structure feedback controller of the form (3.9), or (3.10).
Specifically, it was required to steer the outupt y to a constant reference value,
Y = 3. The variable structure system parameters were chosen as p =1, my=2.
Figure 1 portrays the time response of the dynamical discontinuously controlled
output and the time responses of the corresponding controlled state variables.
Figure 2 shows the corresponding (smooth) continuous control input trajectory

Normalized concentration for states and output error [mol/m3)

S T

~o0 Y 15 2 25 3

Figure 1. State and output variables responses of dynamically sliding mode controlled
CSTR (Example 1).
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45— e ! ! - T

time [s]

Figure 2. Dynamically generated control input trajectory (Example 1).

s
(=]
i
)
!
|
|
1’

time [s]

Figure 3. Time response of auxiliary output function undergoing sliding regime.

u(t). Realistically, a very small amplitude chattering should be present in the
simulation after the auxiliary output s reaches the value of zero, i.e. about t =1-5s
(see Fig. 3). However, the Runge—Kutta integration routine and its automatic
averaging features further smooths out the simulated dynamic controller response.
If sampling of the sliding surface values is carried out, a more realistic response is
obtained, which is not substantially different from the one presented here, especially
if very high frequency sampling is performed. Initial conditions were chosen so that
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Figure 4. Phase portrait of sliding model contorlled CSTR (Example 1).

some ‘saturation’ was exhibited by the control input at the lower bound of zero
(negative inputs having no physical meaning whatsoever, impling that the actual
input must be zeroed under such conditions). This was done just to test the
stabilizing features of the dynamic controller under such temporary (open loop)
saturation conditions. A family of asymptotically stable state trajectories, obtained
for widely different initial conditions, is shown in the phase portrait depicted in
Fig. 4.

Example 2: Dynamical controller design for concentration control in a continuously
stirred tank reactor. Consider the following nonlinear third order dynamic model,
taken from Kravaris and Palanki (1988), of a controlled CSTR in which an
isothermal, liquid-phase, multicomponent chemical reaction takes place:

%1 =1—=(1+4 Dy)x, + D,x3

Xy =Dy x, —xz—(Da2+Da3)x§+u
%y = Dg3x3 — X3

Yy =X

where x, represents the normalized concentration C,/C,r of a species A in the
reactor, with C,r being the feed concentration of the species 4 measured in
mol m 2. The state variable x, represents the normalized concentration Cp/C 4r Of
a species B in the reactor. The state variable x; represents the normalized concen-
tration C./C,r of a certain species C in the reactor. The control variable u is
defined as the ratio of the per-unit volumetric molar feed rate of species B, denoted
by Ngr, and the feed concentration C,r. ie., u = Npp[(FCyp) where F is the
volumetric feed rate in m®s~'. The constants D,,, D,, and D,; are, respectively,
defined as k, V/F, ko VC ,r|F and k; VC ,r|F with ¥V being the volume of the reactor,

in m3, and k,, k, and k; stand for first order rate constants, in s~ Ly

(3.12)
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It is desired to regulate the normalized concentration C./C s to a prescribed
set-point value specified by the constant Y. It is assumed that the control variable
u is naturally bounded in the closed interval [0, U,,,,] reflecting the physical limits
of molar feed rate of the species B.

We next summarize a dynamic variable structure feedback controller design,
carried out in a manner entirely similar to that of the previous example.

It is easy to verify that for the system (3.12), the rank of the following 3 x 3
observability matrix S (Conte ef al. 1988):

0 1
S = 0 2D, x, -1
2D, Dy3x; [2Dgy Doy xy — 6D 3%, — 6D,3(Dyy + Dy3)x3 + 2D 5u] l

(3.13)

is everywhere equal to three except on x, = 0, which, again, represents a singularity
condition devoid of any physical significance.

Stable constant equilibrium point at u = U in a minimum phase region

L+ D, [x,(U))?

x(U) =f1*;:*D'al
1/2
_1+{1+4<U+;Dal ><D02+Da3+DalDa3_>} ?
x(U)=(1+D,) | - \ 1+ D,/\ 1+ D, |
’ “ 2(D02+D03+DalDa3)
x5(U) = Dalxa(U)? )
(3.14)

Input-dependent state coordinate transformation to generalized observability canonical
form and its inverse transformation

§r=x;
&=Dix5—x; (3.15)
&3 =2D,Dy3x, %, — 3Da3x§ —2D;5(D,, + D3)x3 + 2D 3x5u + X3

3/2 1/2 A
£+ 3(E + &) + 2Dy (Dop + D) (‘f-D* 52-) —m;(%j 52) -
o 75137” o o a3 .

é + fz_) 12

a3

i3
{

2DaIDa3 (

(3.16)
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Generalized observability canonical form

‘5:1—‘:62
62=€3
: (3.17
é3=C(f, u, 1'2) )
y=2

where, for simplicity, and to facilitate the computation of the dynamical controller
in original coordinates, we write the nonlinear function (¢, u, u) in terms of the
original coordinates x, as a function g(x, u, u), given by:
g(x’ u, d) = [2Da]Da3xl - 6Da3x2 - 6Da3(Da2 + Da})xg + 2Da3u][Dalx] — X3

- (D, + DaB)x% +u]2D, D s[1 ~ (1 + D, )x + Dazx%]xz

+2Da3x2d +Da3x%_X3 (3.18)

Auxiliary output function to induce asymptotically stable sliding regime
s=¢+ 2w,8 + ;¢
=2D, 1 D3 x1 %3 = 2Dg3(Dyy + D,3)x3 + 2D 3%
+ (2w, —3)D x5+ (1 — 2w, + 0l)x; (3.19)

Ideal sliding dynamics
&=t } e

fz = —20w, & — il =t —m & — my&,

Asymptotic stabilizing dynamical feedback controller in original coordinates
i
X3

1 —
LB (12w, + @iy + D3x Dl +20,) = 5= Dalixy
a3

u= { 2[D x4+ (=24 051 + {,)x; = 2Dy + D,3)x3Ju +u? + Dy x,

2
+[7=3(1 +2{w,) + 2w,u + 7] %g +[Day Dz + (Daz + Do3)(6 — 4 — 2{w,))x3

2
4D, (D + D)3+ 3Dy + D)t — 220y 4 W gy } (3.21)
2D, 2D,
Notice that impasse points are located everywhere on the plane x, =0.

It is easy to verify by means of a linearized analysis, involving some tedious but
straightforward calculations, that the zero dynamics, associated to the ideal sliding
motions, is asymptotically stable toward the physically meaningful equilibrium
point.

Simulation results for Example 2

Simulations were peformed for an output stabilization problem defined on
system (3.13) using the dynamic variable structure controller (3.21) for a reactor
characterized by the following parameters:

D,=30; Dyp=05 D,=10
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Figure 5. State variables responses of dynamically sliding mode controlled CSTR
(Example 2).

It was required to regulate the total normalized concentration y to a constant
reference value Y = 0-7737. The chosen equilibrium values for the state variables,
according to Kravaris and Palanki (1989), were given by x,(U) =0 3467,
x,(U) =0-8796, x,(U) =0-7737. The sliding surface parameters were chosen as
=09, o, = \/ 10. The variable structure controller parameters associated to the
dynamics imposed on the auxiliary output function s were chosen as p=2s"",
W =1. Figure 5 depicts the asymptotically stable time responses of the three
controlled state varaibles, converging toward their respective equilibrium values.
Figure 6 portrays the time response of the dynamical controlled output smoothly
approaching the expected equilibrium point. Figure 7 shows the corresponding
continuous feedback control input trajectory delivered, as an output, by the
dynamical variable structure controller. The same comments, regarding the smooth-
ness of the control input trajectory, made in the simulation results of the previous

example apply to this case.

4, Conclusions

In this work, dynamical variable structure feedback compensators which accom-
plish asymptotic output stabilization were examined for some nonlinear chemical
control processes. Generally speaking, this class of discontinuous controllers is
readily obtainable for any nonlinear system once its describing differential equa-
tions are placed in Fliess’s local generalized observability canonical form. Such a
canonical form naturally leads, via the definition of a suitable auxiliary output
function, to a dynamic variable structure linearizing controller which zeroes, in an
asymptotic fashion, the output function considered. The differential algebraic
approach to variable structure controller design, however, requires full state feed-
back and it entails dealing, in general, with the complexity of non-linear time-vary-
ing implicit dynamic controllers, which may not be globally defined. Some of the
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Figure 6. Output variable response of dynamically sliding mode controlled CSTR (Example
2).
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Figure 7. Dynamically generated control input trajectory Example 2).

associated difficulties are known to include the presence of impasse points and
equilibrium points non-minimum phase regions. In such pathological cases, the
usual remedy indicates that the use discontinuities in the control signal is appropri-
ate. This prescription has been shown to produce the required results, without
disturbing side effects (see Fliess et al. 1990). Illustrative examples were presented
in this article, along with some encouraging simulation results, dealing with the
discontinuous regulation of continuously stirred tank reactor outputs toward
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constant operating points. The chattering responses, otherwise typical of sliding
mode controlled systems, are effectively suppressed and the control input signals
obtained are smooth enough. The basic feature is that sliding modes actually take
place in the state space of the dynamical controller and not on the process state
space itself. Thus, the input function obtained is continuous and only exhibits
bounded discontinuities (i.c. first order discontinuities) in its time derivative. As
topics for further research, the proposed non-linear variable structure dynamic
compensator could be actually implemented in an experimental CSTR by using
non-linear analogue electronics. The results can be easily extended to the class of
right invertible multivariable systems.
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Appendix

In this Appendix, we propose to use the concept of the ‘extended system’
(Nijmeijer and Van der Schaft 1990, p. 190), to obtain a dynamic variable structure
feedback controller exhibiting smoothing features for the control input signal
synthesized. This alternative arises, and as a special need, in systems which are
exactly linearizable by local diffeomorphisms—representing local state coordinate
transformations—and state-dependent redefinition (i.e. feedback) of the control
input (Isidori 1989). If one follows the developments of Section 2.2, one easily
realizes that, for this case, the obtained variable structure controller is static and
none of the argued advantages of the dynamic discontinuous controller are thus
achievable.

Suppose that system (2.1) is relative degree . In this case, the local GOCF is
given by:

él=éz )

£2=53
é,,zc(f, u)
y=2¢&

Consider the ‘extended system’ of (2.1):

x =f(x,u)
u=v (A2)

y =h(x)

where v is an auxiliary external input signal and the original input variable u is now
an added state to the system. As can easily be seen, the extended system, aside from
being linear in the new control input v, is relative degree n + 1 with respect to the
auxiliary input v and hence exactly linearizable by a diffeomorphic state coordinate
transformation, whenever the original system is also exactly linearizable. Computing
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Isidori’s normal canonical form (or the GOCF, since in this case they coincide) of
the system (A 2) by means of the following state coordinate transformation:

h(x)
Te1[ @ 7| "
&= ¢ = (T, u) = (A.3)
n+1 s h(,,_ 1)(x)
o(T(x), u)
one obtains:
5.1 = fz
52 = 'fs
RIS [ (A9)
En = €n+1
. dc(€, u) de(E, u)
=T bt
" P u:@(c)( E+bE,0)+ e |umse
y= él J

where A is an n x n matrix in companion form, with the last row constituted by
zeros, the » dimensional column vector b has all entries zero except the last, which
is equal to one. The function 3(¢) is the solution, with respect to u, of the equation
&, w)=¢,,, (ie. c(& 3(&) =¢,, ) which is guaranteed to exist by virtue of the
implicit theorem and the fact that the original system (2.1) is assumed to be relative
degree n and hence, necessarily, dc/0u # 0.

On the basis of (A 4) one can now define the auxiliary output function s as:

sy =&, +m,_ ¢, +m, &, 4 ..+ md, (A5)

such that the following polynomial, characterizing the linearized closed loop
motions on s(¢&) =0:

sTm, stV m, a4 L mg (A6)

is Hurwitz. One then imposes, as it was done before, a discontinuous, asymptotically
stable dynamics on s which guarantees a sliding regime on s(¢) =0, of the form:
ds/dt = —u[s + W sgn (s)] (A7)

Substituting (A 5) into (A 7), using (A 4), and reverting the resulting algebraic
equation to original state and input coordinates, one obtains the following dynamical
variable structure contoller, with smoothed features for the control input signal # and
asymptotically regulating the controlled output motions toward zero:

_ [%T(WQ “'{‘ﬂ@
T du o

+ X (m_ o+ pm, YR D(x) + pW sgn(s) } (A8)

i

[AT(x) + be(T(x), u)]

{=T(x)

with m, = 1, m_, =0 and A"(x) = o(T(x), u).
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