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Dynamical Feedback Control of Robotic

Manipulators with Joint Flexibility

Hebertt Sira-Ramirez, Member, IEEE, Shaheen Ahmad, Member, IEEE, and Mohamed Zribi, Member, IEEE

Abstract—Dynamical feedback control strategies are proposed
for the asymptotic stabilization and asymptotic output tracking
problems, associated with the operation of flexible joint manip-
ulators. Smooth dynamical linearizing feedback controllers, as
well as dynamical sliding mode regulators are derived within
the context of Fliess’ generalized observability canonical form
(GOCF). The GOCF is obtained by means of a state elimination
procedure, carried out on the system of differential equations
describing the manipulator dynamics. The remarkable feature of
this new approach lies in the fact that a truly effective smoothing
of the sliding mode controlled responses is possible while sub-
stantially reducing the chattering in the control input torque.
Simulation examples are given that illustrate the performance
of the proposed controllers.

I. INTRODUCTION

OBOTIC MANIPULATORS are usually required to per-

form tasks that involve the end effector to asymptotically
track a prespecified trajectory or to stabilize itself about some
constant operating point. However, as it is well known, most
robotic manipulators exhibit joint flexibility, as a result of
which tracking precision is severely limited in comparison
with the performance that one would obtain from a perfectly
rigid joint robot manipulator. A number of nonlinear static
feedback control schemes have been proposed that address
the joint flexibility issue. Most of these schemes make use
of static feedback in several control scenarios ranging from
singular perturbations to adaptive control, modern nonlinear
control theory and energy-based Lypunov control schemes (see
[1]-[9]). For an excellent survey on the available literature
on the control of flexible joint robots, the reader is referred
to Spong [10]. Recently, Khorasani [11] proposed the use of
a dynamical state feedback controller, developed in DeLuca
et al. [12], for flexible manipulators with strongly observable
parasitics. Khorasani’s dynamical controller is represented by
a linear time-varying system excited by nonlinear functions
of the state variables. The design is carried out on the basis
of singular periurbation arguments on an error correction
approach related to an equivalent rigid joint manipulator. The
approach described in this paper considers a fully nonlinear
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time-varying dynamical feedback controller for the stabiliza-
tion and tracking problems for flexible joint manipulators.
The controller is obtained by means of exact linearization for
Fliess’ GOCF [13] of the error system dynamics. A global
input-dependent state coordinate transformation, in a manner
described by Conte et al. [14], is used that directly leads
to Fliess’ GOCF for the flexible joint manipulator model.
From this viewpoint, singular perturbation arguments, and
the associated approximation schemes, are, therefore, not
necessary for us to consider.

A considerable number of researchers have studied the
asymptotic tracking problem for nonlinear systems from dif-
ferent perspectives. An appealing approach is based on ele-
mentary differential geometric methods that are summarized
in Isidori’s outstanding book [15]. In Isidori’s treatment, clear
connections are established with the concept of the inverse
system, and that of the zero dynamics using the recently
introduced notion of relative degree, or relative order, and
the associated normal canonical form for nonlinear systems
(see [15] and also Byrnes and Isidori [16] and Nijmeijer and
Van der Schaft [17]). An adaptive control approach was also
recently proposed by Isidori and Sastry [18] and by Sastry
and Kokotovic [19].

Recently, outstanding contributions to the theory of dy-
namical controlled systems have been made by Prof. M.
Fliess and his co-workers. These contributions have been ob-
tained using powerful techniques based on Differential Algebra
(see [20]-[22]). Fliess’ ideas have contributed to revise, and
clarify, deeply rooted concepts in the theory of dynamical
controlled systems, stemming from Kalman’s fundamental
state space approach. Among such revisions, it has been found
that the concept of state only has a local validity. A more
general setting is then necessary to explain and circumvent
typical difficulties associated to the state variable description
of certain nonlinear systems, such as impasse points, nonmin-
imum phase regions, and other singularities. Implicit ordinary
differential equations account for a more general setting from
which a unified, and far reaching, treatment of nonlinear
control problems is possible. This approach has succeeded
in clearly establishing basic concepts such as controllability,
observability, invertibility, model matching, realization, exact
linearization and decoupling (see also DiBenedetto et al. [23]).
Within this viewpoint canonical forms for nonlinear controlled
systems are allowed to explicitly exhibit time derivatives of
the control input functions on the state and output equations.
Only in the case of linear systems, elimination of these input
derivatives, from the state equations, is possible via control
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dependent state coordinate transformations. In this manner the
original Kalman formulation is elegantly recovered (see Fliess
[24] and also Diop [25]).

In this paper, we treat the asymptotic output tracking prob-
lem from the perspective of dynamical feedback linearization
and dynamical variable structure control. The approach is
entirely based on Fliess’ generalized observability canonical
form (GOCF) for nonlinear systems (see {13]). Dynamical
variable structure controllers using differential algebra results
were originally proposed by Fliess and Messager in [26].
Based on Fliess’ GOCF, these controllers have also been used
by Sira-Ramirez in a variety of aerospace control problems
[27], [28] and in the design of feedback controllers for dc-to-dc
power converters {29].

This paper is organized as follows: in Section II, we first
study the smooth version of the output tracking problem in
order to relate it to the concept of the inverse system and set
the ground for our main results. We then proceed to present a
dynamical sliding mode control approach as a viable feedback
alternative exhibiting attractive features such as robustness
and, more importantly, certain level of smoothness in the
resulting generated input and output trajectories. This level
of smoothness is shown to depend on the difference between
the order of the system and its relative degree. This last
feature makes the approach especially suitable for controlling
robotic manipulators with joint flexibility. In Section III, we
present the two dynamical feedback control schemes for the
stabilization and trajectory tracking for single-link flexible
joint robots. In this section we also present some illustrative
simulations that assess the effectiveness of the dynamical
feedback control schemes. Concluding remarks, and proposals
for further work, are collected in Section IV.

II. ASYMPTOTIC OUTPUT TRACKING VIA DYNAMICAL
FEEDBACK CONTROL

A. Smooth Reference Output Tracking for Nonlinear Systems

Consider the following n-dimensional minimal state space
realization of a single-input single-output nonlinear analytic
system of the form:

= f(z,u)
y = h(z). 0]

According to Conte et al’s results [14], under mild con-
ditions, there exists a, nonuniquely defined, input-dependent
state coordinate transformation that eliminates the state vector
 for any representation of the form (1), and allows the finding
of a, possibly implicit, input-output representation for this
system in the form:

C(y(d)7...’y7y7u,ﬂ,...,u(a)) -0 1)

where, d is defined as the integer satisfying the following rank
condition:
a(h; By h(d'l))

rank— B(h; h;m;h,(il))

P - = rank— or -

By defining y¢~Y = n; i = 1,---,d, and, under the
assumption that 8C/8y(?® is locally nonidentically zero, one
locally obtains the following explicit GOCF for the given
system (see Fliess [20]):

m = N2
2 =M
Nd—1 = Ta
T}d &= c(nvuaaa o ‘u(a))
y=m (€)]
with n := (n1,-++,nq) and a = d — r, which is assumed to

be strictly positive integer, with r being the relative degree of
the output function y with respect to the scalar control input
u. The integer r is roughly defined as the minimum number
of times the output signal y has to be differentiated for the
control input u to explicitly appear in the output derivative
expression (se¢ [15, pp. 145]). Notice that if d < n, then the
state realization (1) is nonminimal. We henceforth assume, for
the sake of argument and simplicity, that d equals n.

Remark: Notice that the output y and its first n — 1 time
derivatives can be computed from (1) as explicit functions
of the state vector # and the control input u together with
n —r — 1 of its time derivatives. If the rank condition written
above holds (for d = n) then, by virtue of the implicit function
theorem one can locally solve for the state vector x, from the
set of n nonlinear output derivative equations, in terms of
y@ (j=0,1,---,n=1) and ¥ (i=0,1,---,n -7 -1).
Substituting the obtained expressions for the state vector
components on the nth time derivative of y one obtains (2).
The redefinition of the state vector in terms of generalized
canonical coordinates, 7; = y(~1, yields (3).

Iet y = Y be a constant equilibrium point for the system
output y in system (3), and let p = H := col(Y,0,0,---,0)
be the corresponding state equilibrium vector. Suppose, fur-
thermore, that the corresponding locally unique solution for »
of the nonlinear equation ¢(H,u,0,--+,0) = 0, is given by
u = U. We assume that the equilibrium point (H,U) is an
asymptotically stable equilibrium point.

Definition: Under the assumption that d is exactly equal
to n, we say that the nonlinear system (1) is locally minimum
phase at the given equilibrium point (H, U), if the linearization
of the autonomous differential equation:

e(muwi,u®) =0 @)
around (H,U,), is asymptotically stable to zero.

Remark: Notice that in case the integer d is smaller than
n, the above definition of a minimum phase system has to
be substantially modified. In such a case, asymptotic stability
of (4) around the equilibrium point is not sufficient to guar-
antee a corresponding stable unobservable dynamics in the
representation (1). O

Let yr(t) be a prescribed reference output function differen-
tiable at least n times with respect to ¢. The asymptotic output
tracking problem consists in specifying a dynamical controller,
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possibly described by an implicit time-varying scalar ordinary
differential equation, which accepts as input functions: 1) the
output reference signal yr(t), together with a finite number of
its time derivatives yg)(t) (t=1,--+,n —1) and 2) the state
coordinates 7; of the plant, and it is capable of producing,
as a solution output signal, a scalar function u, which locally
forces the system output y = 7; to asymptotically converge
toward the desirable reference output yg(t).

Define a tracking error function e(t) as the difference
between the actual system output y(¢) and the reference output

signal yg(t):

e(t) = y(t) - yr(?)- G

By definition, the transformed coordinate function n; co-
incides with the (i — 1)th time derivative of the output, that
isp; = ¢~V for i = 1,2,---,n — 1. We then have

eO(t) = 1 —y3 (8); ©)

e (t) =~y = e(mw i, W) -y @)

0<i<n—-1

Let p(s) = 8" 4+ Yn—15""! + -+ + M8 + 70 be a Hurwitz
polynomial. Consider imposing a linear time-invariant au-
tonomous dynamics on the tracking error function by forcing
e(t) to satisfy:

e () + Yno1€ V(@) + - + e (E) + voe(t) = 0. (8)

By virtue of (6) and (7), it follows that (8) may be rewritten as

i =yt + 3 i [ - W =0 ©

=1

that is

C(T%U,ﬂy s U(a)) = ygan)(t) - Z'Yi-l
i=1

n-i V0] o

This scalar time-varying differential equation implicitly
defines, as a solution, the control input function w, which
accomplishes asymptotic output tracking error stabilization to
zero, in a manner entirely prescribed by the set of constant
design coefficients {v0,71."* ", Yn-1}

By defining e; = e"1 (4 = 1,2, -, n), as components of
an error vector e, we alternatively express the error system (8)
and the resulting dynamical controller (10), respectively, as

é =€
€ = e3
€n—1= €n

bn = c(ﬁR(t) +eu,t, - ‘u(“)) — yg)(t)

=—247i-1€i (11
i=1

and

n
o(en(t) +ew i u®) = yf(O) = Y vime:
i=1

(12)
with

r(t) = col(ya(t).43 (.- v~ (®)

e = col(ey, ez, -, €n). (13)

The asymptotic equilibrium point of the tracking error
system (11) is simply given by ¢; = ez = - = en =
0. Hence, under such an equilibrium condition, i.e., under
perfect tracking, the resulting dynamical controller exhibits
the following remaining, or “hidden,” dynamics:

C(fR(t)‘ w, i, ‘u(“)) = yg?")(t).

It should be evident that the dynamical controller (14) has
an interpretation in terms of an inverse system that takes,
as inputs, the desired reference output function, yr(t), and
a finite number of its time derivatives, and produces, as an
output function, the scalar control input u. This function u is
responsible, in turn, for forcing the original nonlinear system
(1) (or (3)) to reproduce the desired output function yg(t).
Under the assumption that, locally, dc/ 8u® is nonzero, then
no impasse points need be locally considered (see Fliess and
Hassler [30] and Fliess et al. [31]).

Assume, just for a moment, that yr(t) adopts a constant
value Yg in (14), and let Zg := col(Yg,0,0,---,0). Suppose,
furthermore, that the corresponding locally unique solution of
¢(Er,u,0,--+,0) =0, is given by u = Ug. If the underlying
nonlinear system (3) is locally minimum phase at (Yr,Ur),
then, the resulting differential equation,

c(n,u,d,--~,u(“)) =0 (15)

linearized around the constant equilibrium point, is asymp-
totically stable to zero. It then follows that the stability
characteristics of the dynamical controller (12), and (14),
for arbitrary but bounded output reference functions yr(t),
is intimately related to the minimum phase character of the
underlying nonlinear system (3).

Remark: Notice that (15) has exactly the same form as the
differential equation obtained from (3), under the assumption
of a constant equilibrium condition for the transformed state
variable coordinates 7. O

(14)

B. A Dynamical Variable Structure Control Approach to
Asymptotic Reference OQutput Tracking in Nonlinear Systems

Let 1 and  represent strictly positive quantities and let us
denote “sgn” for the signum function, and we define:

sgnw=1 fw>0
{sgnw:O

fw=0 (16)
senw = —1

fw<0
The following proposition is quite basic in our forthcoming

developments:
Proposition: The one dimensional discontinuous system:

w=—plw+ N sgnw) a7n
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globally exhibits a sliding regime on w = 0. Furthermore, any

trajectory starting on the initial value w = w(0), at time ¢ = 0,

reaches the condition w = 0 in finite time T, given by:

T =y~ in[l + [w(0)}/€]. (18)

Proof: Obvious upon checking that globally: wdw/dt <

0 for w # 0, which is a well known condition for sliding mode

existence (see {32]). The second part follows easily from the

linearity of the two intervening system “structures.” O

Let the set of real coefficients {mq,---,mn_2} be such

that the following polynomial, in the complex variable “s,” is

Hurwitz:

s 4 8™ T2 4 - 4+ mys + mo. (19)

Consider the auxiliary scalar output variable w, defined in
terms of the output tracking error coordinates e; as

n n

A i—1 A .

w = E mi_yel™Y = 24 mi—1€:;
i=1 i=1

with m,_; =1. 20)

If we impose on the evolution of the auxiliary output
variable w, the discontinuous dynamics considered in (17),
one obtains, from (11) and (20):

n-1

. . h

W= én-+ E Mi—1€i+1
=1

=—p- [z mi—ie; + 2 sgn(E: m.q&’)} (02)]
i=1 i=1

Using (17) one obtains the following discontinuous dynamical
feedback controller in terms of an implicit ordinary differential
equation:

n—1
c(er+eui, @) = 4 = 3 micienn
=1

n n
- [ZI: m;_1€; + sgn(Z m,--w,)]
i= i=1
(22)

which is to be viewed as an implicit differential equation
with discontinuous right hand side. On each one of the
regions w > 0, and w < 0, a different “structure’ is valid
and the corresponding implicit differential equation is to be
independently solved for the controller u, on the basis of
knowledge of the error vector e and the reference output
signal. Since w was shown to exhibit a sliding regime on the
discontinuity surface w = 0, Filippov’s continuation method
(see [33]), or, equivalently, the method of the equivalent
control [32], needs to be invoked for defining the idealized
solutions of (22) on the switching manifold w = 0.
According to the method of the equivalent control, the
discontinuous motions on the sliding surface w = 0 can be
described, in an idealized fashion, by the following invariance

conditions: w = 0 and dw/dt = 0. These conditions allow,
in turn, the definition of a virtual control action, known as
the equivalent control, which would be responsible for locally
smoothly maintaining the evolution of the state variables on
the manifold w = 0, should the motions precisely start on
this manifold. The resulting autonomous dynamics for the
controlled output tracking error, ideally constrained to the
switching manifold and “controlled” by the equivalent control,
denoted by ugg, is generally known as the ideal sliding
dynamics. It follows from (11) and (20) that such an ideal
sliding dynamics is given by

é1 = e

€p = €3

n-1
b1 == Y Mis1€; (23)
i=1
which represents an exponentially asymptotically stable mo-
tion toward the origin of the error vector coordinates, with
eigenvalues uniquely specified by the prescribed set of co-
efficients {mg,---,m,—2}. In particular, the output tracking
error function e; = m — yr(t) asymptotically converges to
zero. Using the invariance conditions w = 0, dw/dt = 0, on
(22), it follows that the equivalent control ugq is defined as
the solution of the implicit time-varying differential equation:

C(ER(t) + e,uEQ,ﬂEQ. .. -’U,(Ea> > =
n
Y (t) - > Imioz + pmizies:
i=1

m_y =0 (24)

In view of (19) and (23), the tracking error vector e asymp-
totically converges to zero. Under perfect tracking conditions
(e = -+ = e, = 0), the equivalent control ugq, is then given
by the solution of

i) = e
i.e., once more we find that the concept of the minimum phase
property plays a crucial role in the solution of the tracking
problem. In this case, it bears a definite influence in the rightful
definition, and existence, of the equivalent control function.
Remark: Two important advantages can be readily es-
tablished about the dynamical variable structure controller
represented by (22). The first one is the fact that the output
tracking error function e(t) asymptotically approaches zero
with substantially reduced, or smoothed out “chattering.”
Notice that there exist at least n integrators between the
tracking error variable e; = e(t) and the regulated chatter-
ing behavior of the auxiliary output variable w. Therefore,
with respect to a static variable structure controller alterna-
tive, based on Isidori’s normal canonical form approach (see
[34], [35]), n — r additional integrations contribute to further
smooth out the controlled tracking error signal e(t). Secondly,
and this is possibly the most important advantage of the
approach, a traditional canonical phase variable representation
for the dynamical controller (22) indicates that the control

C(En(t): UEQ REQ: "
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input u is the outcome of at least a (= n — ) integrations,
performed on a nonlinear function of the discontinuous ac-
tions that lead the auxiliary output w to zero. This means
substantially smoothed control actions that do not demand
from the actuator a “bang-bang” behavior. This chattering at
the input variable cannot be effectively avoided in the static
controller alternative with the same quality of response (see
the simulation examples below). However, a certain amount
of input chattering can still be suitably avoided by using
a “boundary layer” approach that amounts to replacing the
discontinuous controller by a high gain saturating controller
(see [36]-[38)). m)

III. DYNAMICAL FEEDBACK CONTROL OF FLEXIBLE
JOINT MANIPULATORS

In this Section we apply the results of Section II to stabi-
lization and tracking problems defined for a single-link flexible
joint manipulator.

A. A Mathematical Model for a Single-Link Flexible Joint Robot

The dynamical equations governing the behavior of a single-
link flexible joint robot are traditionally obtained from La-
grangian dynamics considerations. Let g denote the angular
position of the link (see Fig. 1) of half length L and mass m
and let g,,, be the angular position of the motor. The differential
equations governing the controlled motions are given by

T= Dm(im + qu.m + Ks(q-m - (1)

0=Dj+ Bg+mgLsing+ Ks(q— gm) (26)

where D denotes the inertia of the link, D,, dénotes the motor
inertia; the flexible joint stiffness coefficient is K, and the
motor viscous damping and the link viscous damping are B,,
and B, respectively. The gravitational acceleration is denoted
by g.

Define, p* = 1/K,, which is not to be taken as a small
constant related to singular perturbation techniques. The state
variables were defined as the motor’s angular position x; =
gm. the corresponding angular velocity xo = dg,, /dt, the elas-
tic force z3 = K,(q — gm) and x4 := (dg/dt — dq. /dt)/p.
The state variable representation is then obtained as

i?l =Ty
To = —asTz +a1x3 + au
&3 = 24/p

ji_,l = [—agag sin(p2:r3 + .’L‘l) — Q4T3 ~— A7T2
— agpPTy — alu] /P
@7

with: a1 = 1/D,,; as = 1/D; a3 = mgL; ay = a1 + ay;
as = By /Dy a6 = B/D; a7 = ag — as; u = 7.

Bam(5) _
67(s)

Ds? + Bs + K, + \/(mgL)? - U2

[Dms® + Bns + K, [D32 + Bs+ K, + \/(:ngL)2 - UZ:I - K2

We shall consider, as the system output y, the motor position
z, instead of the link position z = x; + pirs, based on the
following considerations:

1) Taking the link position z as the output of the system,
the system is relative degree four and, hence, it is exactly
linearizable by nonlinear sratic state feedback using link
position, velocity, acceleration and “jerk” [3]. These variables
are usually very hard to measure in practice. Moreover, any
“outer loop” discontinuous feedback control scheme, say of
the sliding mode type or the pulse width modulation type,
results in unacceptable chattering {39]-[41].

2) By using motor position as the output, the system now
becomes relative degree two and the GOCF will involve
second order time derivatives of the control input torque. We
will show that a dynamical feedback control scheme, based
on the GOCF, is not only entirely feasible from the nature
of the state variables that have to be measured, but it also
yields a nonlinear second order dynamical system acting as the
controller. This system naturally integrates (i.e., smooths) the
synthesized input torque. The method substantially eliminates
chattering input torques to the manipulator thus giving a much
more acceptable performance in both tracking and stabilization
tasks.

A constant stable steady state operating point, achieved by
constant input torque v = U, is given by

.

u=U; 11(U)=p2U+sin_1<[—/);
as

2(U) =sin™! (EU;)

(282)

'L‘QZO;

z3(U) = -U: z4(U) = 0

Notice that violation of the restriction a3 = mgL > U,
implies that no equilibrium point exists for the system. This
should also be clear from physical considerations.

Linearization about the above equilibrium point yields the
following minimum phase scalar transfer function [42] relat-
ing the Laplace transform of the incremental displacement,
bqm(t) = x1(t) — z1(U), and the Laplace transform of the
incremental torque variable, 67(t) = 7(t) — U, is shown in
(28b) (shown at the bottom of the page).

It is easy to see that, provided mgL > U, the numerator
polynomial of (28b) is a Hurwitz polynomial. The zero dynam-
ics of the system is then minimum phase. The minimum phase
character of the zero dynamics depends only on the constant
B and it is independent of the value of the equilibrium angular
position. We say then that the zero dynamics if globally
minimum phase. It follows also from (28b) that the assumption
B # 0 is crucial for the flexible joint system to be minimum
phase (for related developments see [31], and [43]).

(28b)
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oint
Electric Motor Motor Angle  ARHTE

Fig. 1.

Single-link flexible joint robot.

Remark:! Notice that a purely oscillatory zero dynamics is
obtained if the assumption B # Ois not verified. The theory
developed in this paper is not applicable to those cases in
which B = 0. In practice most mechanical manipulators will
have B # 0, as bearings and other mechanical components
have nonzero friction and viscous damping.

The following input-dependent state coordinate transforma-
tion, which allows one to obtain a GOCF in the form of (2),
represents a direct particularization of the multivariable case
results found in Conte et al. [14] to our single-input system:

m=a
N =22
N3 = —As5T2 + @123 + U

ne = adzy — ajasT3 +a1p” ' wg — ayasu + . (29)
and its corresponding inverse:
1=
T2 =12

1
73 = —(n3 + asme — a 1)
ay

Ty = aﬁ(m +asng = ari). (30)

1

The Jacobian matrix of the state coordinate transformation
(29) is given by

1 0 0 0
on 0 1 0 0
i 9z |0 —as a1 0 C)
0 a -—asap p7'm

which is clearly nonsingular for finite p.
The GOCF for the fiexible joint manipulator system is then
obtained as

=
Na =13
3 =14
5 .
. a1a203 . P
= —— 5 -sm[m + —(asm — a1u +n3)
P ay
1
- ;5(‘11&7 + a4a5)M2

a4
s + asas)ns — (a5 + as)m

D

+ p—;(a4 —a1)u+ ara6% + a1l

y=m (32)

I'This remark was kindly provided by a reviewer.

from which an input—output representation of the manipulator
system is readily obtained as

a,
y@ + (a5 + ae)y® + (;% + asas) y®+

1
-5 (mar + asas)y™ + e

2
sin [y + P (asy“) -au+ y(Z))] -
1

ay g o
;)—2-((14 - al)u — a1agt — a1u = 0

ajagas

=

(33)

B. Dynamically Controlled Output Tracking Tasks for
Flexible Joint Manipulators
In this section we shall present both the smooth output
tracking regulator for the flexible joint robot and the Variable
Structure Control scheme presented in the previous section. In
both cases we shall also illustrate the stabilization properties of
the regulator towards prespecified constant equilibrium points.
1) Reference Qutput Tracking via Exact Error Dynamics
Linearization: Let yy(t) be a desired reference trajectory for
the link angular position z = ¢. One can compute, from the
dynamical equations (26), the corresponding desired reference
trajectory yg(t) for the motor position as

uelt) = 0 (DyP () + By (6) + moLsinyr) +yr(t)
(34)

From expression (34), it is straightforward to compute
the corresponding required time derivatives yg)(t), yg (1),
yg)(t), constituting the vector £g(t), defined in (13), as well
as the fourth time derivative yg)(t), which will be used in the
dynamical controller (10).

Defining the tracking error as e = y — yg(t), one obtains,
based on the results of Section II and expression (11), the
system of differential equations describing the tracking error
dynamics as

él = €2

éz = é€3

éa = €4
2

. ayagag

ey = ——1702 e sm(el +yr+ Z— [as (62 + yg)>
1

- aju+e3+ ?jg?])

1
- 0_2(0107 + a4a5)(e2 + yg))

a.
- (p—; + a5a6> (es + y?)
- (as + ae)(€4 + yﬁ?))
ai . .
+ ;((h} c al)u + a1asu + a;u

e=er. (35)
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Exact linearization of the tracking error dynamics (35) can
now be accomplished by equating the last differential equation
in (35) to a linear time invariant expression in the error
coordinates. This is equivalent to having the close loop error
dynamics obey e = v, with:

v = —y4€4 — Y3€3 — Y2€2 ~ V1€1 (36)
An asymptotically stable error response is thus easily de-
signed by an elementary pole placement strategy on a fourth
order controllable system expressed in Brunovsky canonical
form.
Using original state coordinates one can write the nonlinear
time-varying dynamical regulator equation as

a
4 (1 — az)i+ <a5—a574+73—?)u—

3 2
a a ax az

_’Y T1+ _;’_1 +_573+_°___°74, To
P a) a ay ay

(

a5 ae )

. T4
p P

ag2a3

+ _pQ sm(a:1 +p 13)

(4) (3

2
+ 8 4y .

+ V3YR o

+ Y2¥r (37a)

+7Yr

Remark: For any p # 0, the obtained dynamical feedback
controller for the flexible joint manipulator does not exhibit
any singularities whatsoever. It should be pointed out that,
in general, the GOCF approach for synthesis of dynamical
controller does suffer from difficulties related to impasse
points, nonminimum phase regions, and other singularities.
The impasse points arise from the impossibility of explicitly
solving for the highest derivative of the control in the lin-
earizing equation. The worst case probably happens when the
equilibrium point lies on a hypersurface of impasse points.
A second difficulty is usually represented by having the
equilibrium point in a nonminimum phase region, or else
when the controlled trajectories visit such instability regions.
The usual remedy for these situations has been extensively
explored by Fliess and his co-workers from the perspective of
discontinuous control actions [31], [41].

2) Simulation Results for the Stabilization and Tracking
Tasks for Flexible Joint Manipulator by Means of a
Smooth Linearizing Dynamical Controller: Simulations were
performed for a flexible joint robot with the following
parameters:

a; = 3.333 (mZKg)—

ar, = 1.0 (m2Kg)—1

a3 = 5.0 N.m

as = 4.33 (m*Kg) ™
as = 0.333s7!

ag = 0.1 st

a7 = —0.233s7}

K, = 100 N/m rad ™.

Fogm e - Ge Doe 08 CAmEE AG S e e e
Motor Angle"\'
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?
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time [s]

Fig. 2. Stabilization with exactly linearizing dynamical controller. Motor and
link responses.

The first task for the proposed smooth dynamical controller
was that of a stabilization problem by dynamical exact lin-
earization around a constant equilibrium point. The desired
angular position of the link was set to z = ¢ = 1.5 rad.
The corresponding desired angular position for the motor
was then computed to be yg = 2.529 rad and used as a
reference value for g,,. The constant steady state torque was
U = 2.992 Nm and the closed loop poles were chosen at: —10,
-10, -3, -3 [s‘l]. All initial conditions, for the system and
the dynamical controller, were chosen to be zero.

The link angular position response and the motor position
response are both shown in Fig. 2. The response of the link
exhibits a slow decaying oscillation about the required constant
equitibrium trajectory with maximum deviation of about 4.1%
about the desired value. The corresponding motor position
response is absolutely smooth and it goes to the desired
reference value approximately within 2 s. The dynamically
generated control input torque is shown in Fig. 3. Notice that
inversion of the plant to compute the desired motor trajectory
cannot be accomplished for the unit step desired link angular
position due to the impulsive character of the required time
derivatives of the step reference trajectory. The absence of
impulsive controls in our simulations, together with the low
stiffness that we have used, account for this relatively poor
performance. In the next section we show that this response
is substantially improved by the use of the variable structure
control strategy.

Simulations were carried out for the tracking problem using
a desired sinusoidal angular position response for the link. The
desired reference output yz (t) was chosen as

yr(t) = % sin(mt).

The corresponding reference trajectory yg(t) for the motor
angular position, and the required time derivatives yR (t)

(2)(t) y(a)(t) y(4)( t), were then computed using y(t) and
equation (34). The closed loop poles for the linearized error
dynamics were set at the same values as in the simulations
used in the previous stabilization example.
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20 = - - . - - & o o = -

»Eo w0~

time [s]

Dynamically generated exactly linearizing input torque for the
stabilization task.

Fig. 3.

—

Desired

@ H O e m o

time [s]

Fig. 4. Desired and actual link’s angular position for sinusoidal trajectory
tracking with error dynamics exactly linearizing controller.

Fig. 4 shows the desired sinusoidal link angular trajectory
yr(t) and the actual dynamically controlled response for
the link angular position z(t). The agreement is remarkably
close with slowly decaying oscillating error. Fig. 5 depicts the
desired (computed) motor angular position and the resulting
dynamically controlled response for the motor position x1(t).
The tracking error asymptotically converges to zero in approx-
imately 3 s. Fig. 6 represents the dynamically generated input
torque for the exact error dynamics linearization controller.
Notice that the performance of the tracking controller is
superior than that obtained in the output stabilization case.
This is achieved due to the computability of the required time
derivatives of the desired output reference, something that we
did not have for the stabilization about a constant (step) output
reference due to the impulsive character of such derivatives.

3) Discontinuous OQutput Tracking Controller Via Vari-
able Structure Error Dynamics Linearization: According to
Section II-C a dynamical variable structure controller is
synthesized by first forming an auxiliary output equation w,

as prescribed by (20) of the form:
w(t) = eq(t) + moes(t) + miea(t) + moei(t). (37b)

In original coordinates such an auxiliary output function is

Desired

© 30w 0D

e al 1 R i t B
[ 2 ‘ ] 8 10
time [s]
Fig. 5. Desired and actual motor angular position for sinusoidal trajectory

tracking with error dynamics exactly linearizing controller.

time [s]

Fig. 6. Dynamically generated exactly linearizing input torque for the sinu-
soid tracking task.

simply given by
w = ari+ a1(mg — az)u + (af — asma + my)x,
a
+ai(mg — as)z3 + 7114 + moT1
1 2 3

— moya(t) = miy) () = mayg) —vp  (38)
one obtains, after imposing on w the discontinuous dynamics
given in (17), a time-varying differential equation for the
dynamical controller, synthesizing the control input torque
u, in terms of the desired reference input signal yr(t), its
time derivatives yg)(t) (i = 1,2,3,4), and the original state
variables of the manipulator:

. . ay 2
i+ (mg — az)u -+ <—;§ +af —asmy + m1>u

ar mo mias (l% agmg
=l—=-—=" — = - - X2
14 ay ay ay ay

a as  ag M
+ (—; —m] — a% +a5m2)r3 + (—5 + SO —2')1'4
P PP P
azas . 1
+ ——;; sin(z; + pas) — (i—[w(t) + Q sgn w(t)]
1

1
+ o (mzyg) +miyl + moyg) + yﬁ?)- (39
1
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Since the flexible joint manipulator is relative degree 2 with
respect to the chosen output z1, the linearization of the GOCF
by means of a variable structure controller strategy involves
a second order dynamical system for synthesizing the input
torque u. This checks with the form of equation (39). Notice,
then that the controller output u, given by the solution of
(39), is a continuous signal with continuous first order time
derivative and discontinuous second order time derivative. The
smoothness of both the output response z; and the input torque
u, should be evident from (39).

4) Simulation Results for the Stabilization and Tracking
Tasks by Means of a Dynamical Variable Structure Control:
Simulations were performed for a flexible joint manipulator
with the same parameters previously described in the simula-
tion example of Section ITI-B-2). In this case the dynamical
variable structure controller, given in equation (39), was used.
The parameters corresponding to this discontinuous controller
were chosen as

p=10s"" Q=50
m; = 107;

mo = 210;
mo = 18.

The chosen values for the coefficients mg, m;, mg, corre-
spond to poles located at —5, —6, and -7 [5‘1] . A stabilization
task, identical to that described in the simulation example of
Section III-B-2), was used to evaluate the performance of the
dynamical variable structure feedback policy. Fig. 7 shows
the link and motor angular position responses, while Fig. 8
represents the dynamically generated control input torque.
Fig. 9 represents the time response of the auxiliary output
function w exhibiting the induced sliding regime. Link oscil-
lations were successfully eliminated and the required constant
desired equilibrium values were exactly achieved by the motor
and the link responses. The steady state difference between
the link and motor positions, due to the joint flexibility,
precisely coincides with the value of the computed steady state
difference between these coordinates, which equals 0.029 rad.
Notice that the performance of the dynamical variable structure
controller scheme is vastly superior to that obtained by the
exact error dynamics linearization approach of Section III-B-
2) in spite of the fact that impulses generated by the output
reference step function time derivatives were not used in the
controller design. Furthermore, the dynamically synthesized
input torque does not exhibit a chattering behavior, tradition-
ally associated with variable structure control schemes. Even
though an underlying high frequency switching strategy is
being used to generate the control input, the flexibility of
the joint does not induce high frequency oscillations on the
output response.

Simulations were carried out for the tracking problem using
a desired sinusoidal angular position response for the link
identical to that used in Section III-B-2). The closed loop
poles for the ideal linearized error dynamics were set at the
same locations as in the stabilization experiment described
above.

Fig. 10 shows the desired sinusoidal link angular trajectory
yr(t) and the actual dynamically sliding mode controlied

- s - = .
,/_Molor Angle _ _
Link Angle ”¥
P
°
s
i
t
i
°
n
s
i D | ] L
4 [} 8 10
time 5]

Fig. 7. Stabilization with variable structure dynamical controller. Motor and
link responses.

sea o e

0 2 4 6 8 10

time (s}

Fig. 8. Sliding mode dynamically generated input torque for the stabilization
task.

time [s]

Fig. 9. Time response of auxiliary output function undergoing sliding regime.

response for the link angular position z(f). The agreement
between the desired and the actual link position trajectories is
practically perfect after 3 s. Fig. 11 depicts the desired (com-
puted) motor angular position and the resulting dynamically
controlled response for the motor position x,(t). The tracking
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Fig. 10. Desired and actual link’s angular position for sinusoidal trajectory
tracking with dynamical variable structure controller.

Desired

a5 6 we—mow

time o]

Fig. 11. Desired and actual motor angular position for sinusoidal trajectory

tracking with dynamical variable structure controller.

error asymptotically converges to zero in approximately 3.5 s.
Fig. 12 represents the dynamically generated input torque for
the variable structure controller exhibiting a smooth profile
without any noticeable chattering whatsoever. Fig. 13 repre-
sents the time response of the auxiliary output function w
exhibiting the induced sliding regime.

IV. CONCLUSION

Dynamical controllers accomplishing stabilization and
asymptotic reference output tracking are readily obtainable
for nonlinear systems described in Fliess’ generalized
observability canonical form. Such a canonical form naturally
leads to a dynamical linearizing controller that asymptotically
zeroes the output tracking error with prescribed transients.
The approach also allows for the design of highly efficient
dynamical variable structure control schemes on the basis
of finite time nulling of an auxiliary output function. This
auxiliary function is defined in terms of the tracking error and a
finite number of its time derivatives expressible in terms of the
original state variables. The resulting ideal sliding dynamics
induces an asymptotic stabilization of the output tracking error

acano0 e

Sliding mode dynamically generated input torque for the sinusoid
tracking task.

time [g]

Time response of auxiliary output function undergoing sliding
regime.

function with arbitrarily assigned eigenvalues. Aside from
the well-known robustness properties, which are implicit in
every sliding mode control scheme, the obtained discontinuous
controller design exhibits several interesting advantages. These
advantages are related to the possibilities of obtaining a high
level of smoothness in the output error response, as well as
a substantially reduced chattering in the control input signals
(i.e., effective chattering reduction for, both, the input and the
output signals is entirely feasible, without resorting to the well
known high gain saturating amplifier alternative).

In the method proposed here the discontinuities, associated
with the underlying sliding mode control actions, take place on
the dynamical controller’s state space and not on the systems
inputs or state variable trajectories. This feature, aside from
generating sufficiently smooth inputs, greatly facilitates the
implementation aspects of the sliding mode controller. The re-
quired electronic hardware may even be synthesized with solid
state analog devices, capable of nonlinear algebraic operations,
and power transistor switches. If digital implementation is
preferred, some limitations may be found due to the significant
amount of computation required to implement, on line, the
proposed dynamical controller. Research is proceeding along
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these avenues with due consideration of the neural network
alternative.

An application was presented in this paper, for the sta-
bilization and tracking problems for flexible joint robotic
manipulators. Encouraging simulation results were obtained,
dealing with the smooth control of angular position stabiliza-
tion and sinusoidal signal tracking in a single-link elastic joint
manipulator.

An important issue that was not considered in this prelimi-
nary study refers to the inescapable fact of imprecisely known
parameters in the system dynamics. Adaptation schemes for
the GOCF is an important open research topic that deserves
to be looked from the perspective of differential algebra. As
additional topics for further research, the proposed dynami-
cal controller could be implemented in an actual laboratory
manipulator using nonlinear analog electronics. The technique
presented could be used in the control of a different class
of mechanical systems as well. Interesting difficultics may be
encountered for instance in the application of the described ap-
proach for multivariable flexible joint manipulators and some
other mechanical systems such as helicopters and pneumatic
motors.
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