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The Differential Algebraic Approach in Nonlinear
Dynamical Feedback Controlled
Landing Maneuvers

Hebertt Sira-Ramirez

Abstract—A differential algebraic approach Is proposed for the syn-
thesls of a dynamical feedback controller regulating a spacecraft smooth
descent toward the surface of a planct which exhibits nonnegligible
atmospheric resistance. An exact linearization-based controller is synthe-
sized using Fliess® generalized observability canonical form of the con-
trafler system, The smaooth contralled trajectory is regulated by means
of assumed amplitude modulated thrusting capabilities of the space-
craft. The robustness of the regulator Is tested in the presence of
significant v delled spatial changes in the coefficient of atmospheric
resistance. A simulation example Is provided.

1. INTRODUCTION

The problem of soft landing on a planet has been studied mainty
from an optimal control viewpoint. Starting from Micle's solution
[1} in 1960, using calculus of variations, the problem gained interest
from both theoretical and practical viewpoints, A minimum-time
approach was proposed by Meditch [2) in the early 1960's. In his
studies, Meditch showed that the minimum-time and the minimum-
fuel landing proklems are completely equivalent, The optimal con-
trol approach was also used by Flemming and Rishel to illustrate
Pontryaguin's minimum principle in their book [3]. Cantoni and
Finzi (4] also contributed significantly to the problem by further
modifying Meditch's solution, Recently, a sliding mode control
approach was proposcd by Sira-Ramirez in {5], with various practi-
cal alternatives for the final touchdown stage. In [5], a suitable
sliding manifold is synthesized which induces an exponentially
stable behavior in the ideal sliding trajectories associated to average
height and average vertical speed variables.

In a series of outstanding recent articles, Fliess [6]-[9] bas
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introduced a new and general approach based on differential alge-
bra for the study of linear and nonlinear lumped, or distributed
controlled dynamical systems. A number of long standing problems
in automatic control theory, such as feedback decoupling, invertibil-
ity, model matching, and realization, have been conceptually clari-
fied and generalized by Fliess in a powerful and most elegant
manner.Crucially based on the extension to differential fields of the
theorem of the primitive element [10), any controlled dynamical
system, described by a set of forced ordinary differential equations,
was shown to possess a generalized controller canonical form
(GCCF) depending on the input and a finite number of its time
derivatives. In [9] a generclized observability canonical form
(GOCF) was also introduced which is closely related to previous
results. Such canonical form is obtainable by means of output-based
state coordinate transformations which are, in gencral, control-
dependent and, possibly, including a finite number of the control
input time derivatives, As a direct conscquence of this result, the
problem of output feedback lincarization of a controlled dynami-
cal system is always trivially solvable, in a local manner, using
nonlinear, possibly time-varying, dynamical fecdback. The lineariz-
Ing dynamical compensator is clearly suggested by the canonicul
form itself. However, for systems with constant operating points,
the asymptotic stability of the lincarized closed-loop dynamics,
around such an equilibrium point, crucially depends on the smini-
mum-phase character of the nonlincar GOCF about such an equilib-
rium.

In this note, a nonoptimal dynamical feedback solution is pro-
posed for the problem of soft controlled landing on the surfuce of a
nonatmosphere-free planet. The proposed scheme is based on the
specification of a nonlinear amplitude modutated (AM) dynamicul
feedback controller, obtained on the busis of Fliess® gencralized
observability canonical form {9] of the dynamical model describing
the smooth controlled descent over the planct’s surface.

It should be pointed out that the controtled soft descent problem
can also be treated from the perspective of discontinuous dynami-
cal feedback regulation using the differential algebraic approach.
Indeed, our AM solution constitutes the basls for a dynamical
feedback controller of the On-Off pulse width moduluted (PWM)
type, should a samplcd **bang-bang™” poticy nced be imposed on the
main thruster firings. Within this more realistic setting, our obtained
amplitude modulated dynamical controlier represents a truly feed-
back strategy for the specification of the required duty ratio
function associated to the PWM option. Arbitrarily close approsi-
mations to the smoothly regulated responses obtained here are still
possible, provided a sufficiently high sampling frequency is imposed
on the actuator, The details of this extension will be fully reported
in a forthcoming article [11].

Section I presents the main results of this article in relation to the
soft landing maneuver via a dynamical feedback linearizing con-
troller of the smoothly regulated system. Simulations are prescnted
that illustrate the performance of the pronosed controller under the
assumption of a constant atmospheric resistance cocflicient, ‘The
controller is also evaluated in the presence of significant unmodetled
changes in such a coefficient. Section Il is devoted to the conclu-
sions. The Appendix presents Flicss’ derivation of the GCCF
and the GOCF and their associated exuct dynamical fecdbuck
linearization result.

11, A DYNAMICAL FEEDBACK SOLUTION FOR SOFT
CONTROLLED L.ANDING OF A SPACECRAF1
A. The Dynamical Model of a Soft Controlled Landing
Including Atmospheric Resistence

Consider the nonlincar dynamical model describing the vertical
descent, including the spacecraft mass behavior, of a thrust con-

trolled vehicle, with umplitude modulation capubilities in the brak-
ing force, attempting a regulated fanding on the surface of a planet
of gravity ucceleration g and nonnegligible atmospheric resistance
force opposing the vertical downwards motion (see {12, p. 4))

.——..zz

dr
(2.1)

where z; is the position (height) on the vertical axis, chosen here to
be positively oriented downwards (i.e., 2, < 0, for actual positive
height), 2z, is the downwards velocity (sce Fig. 1) and 25 represents
the combined muss of the vehicle and the residual fuel, The function
u is u continuous piccewlse sniooth control function with values in
the closed set {0, 1) regulating, in @ smooth manter, the constant
tate of ejection per unit time o and effectively acting as a control
parameter. The constant o represents the relative ejection velocity
of the guses in the thruster, Thus, oo is the maximum thrust of the
braking engine, while y is u positive quaniity representing the
atmospheric eesistance coetticient.

The control signal u s assuimed to be synthesized on the basts of
an amplitude modulated feedback strategy, us 4 = p(x(¢)), syn-
thesized from knowledge of the measured state vector x(¢). As a
function ot the state x, the control function gk is continuous piecewlse
smooth function constrained  within  the bounds 0 <
plx(?)) < 1. The fecdback synthesis problem is then defined as the
problem of specitying a suituble feedbuck control law u.

A soft landing on the surface 2, = 0 may be seen #s a particular
case of a controlled descent toward a sustained hovering about
certain prespecitied height z, = K. Usually, the lunding maneuver
entitles a reguluted descent toward a small height (typically | m, or
s0, i.e., K & ~ 1) on which a short hovering takes place before the
main thruster Is safely shut off. The final touchdown stage is
uctually a free full toward the surfuce from the small hovering
height. Tuking the output funclion of the system as y = fi(x) = 2,
- K, the problem of sustained hovering is translated into the
problem of zeroing the output y that one can associute to the
nontincar systent (2.1).

Remark 1: 1t is evident from the dynamical system equations
(2.1) that the maximum value of the downwards velocity 2, takes
pluce only under free full (i.e., uncontrolled) conditions (u = 0,
2y = constant = Af), This maximum velocity value is precisely
given by (gM/v)'%. In such a case the downwards spacecraft
acceleration is zero, A braking mancuver toward a sustained hover-
Ing, sturting from free fall conditions, entitles a negative ¢ontrolled
acceleration until reaching zero downwards velocity at the prespeci-
fied hovering height z, = K. At this point, the controlled accelera-
tion should also become zero. It follows that, during the controlled
descent, the downwards acceleration is always bounded above by
zero.

B. Nonlinear Dynamic Feedback Controtler Design for the Soft
Controlled Landing of an Amplitude Modulated Thrusted
Spacecraft

We proceed to specify the generalized observability canonical
Jorm (sce [9]) of system (2.1) which atlows us to derive a nonlinear
dynamical feedback controller for the smooth descent mancuver,

1 is casy to verify that ¢, = 2, = K is u differential primitive
element that allows one to also write the AM modet (2.1) in a
GOCF of the form (A.5) with » = 1. Thus, a control-dependent
stale coordinate transtornuation of the AM controlled system (2.1)
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Fig. 1. Vertically controfled descent on the surface of a planet.
given by:
2
¥Zy + oap
=2 -K. 9, =2, q3=g"—2—‘
i
2
Yq; + oap
=g +K,  eq = ——— (22)
8-
yields the following transformed system in GOCF:
g = q,
4= q,
279,28 + oap
4= - (g~ q‘)[——-——
Y1 vgd + oau
(g - ‘73)2
+(2vq, — ap)| ———{. (23
2 yqzz + oap ( )

Exact feedback linearization to Brunovsky's observer canonical
Sform is then accomplished by the following input derivative-
dependent control space coordinate transformation:

v ( ) 279, 8 + oxp

e —(p - SR

870 g v o
2
(g-95)
vq: + oap

| e

Such a control space dynamical feedback transformation evidently
yields

+(2vq, - au)[

¢ =q

d:= G

Gr=v

y=4q. (2.5)
The exactly linearized system (2.5) is now easily stabilized around

the origin of transformed coordinates by a standard linear state-
feedback controller of the following form:

VE o g, - a3, — 034y (2.6)

In other words, by suitably choosing the constant cocfficients o,.

a,, and «y, the dynamical fecdback controller synthesizing the

computed feedback control law (henceforth denoted by i) accom-

plishes, within nonsaturating conditions for the actuator’s control
values, any desirable exponential rate of decay on the height,

vertical velocity, and vertical acceleration variables. Such a dynami-
cal feedback controller, yielding the computed feedback control law
i, is immediately obtained from (2.5) and (2.6) as

d vq? + oaj

—p = —————{aq + a4, + 034
dt aa(g-q,){ 191 242 343

. @

| (e-a3)’ 2vq,8
+(2vq, - o) = 2

vq} + caji g

Notice that no singularity is implied by the presence of the factor
(g = gy)”" in (2.7) due to the established negativity of the vertical
acceleration ¢, during the descent maneuver. In original coordi-
nates, the dynamical fecdback controller is given by:

d z3 vz} + oaji )

—hp=—|a(z - K)+oayz, +a
aa[l(l ) 222t %

dr A

2+ oaj 292
Y92 . Xy 28' (2.8)
23 ou

+(2v2, - @f) (
The actual feedback control function u is obtained by properly
limiting between O and 1 the values of the computed feedback

control law i, obtained as a solution of the nonlinear time-varying
differential equation (2.8), i.e.,

1 ifa>1
p={i f0<p<] (2.9)
0 ifa<O.

A block diagram depicting the complete nonlinear feedback
scheme for the dynamically controlled vertical descent is shown in
Fig. 2.

C. Stability Considerations About a Sustained Hovering
Condition

A hovering condition on y = 0 implies a zero equilibrium point
for the position, vertical velocity and vertical acceleration in (2.3).
As it can be easily seen from the last state equation in (2.3), the
hovering condition: ¢, = ¢, = ¢, = 0, entitles an exponentially
stable autonomous trajectory for the feedback control law g,

governed by
a _ ( E)
dt [ o

From (2.2), it follows that, under such hovering condition, the
total mass behavior is governed by )

()
3= |—|n.
Tl

This reveals the consequences of sustaining a hovering condition
in an indefinite menner. Since the total spacecraft mass z; asymptot-
ically converges to zero, the equilibrium point is not physically
meaningful. As a maiter of fact, since the fuel mass is depleted in
finite time, the control model (2.1) becomes unrealistic after the fuel
mass has been exhausted.

We may also establish the stability characteristics of the hovering
condition by resorting to considerations about the normal canonical
form and the associated zero dynamics of the AM controlled
system (2.1) (see [13] and [5]).

The system (2.1) is already in normal canonical form and it
exhibits relative degree [13] equal to 2, i.e., the output y must be
differentiated twice, with respect to time, before the input function
u appears explicitly on the derivative. However, the stability charac-

(2.10)

(2.11)
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Fig. 2. Nonli dynamical feedbuck controt scheme for regulation of the

spacecraft lunding,

teristics of the associated zero dynamics can bc mote clearly
portrayed by a suitable state coordinate transformation which elimi-
nates the control influence from the last state equation in (2.1).

Let M:= 2,(0) denote the total initial mass of the spacecraft at
the beginning of the landing maneuver, and let &, = z, ~ K,
§3=2, and n =2, ~ 0In(z,/M) definc a local diffeomor-
phic transformation of the dynamical system state coordinates. The
transformed system is now written as_

dE»,ﬁ

i £
d £ -
_ditz..g-[7£§+aau]M"'exp(— 20 ") (2.12)

d §2-1
-d% =g—v£§M"exp(— = )
y=§,

. which shows that the zero dynamics, corresponding to the evolution
of the 9 coordinate when £, and £, are both identically zero, is

governed by the autonomous differential equation
dn

7 =8 (2.13)

which evolves according to 7(¢) = n(0) + gt = z,(0) + g¢, i.e.,

the n coordinate has the interpretation of a virtual free fall vertical

velocity which grows without bound. By virtue of the relation
between 2z, and 1), in the state coordinates transformation, the total
spacecraft mass behavior 2z, is again secn to be exponentially
decreasing to a‘nonphysically meaningful equilibrium value located
at zero, while the spacecraft ideally remains in the hovering condi-
tion: §, =0, £, = 0 (i.e., 2, = K, 2, = 0). This can also bc seen
from (2.1) and the fact that even though neither the control action

nor the mass 2, of the spacecraft remain constant on such a

hovering condition, the ratio 4 /2, does remain constant and equals

the value g /oa. It follows that, under such hovering conditions, the
total spacecraft mass z, (residual fuel mass plus spacecraft *‘dead®’
mass) obeys the same linear differential equation obeyed by the

feedback control law u

d23 8
—_— =] = . 2.14
at (a)z3 ( )

The total spacecraft mass z, thus asymptotically decreases to
zero. In spite of this fact, the controlled descent toward the surface

can still be practically performed at the expense of sustained fuel
mass expenditure within an allowable safety limit in the hovering
condition. The final frec fall descent, from the hovering position,
via switching off of the main engine, must be performed so as to
guarantec enough residual fuel for the ascending maneuver, if any,
later on (see [5]).

D. A Simulation Example

Simulations were performed for controlled landing model dis-
cussed above, with the following constant parameters

o =200 [m/s] &= 350[kg/s]
g=372[m/s?] y=1 [kg/m).

On a planet with the given physical constants, the free fall limit
velocity is 51.03 [m/s]. The three poles of the exactly lincarized
closed-loop system were located at — 1.2 s~'. Fig. 3 shows the
evolution of the controlled state variables x, and X, (height and
vertical velocity). Fig. 4 depicts the behavior of the spacecraft mass
under the designed control policy. Fig. 5 represents the time
evolution of the feedback control x during the controlled descent
maneuver. Initial states were chosen, from a free fall condition, at

%,(0) = ~500 [m], x, =51.03[m/s], x,(0) = 700 [kg]

In order to evaluate the controller performance in the presence. of
unmodeled time-varying perturbations in the coefficient of atmo-
spheric resistance, the value of v in the dynamical system model
was assumed to be a function of the height coordinate z; of the
form y = vy + ¥4(2,), as shown in Fig. 6, with Yo = 1 [kg/m)
taken as the nominal value of the coeficient y to be used only
in the dynamical controller equations. Figs. 7, 8, and 9 depict the
behavior of the state and control input variables during the per-
turbed descending maneuver.

111. CoNCLUSIONS

A nonoptimal dynamical feedback control scheme of the ampli-
tude modulation-type has been presented for the soft landing of a
vertically controlled vehicle on the surface of a planet provided with
an atmosphere. An exact dynamical feedback linearization using
Fliess' generalized observability canonical form was shown to allow
an exponentially controlled descent trajectory for the height, vertical
velocity, and vertical acceleration variables. The nonlinear system
describing the landing dynamics was shown, by means of a suitable
state coordinate transformation, to have a critical case zero dynam-
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variable trajectories for perturbed landing mancuver.

L 23(¢) [Kgl
688
200
[ _ time [3)
¢ 19 20
Fig. 8. Controlled behavior of combined spacecraft and residual fuel mass

for perturbed landing maneuver.

conputed control input

] /-"ﬂ—-_.

-19 _ tine [5)
0 10 ] '
1.5
05 / '\‘i"fl control input w
-5  tim [s)
¢ ) e )
Fig. 9. Computed and actual control functions for perturbed landing

maneuver.

ics—characterized by an eigenvalue at the origin. Indeed, an im-
posed asymptotically stable bchavior in the controlled state vector
not only implies infinite-time reachability of the proposed hovering
height but it also entitles total residual fuel mass exhaustion and a
nonphysically meaningful asymptotic equilibrium point for the total
controlled spacecraft mass. In order to handle this situation, the
control policy must be necessarily combined with either a free fall
or, alternatively, a time-optimal strategy for the final touchdown
stage of the landing maneuver from a small achieved hovering
height (see also [5]).

The results of this note can also be used, or appropriately
interpreted, within an average-based fecdback design strategy in
dynamical PWM controlled options for the soft landing maneuver
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problem. In contradistinction to the amplitude modulated option,
presented in this article, the possibility of a discontinuous feedback
policy is appropriate, and entirely feasible, whenever the thruster
regulating actions must be restricted to take values on a binary set
representing the On-Off available inputs for the main thruster
braking force (see also [11]).

APPENDIX

THE DIFFERENTIAL ALGEBRAIC APPROACH TO SYSTEMS
DyNaMICS

In this Appendix, Fliess’ derivation of the GCCF and GOCF for
nonlinear dynamical systems is presented. The results are directly
taken from Fliess [6], [9]. They are presented here for the sake of
self-containment. Background on differential algebra can be found
in Kolchin's book {10]

Flless’ Generalized Controller Canonical Form for Nonlinear
Systems and Exact Dynamical Feedback Linearization [6]

Let u be a differential scalar indeterminate and let & be a
differential field, with derivation denoted by d/dt. A dynamics is
defined as a finitely generated differentially algebraic extension
K /k{u) of the differential field k(u).The input u is said to be
independent if u is a differential transcendence basis of
K /k. Suppose x = (x|, X3,"**, X,,) is a nondifferential tran-
scendence basis of K [ k(u). It follows that the derivatives dx, /dt
(i = 1,:++, n) are k(u)-algebraically dependent on the components
of x. Thus, there exists exactly n polynomial differential equations
of the form °

P(dx,/dt, x,u,dujdt, -+, d'u/dt*) =0; i=1,+-,n

(A.1)

* implicitly describing the controlled dynamics. Under the assumption
that such equations can be locally solved in normal form, i.e., as

dx;/dt = p(x,u,dujdt, -, d'ujdt’); i=1,,n

(A2)

one obtains a nonredundant description of the dynamics. Such is not
the case if one uses a gencrator system of K /k{u) which strictly
contains a transcendence basis. Any other transcendence basis, say
Z= (2, 2;,***, 2,) also qualifies as a ‘‘state’* and similar expres-
sions can be obtained for the given dynamics. The components of x
are k(u)-algebraically dependent upon the components of z and
vice versa. Such transformations, from one state to another, involve
equations dependent upon the control input u and its derivatives.
According to the theorem of the differential primitive element
{10], there exists an clement x €K such that K = k(u, x). The
(nondifferential) transcendence degree n of K /k{u) is the smallest
integer such that x‘ is k{(u)-algebraically dependent on
x,dx/dt,--, d" Vx/dt"D, We let x=q,=2x,, g,=
dx/dt, -+, q, = d" " Ux/dt"=D It follows that g =
(4" **» q,) is also a transcendence basis of X /k(u). One, hence,
obtains a nonlinear gencralization of the controller canonical form

. d
Eqn =
d
‘Jt‘% =q;
: (A.3)
d
Eqn—l =4q,

C(ém q U, u"") -0

where C is a polynomial with coeflicients in k. 1f one can locally
solve for the time derivative of g, in the last equation, one obtains
and explicit system of first-order differential equations, known as
the generalized controller canonical form (GCCF):

d

2;41 =q

d

g"qz =4

: (A.4)
d

Eqn-l =4,

d

Y i (v)
—q,=c(q,u, b, i, -, ).
9 =clq )

Consider the scalar output y and let » aiso be the smallest Integer
such that y'™ is algebraically dependent on y, y,«e, ptn=h
uy UV, ey Y = ey, y0, e YT u w0, Let
now g; = y¥=Y, i=1,"++, n. Then, one can write a local state
space representation in the special form of a generalization of the
observability canonical form. Such a canonical form is the general-
ized observability canonical form (See [9])

d

Z;‘ﬁ =q

d

'5;02 =4q;

3 (A.5)
Eqn—l =4,

d
<= c(q u, i, i, o, u)

y=4.

Exact dynamic output, or state feedback linearization is sim-
ply achieved by equating the expression in the last differ-
ential equations in (A.4) and (A.5), respectively, to a (stable) linear
cquation in the components of g, possibly including an external
reference input sighal v, as follows:

e(qou i, ity uV) = ~ayq) - aygy — = 0,d, + kv,

" (A6)

The last equation implicitly defines a dynamical nonlinear state
fecdback law which accomplishes an exact output linearization of
the nonredundant dynamics. The obtained linear system has prespec-
ified asymptotic stability properties chosen by means of the a’s.

It is evident that the nonlinear dynamical feedback linearization
scheme presented above is based on exact cancellation of the
nonlinear plant dynamics by means of the proposed controller. One
intuitively expects that this cancellation may lead to intetnal instabil-
ities in some special cases. For instance, by means of a straightfor-
ward linearization around a constant equilibrium point, if any, of the
combined COCF and the proposed dynamical feedback controller,
onc can easily demonstrate that the dynamical linearizing controller
is asymptotically stable if and only if the linearized transfer function
of the given plant is minimum phase.
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