Dynamics and Control 2, 45-58 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Asymptotic Output Stabilization for Nonlinear Systems
-via Dynamical Variable-Structure Feedback Control

HEBERTT SIRA-RAMIREZ
Departamento Sistemas de Control, Universidad de Los Andes, Merida, Venezuela

Received November 5, 1990; revised April 8, 1991
Editor: S. Zak

Abstract. In this article, the problem of asymptotic output stabilization in nonlinear controlled systems is approached
from the perspective of dynamical sliding-mode control. The proposed controller is based on Fliess's General-
ized Observability Canonical Form, recently derived from the differential algebraic approach to system dynamics.

1. Introduction

In this article, a new perspective is explored for dynamical feedback controllers based on
sliding regimes (Utkin [1]). The proposed approach is based on Fliess’s Generalized Observ-
ability Canonical Form (GOCF), recently derived as a consequence of a series of outstand-
ing applications of differential algebra (Kolchin [2]; Kaplansky [3]) to systems dynamics
(see the seminal works of Fliess [4-6]).

Sliding-mode controllers and other classes of discontinuous feedback controllers, such
as pulse width modulation (PWM) and pulse frequency modulation (PFM), for linear or
nonlinear systems have been traditionally designed within the restrictive character of being
memoryless or static (see Sira-Ramirez [7]-[9]). Recently, however, Fliess and Messager
[10] initiated an interesting line of thought by considering the possibilities of dynamical
variable-structure controllers leading to sliding regimes. Also, PWM controllers based on
dynamical feedback synthesis of the associated duty ratio function were proposed by Sira-
Ramirez and Lischinsky Arenas [11]. Previously, a series of applications of these ideas
had been developed by the author for regulation problems in dc-to-dc power converters
and some aerospace control tasks (see Sira-Ramirez [12], 13, 14]). Given the close rela-
tionship between sliding regimes and PWM controlled responses, established in [15], one
is naturally led to investigate the possibilities of designing dynamical feedback regulators
based on sliding modes, within an approach that is independent of the known existing rela-
tionship. Such a task is undertaken in this article, and the properties of these dynamical
discontinuous controllers are studied and applied to an illustrative example.

Recently, M. Fliess has made remarkable contributions to the understanding of dynamical
controlled systems from the perspective of differential algebra. His results have concep-
tually clarified a large number of traditional problems in linear and nonlinear controlled
systems, such as realization, invertibility, model matching, and feedback decoupling, among
others. A Generalized Controller Canonical Form and a Generalized Observability Canonical
Form were shown to exist for a large class of nonlinear controlled systems. These canonical
forms render the exact linearization problem into a trivial one, if nonlinear time-varying
dynamical feedback is allowed in the control scheme (see [4]).
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In section 2 of this article, a dynamical sliding-mode controller is proposed for the output-
stabilization problem in nonlinear systems. The controller is synthesized on the basis of
Fliess’s GOCF by using an auxiliary ‘“‘dummy’’ output function whose time derivative
depends nonlinearly on the generalized phase variables and on a finite number of the con-
trol input derivatives. A sliding regime is then imposed on the zero-level set of this aux-
iliary output function, which results in a linear asymptotically stable behavior to zero, with
arbitrarily prescribed stable eigenvalues, for the original output variable and the rest of
the associated generalized phase variables. Section 3 presents an illustrative example ac-
companied by computer simulations, while section 4 contains the conclusions and sugges-
tions for further work in this area.

2. A dynamical sliding-mode controller for output stabilization

2.1. Fliess’s Generalized Observability Canonical Form

Consider the n-dimensional single-input single-output nonlinear system in state-space form:

x = f(x, u)
y = h(x),

where f is a nonlinear polynomial function of the state and input variables. It may be argued
that this represents no great loss of generality, since the function f might have arisen from
an elimination procedure carried out on a lower-dimensional nonlinear-state-space descrip-
tion of the controlled system, which included differential equations whose transcendental
coefficients satisfied, in turn, algebraic differential equations (see Fliess [4]; Rubel and
Singer {16]). We refer to system (1) as the pair (f, ).

It has been shown by Fliess {5] that in case the output function y is a differential primitive
element for the system dynamics, there exists a set of coordinates (which we call here
generalized phase coordinates) obtainable by nonlinear input-dependent state coordinate
transformations—generally depending also upon a finite number of the input time
derivates—in which system (1) is locally expressed in the following GOCF:

(1)

N =M

n=mn

) @
M-1 = Mn

ﬁn = c(n’ u’ u(l)’ *rr u(a))

Yy=m

where « is assumed to be a positive integer. The results in this article also apply to the
case in which a = 0 (exactly input-output linearizable system), but only through the GOCF
of the associated extended system (see Nijmeijer and van der Schaft [17]). Details are left
for the reader.
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Ifweletb” =10, ...,0,1],¢ =[1,0, ...,0)7, and A an n X n matrix in companion
form, with zeros in the last row, then GOCF (2) is briefly expressed as dn/dt = An +
be(n, u, ..., u);y =y
2.2. A dynamical sliding-mode controller for output stabilization
The following proposition is quite basic in our forthcoming developments:

Propostion 1. The on-dimensional discontinuous system
@=— A + Qsgnw) 3

globally exhibits a sliding regime on w = 0. Here, A and Q are stricly positive quantities
and “‘sgn” stands for the signum function, defined as

sgnw = +1ifw >0
sgnw =0ifw =20 )
sgnw = —1ifw < 0.

Furthermore, any trajectory starting on the value w = o(0), at time ¢ = 0, reaches the
conditions @ = O in finite time 7, given by T = A"l + | w(0) | /Q].

Proof. The proof is immediate upon checking that, globally, wdw/dt < 0 for w # 0, which
is a well-known condition for sliding-mode existence [1]. The second part follows from

the linearity of the two intervening system “structures.” ]
Let the set of real coefficients {my, ..., m,_»} be such that the following polynomial

is Hurwitz:
SV m,_, s"TT L+ mys + mg. 5)

Consider the auxiliary output variable:
n s
w=2,;m_ yV withm,_, =1, )
i=1
which, in terms of the generalized phase-coordinates vector 7, is also simply expressed as
L A
w = Z mi_y m; =: m'y. 0]
i=1

From equations (2) and (7) and the fact that m’b = 1, it follows easily that:

® =mTAn + c(p, u, u, ..., u®). ®
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A dynamical variable structure feedback controller is obtained if we impose on the evolu-
tion of the auxiliary output variable w, the discontinuous dynamics considered in equation
(3). From equations (3), (7), and (8), one obtains:

e, u, u®, ., u®) = — m’ [N\ + A] g — A\Q sgn mTy, ©)

which is to be viewed as an implicit differential equation with discontinuous right-hand
side. On each one of the regions @ = m™y > 0, and w = m’y < 0, a different “struc-
ture” is valid and the implicit differential equation is to be solved for the controller u,
on the basis of knowledge of 7. Since « was shown to exhibit a sliding regime on the discon-
tinuity surface w = 0, Filippov’s continuation method (see Filippov [18]) or, equivalently,
the method of the equivalent control [1] is to be used for defining the idealized solutions
of equation (9) on the switching manifold & = 0.

According to the method of the equivalent control, the discontinuous motions on the
sliding surface w = 0 can be described, in an idealized fashion, by the invariance condi-
tions w = 0 and dw/dt = 0. These conditions allow, in turn, the definition of a virtual
control action, known as the equivalent control, which would be responsible for locally
smoothly maintaining the evolution of the state variables on the manifold w = 0, should
the motions start on this manifold. The resulting autonomous dynamics, ideally constrained
to the switching manifold and “controlled” by the equivalent control, is known as the ideal
sliding dynamics. 1t follows from equations (2) and (6) that such an ideal sliding dynamics
is given by

=M
n =1

. (10)
7.’n—l = =My Ny — My 3 M2 — ... — My

which represents an asymptotically stable motion toward the origin of generalized phase
coordinates with eigenvalues uniquely specified by the prescribed set of coefficients {my,

.., m,_5}. In particular, the output function y = h(x) = 7, asymptotically converges
to zero. From the invariance conditions, the equivalent control, denoted by g, is defined
as the solution of the implicit differential equation:

c(n, u, uly, ..., ufd) = — mTAn; with m’y = 0 (11)

Remark 1. Of course, on does not really need to prescribe dynamical variable-structure
controllers to asymptotically stabilize the output function to zero. As a matter of fact, us-
ing normal canonical forms (see Isidori [19]), a static sliding-mode controller can always
achieve such a stabilization with the aid of an auxiliary output function that involves only
r output time derivatives (r being the relative degree [19] of the system (f, h)). These output
derivatives, in turn, can always be asymptotically synthesized with the aid of postprocessors
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(see [19]; also Sira-Ramirez [9 or 20]). Furthermore, since the generalized phase variables
in equation (9) are locally obtained from input-dependent state coordinate transformations—
involving also a finite number of input time derivatives—it is clear that full original state
feedback is required, without the benefit of being able to use postprocessors in the syn-
thesis of the controller equations and of the auxiliary output function. However, two im-
portant advantages can be readily established about the dynamical variable-structure con-
troller represented by equation (9). The first is the fact that the output function y = h(x)
asymptotically approaches zero with substantially reduced or smoothed-out “chattering.”
Notice that at least n integrators stand between the output variable y and the regulated chat-
tering behavior of the auxiliary output variable w. Therefore, with respect to the static
variable-structure controller alternative based on normal canonical forms, « additional inte-
grations of the input contribute to further smooth out the controlled output signal. Sec-
ondly, and this is possibly the most important advantage, a canonical phase variable represen-
tation for the dynamical controller indicates that the control input u is the outcome of at
least o integrations performed on a nonlinear function of the discontinuous actions that
lead the auxiliary output w to zero. This means substantially smoothed control inputs that
do not result in a “bang-bang” behavior for the actuator, something that cannot be avoided
in the static-controller alternative. |

3. An application example
3.1. Smoothed control landing on the surface of a non-atmosphere-free planet

The following example has been previously treated in Sira-Ramirez [20], using a memoryless
sliding-mode feedback controller, and it was also treated in Sira-Ramirez [21] in the con-
text of a dynamical feedback ON-OFF PWM controller scheme.

Consider the nonlinear dynamical model describing the vertical descent, including the
spacecraft mass behavior, of a thrust-controlled vehicle attempting a regulated landing on
the surface of a planet of gravity acceleration g and nonnegligible atmospheric-resistance
force opposing the vertical downwards motion.

dx,
dt

5 _ [1] - [ﬂ"] ; (12)
dt X3 X3

dry _
dt

=x2

where x, is the position (height) on the vertical axis, chosen here to be positively oriented
downwards (i.e., x;, < 0, for actual positive height), x, is the downwards velocity, and
x; represents the combined mass of the vehicle and the residual fuel. The function u is
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a control function taking values in the closed interval [0, 1], regulating, in an amplitude-
modulated manner, the constant rate of ejection per unit time « and effectively acting as
a control parameter. The constant o represents the relative ejection velocity of the gases
in the thruster. Thus, oo is the maximum thrust of the braking engine, while v is a positive
quantity representing the atmospheric-resistance coefficient.

A soft landing on the surface x; = O may be seen as a particular case of a controlled
descent toward a sustained hovering at a certain prespecified height x; = K. Usually, the
landing maneuver entails a regulated descent toward a small height (typically 1 m or so,
i.e., K = —1) at which a short hovering takes place before the main thruster is safely shut
off. The final touchdown stage is actually a free fall toward the surface from the small
hovering height. Taking the output function of the system as y = h(x) = x; — K, the prob-
lem of sustained hovering is translated into the problem of zeroing the output y that one
can associate with the nonlinear system (12).

Remark 2. It is evident from the dynamical system equations (12) that the maximum value
of the downwards velocity x, takes place only under free fall (i.e., uncontrolled) condi-
tions (u = 0, x3 = constant = M). This maximum velocity value is precisely given by
(gM/y)". In such a case, the downwards spacecraft acceleration is zero. A braking
maneuver toward a sustained hovering, starting from free-fall conditions, entitles a negative
controlled acceleration until zero downwards velocity is reached at the prespecified hover-
ing height x, = K. At this point, the controlled acceleration should also become zero. It
follows that, during the controlled descent, the downwards acceleration is always bounded
above by zero. ]

We proceed to specify the GOCF of system (12), which allows us to derive a nonlinear
dynamical variable-structure feedback controller for achieving a slow descent maneuver.

It is easy to verify that y, = x; — K is a differential primitive element that allows one
to write the model (12) in the GOCF. Thus, the control-dependent state coordinate transfor-
mation of the controlled system (12), given by

2
x5 + oau
m=x—Kom=x,m =g 12 '
X3 3
2 (13)
+ oau
xp=mn + K, x; =m,x L T
g~ M

yields the following transformed system in GOCF:
"=
n=m
2 + oo - m)? 14
- —-m [—ng Lau} + 2yn; — om) [—Lg “m)y } b

717% + oom 'yn% + oom

3

y=mn
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The auxiliary output function w is given, in this case, by

w =13 + mmn + mg, (15)

with m,; and my representing design constants. A dynamical variable-structure feedback
controller may then be synthesized by enforcing the dynamics described by equation (9)
with the equality

2 + gowu — m)?

-@€—-m [ﬂig -:l + 2vny — au) |:_(g2 ") :l + myn3 + mgn;
3 + oau yn; + oau

= — Nmn + mmy + mgn; + Q sgn (93 + mymy + momy)l, (16)

with A and Q being positive quantities. Equation (16) thus leads to synthesizing the com-
puted control function (henceforth denoted by u) as

d 2 + oau
—p = YR T T2 (my + Nms + (mg + Nmpmy + Mg g

dt oalg — n3)
3 a7
2
- 2
+ N2 sgn [n3 + myn, + mem] + (2yny — ap) l: _EgTJh),ﬁ :l _ 2YMmE
ynz + oav ox

The actual control input function u is obtained by properly limiting between 0 and 1
the values of the computed control function u, obtained as a solution of the nonlinear time-
varying differential equation (17); i.e., the actual control input u is given by

1 ifu>1
p if0 < pu< 1. (18)
0 ifu<O

u

Notice that no singularity is implied by the presence of the factor (g — 73) 7! in equa-
tion (17) due to the established negativity of the vertical acceleration 53 during the des-
cent maneuver. In original state coordinates, the dynamical variable-structure feedback con-
troller is given by

2
Lp=2 [mom = K) + (mo + Mmxy + (my + V) [g - = +"°“f]
dt oo X3
+ AQ sgn [ (g S 'y_xi+ Uﬂj + mxy + my(x; — K) :l (19)
X3
B + oap 2yx:8
Rl Ean g
x3 oc
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Remark 3. The sliding regime imposed on the auxiliary output function w, and the reaching
time computed in proposition 1, are entirely valid, in terms of the system variables, as
long as the actual control input function «, administered to the system, coincides with the
computed control input function u, obtained as a solution of equation (19). Notice that
if physical considerations demand the existence of boundaries in the control input space,
beyond which there is no actual availability of control actions—as in the case of the control
input saturation constraints (equation (18))—then, generally speaking, the control input func-
tions # and p do not coincide in those regions of saturation and, as a consequence, the
sliding mode is not locally sustained on w = 0. The saturation effects may also affect the
value of the reaching time considered in proposition 1. These facts are illustrated in the
computer simulations of the controlled system presented below. |

Under sliding-mode behavior on the switching manifold, the invariance conditions w =
0 and dw/dt = O result in the following ideal sliding dynamics:

77.1 =Mm
= — mmy — moy (20
y=m

which can be made exponentially asymptotically stable to y = 0 by appropriately choosing
of the (positive) coefficients my and m,. In other words, the dynamical variable-structure
feedback controller accomplishes, within nonsaturating conditions for the actuator’s limiting
values, any desirable exponential rate of decay on the height error #; and vertical velocity
n,. The equivalent control function is obtained as the solution of

d 2 + oow
“—‘#EQ:L'EQ‘ - my3 — mgyy +
dt oc(g — 13)
2
— 2
+ 2ym — augg) |: _(28;;73)* :l - Y8 @21
Y2 + oaugg oo

with the restriction

N3 = — mmy — mon (22)

A sliding regime exists in those regions of the sliding manifold where 0 < ugq < 1
(see [8]).

Notice that under ideal sliding conditions, both #, and 7, asymptotically approach zero.
Hence, by virtue of equation (15), 73 also decreases to zero. The hovering condition is
then characterized by the zero dynamics condition: 7, = 5, = 53 = 0. It follows from
equation (21) that the equivalent control is governed by
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I‘.‘EQ ES §_uEQ' (23)

By virtue of equation (13), the total mass is governed by

X3 = et UEQ- 24)

8

It is easy to see from equations (23) and (24) that the hovering conditions cannot be
indefinitely sustained, since this would imply that the total mass of the spacecraft asymp-
totically converges to zero. This cannot physically happen, due to earlier total depletion
of the fuel mass. The mathematical model therefore becomes unrealistic after the fuel mass
has been totally consumed. Under these circumstances, the equilibrium point reached would
not be physically meaningful. This fact coincides with the zero dynamics analysis developed
in [21] for a related but different control strategy, based on PWM control of the descending
spacecraft.

3.2. A simulated example

Simulations were performed with the following constant parameters:

o = 200 [m/s] a = 50 (Kg/s)
g = 3.71 [m/s?] vy = 1 [kG/m].
K = —1[m)

The poles of the ideal sliding dynamics were both located at —1.0 sV my =2, my =
1), while  and \ were set to 1 m/s and 557!, respectively. On a planet with the given
physical constants, the free-fall limit velocity is 51.03 [m/s]. Figures 1 through 3 show the
evolution of the controlled state variables x,, x, (height and vertical velocity) and the total
mass x;. Figure 4 represents the time evolution of the actual (i.e., limited) control inut
u during the controlled descent maneuver. Figure 5 depicts the actual, limited, control in-
put u in comparison with the computed control input u. This figures clearly shows two
regions of saturation for the actual input . Saturation of the control input « occurs roughly
in the time intervals ranging from 0 to 7.64 seconds and from 8.22 to 11.04 seconds. Conse-
quently the computed reaching time, given by proposition 1, does not apply due to the
existence of the lower-bound saturation interval (u = 0) at the beginning of the maneuver,
where u is actually negataive. One also obtains, during the upper-bound saturation condi-
tion (u = 1, u > 1), a temporary loss of the sliding-mode conditions on w = 0. This is
due to the fact that on those intervals of nonsaturation, the computed control input x and
the actual control input u entirely coincide. Initial states were chosen, from a free-fall con-
dition, at

x(0) = —500 [m], x, = 51.03 [m/s], x3(0) = 700 [Kg).
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Figure 1. Dynamical variable-structure controlled position for soft landing maneuver.
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Figure 2. Dynamical variable-structure controlled veritical velocity for soft landing maneuver.

The given initial conditions correspond to an initial value of the auxiliary output func-
tion w given by w(0) = —396.94. Figure 7 shows the time evolution of the auxiliary output
function w(z). If no restrictions had been imposed on u, the reaching time 7 of the sliding
condition, w(0) = 0, according to proposition 1, would have been T = 1.197 seconds.
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Figure 3. Controlled behavior of total spacecraft mass.
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Figure 4. Actual amplitude-modulated control input for sliding-mode soft controlled landing.
4. Conclusions

Dynamical variable-structure controllers accomplishing asymptotic output stabilization are
readily obtainable for the class of nonlinear system where the scalar output function qualifies
as a differential primitive element for the system dynamics. For this class of systems,
Fliess's GOCF naturally leads to a dynamical sliding-mode controller that zeroes, in finite
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Figure 5. Time evolution of actual bounded control input function x and computed control input function .
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Figure 6 Auxiliary output function exhibiting sliding regime in regions of nonsaturated controller output.

time, an auxiliary output function defined in terms of the output and a finite number of
its time derivatives. The resulting ideal sliding dynamics induces an asymptotic stabiliza-
tion of the original outut function with eigenvalues totally prescribed at will. The obtained
discontinuous controller design exhibits two main advantages, aside from the well-known
robustness properties implicit in every sliding-mode control scheme. These advantages are
related to the possibilities of obtaining a degree of smoothness in output response as well
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Figure 7. Time response of auxiliary output function w(z) due to bounded control actions.

as in the control input signals in strict accordance with the relative degree of the given
nonlinear dynamical system (i.e., effective chattering reduction for both the input and the
output signals). The approach, however, requires full state feedback and the complexity
of nonlinear time-varying implicit dynamical controllers, which may be not globally de-
fined. An illustrative physical example considering a soft controlled landing maneuver was
presented. In further research, the results should be extended to the multi-input case.

Notes
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