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Adaptive learning in perceptrons: a sliding mode
control approach*

HEBERTT SirA Ramirez! AND ELizEr CoLINA-MoRLES!

Abstract. A dynamical sliding mode control approach is proposed for robust
adaptive learning in analog Adaptive Linear Elements (Adalines), constituting basic
building blocks for perceptron-based feedforward neural networks. The zero level set
of the learning error variable is regarded as a sliding surface in the space of learning
parameters. A sliding mode trajectory can then be induced, in finite time, on
such a desircd sliding manifold. Neuron weights adaptation trajectories are shown
to be of continuous nature, thus avoiding bang-bang weight adaptation procedures.
Sliding mode invariance conditions determine a least squares characterization of the
adaptive weights average dynamics whose stability features may be studied using
standard time varying lincar systems results. Robustness of the adaptive learning
algorithm, with respect to bounded external perturbation signals, and measurement
noiscs, is also demonstrated. The article presents some simulation examples dealing
with applications of the proposed algorithm to forward and inverse plant dynamics
identification. '

Mathematics Subject Classifications. 93B12, 93B35

1. Introduction

The adjustment of learning parameters in perceptron based feedforward
ncural networks has been mainly explored form a discrete time viewpoint.
The celebrated Widrow-Hofl Delta Rule (sec Widrow and Lehr, [12]) consti-
tutes a least mean squarg learning error minimization algorithm by which an
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asymptotically stable linear convergence dynamics is imposed on the under-
lying discrete time error dynamics. Using quasi-sliding mode control ideas
(see Sira-Ramirez [8]) a modification of the Delta Rule was proposed by Sira-
Raminez and Zak in [9], and in [13], whereby.a switching weight adaptation
strategy is shown to also impose a discrete time. asymptotically stable linear
learning error dynamics. This algorithm is at the basis of recently proposed
identification and control schemes based on feedforward neural networks, (see
Colina-Morles and Mort [1], and Kuschewsky et al, [4]). To our knowledge,
design of learning strategies in adaptive perceptrons, from the viewpoint of
sliding mode contro] in continuous time, has not been addressed in the exist-
ing _llterature However, the relevance of ordinary differential equations with
discontinuous right hand sides, or Variable Structure Systems (see Utkin,
[10]), was analyzed in the work of Li et al, in [5], in the context of Analog
Neural Networks of the Hopfield type with infinite gain nonlinearities. In
that work, it is establlshed under what circumstances sliding mode trajec-
tories do not appear in such a class of neurons. o

In this article a continuous time sliding mode control approach is pro-
posed for the robust adaptation of variable weights in Adaptive Linear El-
ements, also known as Adalines, so that its scalar output variable tracks
an arbitrarily specified reference signal. The zero level set of the learning
error variable is regarded as the sliding surface coordinate function and a
discontinuous law of adaptive weight variation is proposed which induces,
in finite time, a sliding motion which sustains the zero error condition. All
the advantageous features of sliding mode controlled performance are then
found in the behaviour of the different variables associated to the adaptation
algorithm. The sliding mode controlled weight adaptation trajectories are
shown to be continuous, rather than bang-bang signals. As a consequence,
a rather smooth neuron output response is also obtained. The sliding mode
invariance conditions, describing the average (ideal) sliding mode behaviour,
provide with a least squares characterization of the dynamical features of the
average evolution of the vector of adaptive weights. A study of the require-
ments for the stability of the linear time-varying average weight dynamics
establishes essential connections with adaptive control issues, such as the
convenience of the assumption of persistency of ezxtcitation conditions.

A unique feature of the sliding mode approach lies in the enhanced
insensitivity of the proposed adaptive learning algorithm, with respect to
bounded external perturbation signals and measurement noises. These fea-
tures are demonstrated using conventional sliding mode control properties,
under rather standard assumptions. Some of the geometric features of the
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proposed sliding mode algorithm are naturally linked to the well known
matching conditions, for the case of performance under the influence of neu-
ron input, and output, measurement noises.

Section 2 contains the fundamental definitions, assumptions and deriva-
tions of the main characteristics of a sliding mode control approach to weight
adaptation in Adalines. In this section, the robustness of the algorithm, with
respect to bounded external perturbation inputs, and bounded measurement
noises, is also demonstrated and a derivation of the required matching condi-
tion is provided. Section 3 contains some basic examples of relevant signifi-
cance in the potential applications of the proposed adaptive learning strategy
in automatic control applications. The treated examples include, both, iden-
tification of forward and inverse dynamics of unknown externally perturbed,
nonlinear plants. The learning error signal is shown to converge to zero, in
finite time, without noticeable chattering, and in spite of all possible exter-
nal perturbations. Section 4 contains the conclusions and suggestions for
further research.

2. A sliding mode control approach to weight adaptation in
Adalines

In this section we establish the fundamental adaptation algorithm, based
on continuous time sliding modes, for turning variable adaptive weights in
adaptive linear combiner elements, or Adaline units.

2.1. Definitions and basic assumptions:

Consider the perceptron model depicted in Figure 1 where z(t) = (z1(?),
..., Zn(t)) represents a vector of bounded time-varying inputs, assumed also
to exhibit bounded time derivatives, i.e.

le@) | = /220 +...+c2(t) < Vi Wt
(1) 1a(@) || = \&2(t)+... +52(2) < Vi Ve

where V, and V; are known positive constants.

We denote by #(t) the vector of augmented inputs, which includes a
constant input of value. B > 1, affecting the bias, or threshold weight w, 41
in the perceptron model, i.e.

(2) #(t) = col (z1(t),...,zn(t), B) = col(z(t), B)
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REMARK 2.1. The scalar product 3T (t)i(t) = B? 4+ 27 (t)z(t) = B? +
+ || z(t) ||? is bounded away from zero for all times. 0

The vector w(t) = col(wy(t),...,wn(t)) represents the set of time-varying
weights. It will be assumed that, due to physical constraints, the magnitude
of the vector w(t) is bounded || w(t) ||< W Vi, for some constant W. We
also define the vector of augmented weights by including the bias weight
component ‘ '

(3) (t) = col(wi(t),. .. ,wn(t),wn41(t)) = col(w(t),wn41(t))

Similarly, @(t) is assumed to be bounded at each instant of time ¢ by means

of )
(4) 1 &(t) ll= \Jwd(t) + -+« + w2(t) + w2, (T) < W ¥t

for some constant W.

The scalar signal yq(t) represents the time-varying desired output of the

perceptron. It will be assumed that y4(t) and g4(t) are also bounded signals,
i.e.

| yd(t) l < Vy vt

() | 9a(t)| < ViVt

The output signal y(t) is a scalar quantity defined as:

W) = 3 wiDzt) + wnpa(t) = T (O2(0) + wnr (OB
=1

(6) = oT(t)i(1)

We define the learning error e(t) as the scalar quantity obtained from

(7) | e(t) = y(t) — ya(t)

The nonlinear function I'(y) is generally assumed to be an odd function
of y, i.e. I'(y) = ~I'(~y), known as the activation function. The activation
functions are relevant to the analysis of networks involving several leyers of
neurons, which we will not be considering here.

i

2.2. Problem formulation and main results

Using the theory of Sliding Mode Control of Variable Structure Systems
(see [11]) we propose to consider the zero value of the learning error coordi-
nate e(t) as a time-varying sliding surface, i.e.

(8) s(e(t)) = e(t) = 0
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Condition (8) is, therefore, deemed as a desired condition for the learning
error signal e(t) and one which guarantees that the perceptron output y(t)
~coincides with the desired output signal yq(t) for all times ¢ > ¢, where t;,
is addressed as the hitting time.

DEFINITION 2.1. A sliding motion is said to ezist on a sliding surface
s(e(t)) = e(t) = 0, after time ty, if the condition s(t)i(t) = e(t)é(t) < 0
is satisfied for all t in some nontrivial semi-open subinterval of time of the
form [t 1) C (—o0,14).

Basic Problem Formulation

It is desired to devise a dynamical feedback adaptation mechanism, or
adaptation law, for the augmented vector of variable weights w(t) such that
the sliding mode condition of definition 2.1 is enforced.

2.2.1 Zero adaptive learning error in finite time

Let “sign e(?)” stand for the signum function, defined as:

+1 fore(t)>0
(9) signe = { 0 fore(t)=0

—1 fore(t)<0

We then have the following result

THEOREM 2.1. If the adaptation law for the augmented weight vector
@(t) is chosen as

]
|
N
8
~
U]
—~—
o~
p—
N——”
Eend
»
-
Q
=S
(3]
—~
L
p

(1)
z(1)
(10) = - B k signe(t)
B24zT(t)z(t)
with k being a sufficiently large positive design constant satisfying
(11) k>WV:+V

then, given an arbitrary initial condition e(0), the learning error e(t) con-
verges to zero in finite time, t), estimated by

| (0) |
(12) bWV -,

and a sliding motion is sustained on e = 0 for allt > t}.
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Proof Consider a Lyapunov function candidate given by

(13) L V() = 50

The time derivative of V(e(t)) is given by

Vi) = e()E &)+ a7 (1)3(0) - ga(0))
| —k | e(t) | +e() (@7 ()3(t) - ga(t))
< —kle(®) |41 (WVet Vi) le(t) |
= (kA WV 4 V) e() 1< 0

(14)

Thus, the controlled trajectories of the learning error converge to zero. We

may actually show that such a convergence takes place in finite time.
Indeed, the differential equation satisfied by the regulated error trajec- .

tories e(t) is simply given by

(15) é(t) = ~k sign e(t) + 0T (t)Z(t) — ya(t)

For all times t < ¢, the solutlon e(t), of such a differential equatlon with
initial condition e(0) at t = 0, sat1sﬁe< '

(16) e(t) — e(0) = —kt sign e(0) + /;(LZ)T(U):?(U) — y4(0))do

at time ¢ = ¢;, the solution takes the value zero and, hence,

(17) — €(0) = —kt;, sign e(0) + /0 th(GJT(t)é(t) — §4(t))dt

Multiplying both sides of the equality by —signe(0) one immediately obtains
the estimate in equation (12) of ¢, by means of the following inequality

€)1 =kt = ([ @@ - 5u1)a) sign (0
(18) > [k— (WV;+ V)t

Evidently, for any t < t; and for the chosen sliding mode controller gain
k, in (11), one has from (15)

e(t)é(t) ~k | e(t) | +(@" ()2(2) - 9a(t))e(t)
(19) < (=k+WV:+Vy)|e(t) <0

i
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and a sliding mode exists on e(t) =0 for ¢ > ¢, T

- REMARK 2.2. Note that the proposed dynamical feedback adaptatzon law
for the vector of weights in (10) results in a continuous regulated evolution
of the vector of variable weights &(t). The discontinuous feedback strategy
(10) actually represents a least squares solution, with respect to @(t) of the
following linear time-varying equation

SIE N .
(20) @ (0)(t) = —k sign{y(t) — ya(t)]
which yiélds the following Suggestive requlated dynamics for the percéptron
output signal y(t)

(21) g =T (1)a(t) - k sign (y(t) — ya(t))

where the signal & (l)z( ) acts as a bounded perturbation signdl. O

Note that if the quantity i(t) is measurable, one can obtain a more
relaxed variable structure feedback control strategy than the one obtained in
(10). Generally speaking, such an adaptive feedback strategy for the variable
weights requires smaller design gains k to obtain a corresponding sliding
motion. Since such a casc is of some practical 1mportance we summarize its
details in the following theorem

Tneorem 2.2.  If the adaptatzon law for the augmented wezght vector
&(l) is chosen as

(k signe(t) + wT(t):r(t))

) |
———t)j (t) w ( ) sign e
)0 - (e >)’° gne(t)

with k being a posilive design constant salisfying

6() = —zraE

(23) k> V;

then, given an arbilrary initial condition ¢(0), the learning error e(t) con-
verges Lo zero in finile lime ), salisfying

<
(24) Ih = Vy

and a sliding motion s sustained on e = 0 for all t > t.
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Proof .. The proof procecds along similar lines of that of thcorem 2.1 after
realizing that the controlled learning error satisfics the following differential
equation with discontinuous right hand side

(25) - é(t) = —ksign e(?) - ga(t)

O

REMARK 2.3. As before, the proposed dynamical feedback adaptation
law for the vector of weights in (22) results in a continuous weight evolution.
Such a law of variation actually represents a minimum square error solution,
with respect to &)(t) of the following linear time-varying equation

(26) g =37 (0)&(t) + &T()F(1) = ~ksign [y(1) - ya(1)]

a

The proposed solution for cf:(t) in (26) is, necessarily, aligned with the
augmented vector of inputs #(¢). The total disregard for the effect of the
scalar signal y4(t) in the above adaptation schemes, (10) and (22), arises
from the implicit assumption that such a signal is not, generally speaking,
measurable in practise, nor can it be estimated with sufficient precision.
On the contrary, it will be shown in the next scction that there is a large
class of problems for which Z(t) may be assumed to be measurable. The
previous theorem shows that as long as g4(t) is bounded, the adaptation
policy always manages to bring the learning error to zero in finite time.
A similar remark can be made about the control law in (10). Figure 2
depicts the (instantaneous) geometric features at the basis of the proposed
algorithms.

2.2.2 Average features of the pré)posed adaptation mechanisms

In order to assess the qualitative features of the adaptive discontinu-
ous feedback algorithm governing the evolution of the variable weights we
procecd, as it is customary in sliding mode control theory, to investigate
the average behaviour of the involved controlled variables. Such an analysis
involves the consideration of the following invariance conditions,

(27) e()=0; é(t)=0

which are ideally satisfied after the sliding motion starts on the sliding sur-
face and is indefinitely sustained theorem. Consideration of such invariance
conditions naturally leads to propose the substitution of the discontinuous
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(bang-bang) input signals by a smooth input signal, known as the equiva-
lent control inpul. This method has been rigorously validated in [10] as the
Method of the Equivalent Control.

Consider the adaptation law (10) and the associated error equation (15)
and substitute the discontinuous signal k sign e(t) by its smooth equivalent
value vgq(1).

(28) é(t) = —veq(t) + T (O2(t) ~ dalt)

The second condition in (27) implies that
(29) veg(t) = &T(1)E(t) — galt) VE > th

Upon use of (29), a virtual, or.equivalent variable weight adaptation law
can also be associated to the actual discontinuous (bang-bang) policy de-
scribed by (10). We denote such an equivalent adaptive weight vector by
Weq(t). One obtains, for all ¢ > ¢4,

Seall) = = g RO - 3a0)

o EDE (). ) .
(30) = _(W>weq(t)+ (m)yd(t)

i.c., the average variable weight vector trajectory satisfies a linear time-
varying vector differential cquation with forcing function represented by the
bounded function g4(t). Note that &g4(t) itself does not, necessarily, lie in
the range of Z(t). The obtained expression (30) describes the projection,
along the range of the vector of augmented inputs Z(t), of the derivative
of the average regulated evolution of &(t). We formalize this result in the
following paragraphs after the following related remark.

REMARK 2.4. The first invariance condition e(t) = &T (t)E(t) — ya(t) =
0 also leads to some minimum norm solution for the weight adaptation tra-
- jectory w(l). Such a solution is given by

(1)
2T (1)2(0)

The solution (31) is, cvidently, aligned with Z(t) for all t. It is easy to verify
that, in general, the time varying veclor Weq(t) of equation (31) is not a
solution of the linear time-varying forced differential equation (30), but only
its instantaneous projeclion onlo the range of Z(t). o

(31) Deq(t) = ya(t)
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DEFINITION 2.2. A matriz M(t) is said to be a time-varying projection
operator, along the range space V(t) of a nonzero vector function v(t), onlo
its (instantaneous) perpendicular hyperplane, if M(t) satisfies

1. M(8)z(t) = 0¥ (1) € V(1)
2. M()C(t) = ((t) V(1) st o7 (1)C(1) =

PRrOPOSITION 2.1.  Let X(t) denote, one dimensional, time-varying
range space of the vector function Z(t). The matriz

(32) o M(t) = (1— x(Tt()t”;ng)

is a time-varying projection operator along zf’(t) onto its instantaneous or-
thogonal hyperplane. _

Proof. Immediate upon verification of the two given conditions in defi-
nition 2.2 for v(t) = Z(t). 0

PROPOSITION 2.2.  The projection of the vector Wc,(t), onto the hy-
perplane representing the ideal sliding condition e(t) = 0, is zero, i.e. the
projection of the vector @(t), onto such a time-varying hyperplane, remains
constant.

Proof. Consider again equation (30), along with the condition é(t) = 0,
i.e. with g4(¢) = y(t). We rewrite equation (30) as

a0 = ()0 (i

i :rT
(33) = (5%‘) eq(t)
rearranging (33) one obtains »
7 :'iT r
(34) <I - j—(}()t)j—%g%eq(t) =0

a

The same proposition holds valid for the actual (discontinuous) sliding

mode controlled trajectories of the adaptation weights, given by (10) and
(22). |

According to the results of proposition 2.2, the equxvalent weight adap-

tation velocity vector satisfies the property : &(t) € X(t). This is in full
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accordance with the form of the proposed actual discontinuous adaptation
law represents by equations (10) and (22). This result has an important
bearing on the stability features of the adaptive algorithm. Namely, the
boundedness of the vector of variable weights, after sliding occurs, is ex-
clusively dependent upon the variations of the input #(t) and that of the
desired output signal y,(¢). Before stating general results to this respect,
several particular cases, regarding constant inputs, Z(t) = & and ya(t) = yd,
can be briefly considered.

Ezample 2.1. If £(t) = & and yq(t) = yq are constant, then the equivalent
adaptation law (30) satisfies Deq(t) = 0 and Gey(t) = weg = constant, while
the output derivative signal y is zero. The discontinuous adaptation law
takes the form ‘

w(t) = ~T~ k sign e(t)

FEzample 2.2. If Z(t) i_ Z, is constant, then the equivalent adaptation law
satisfies

Gealt) = Zrz0a(t)

In this case

~

T

T—.yd(t)

Weq(t) = 7T
i.e. the minimum norm solution Qey(t) of e(t) = £Tey(t) — ya(t) = 0, is
also a solution of the differential equation defining &(t)

FEzample 2.3. If the weight adaptation process is started from the initial
condition &(tg) = 0, or from any vector &(to) € X(to), then for all t > to,
the evolution of &(t) is entirely confined to the one dimensional time varying
subspace /f’(t), containing the vector (t). Since the minimum possible norm
of #(t) is B, the weight vector &(t) is bounded if, and only if, the output
y4(t) and its time derivative y4(t) are bounded.

The following proposition follows readily from the fact that for the dis-’
continuous strategy (30), the equivalent input v, is obtained from the in-
variance condition é(t) = 0, and the error equation (25), as

€(t) = —veq(t) — 9a(t)
ie.,Vit>t,
- Veq(t) = —gd(t)
ProposiTION 2.3.  The equivalent adaptatzon law corresponding to the

discontinuous strategy (22) results in the same ezpression as in (30).
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2.2.3 Requirements for the stability of the average controlled
weights dynamics

In this section we shall establish some results related to the stability
requirements of the average feedback regulated adaptation dynamics, as
represented by equation (30). This requirements guarantec boundedness
of solutions for the variable weight trajectories and comprise fundamental
relations with well known areas of adaptive control.

We begin by providing some standard definitions (sec Brockett [2] )

DEFINITION 2.3. Denote by F(t) the time varying matriz

T
E(t)z" (1)
35 Fi) = ~—=~—=
(%) ©= ~# a0
The differential equation Gey(t) = F(t)dey(t) is said to be uniformly stable
if there exists a positive constant v such that, for all to and all t > 1o, the
state transition matriz $(t,to), corresponding to the matriz F(t), satisfies

(36) Il 8(t,20) {I< ¥

This definition allows us to formulate the following proposition

PROPOSITION 2.4. Suppose the system Weq(t) = F(t)ieq(t) is uniformly
stable and let yd(t) be absolutely integrable. Then, the solution of (30) are
bounded

~ Proof. Consider the inequalities

© 1 Ga) |\ [
(37) L paaqits [ raw1a=

and assume that the initial states, @eq(2o), of the weight adaptation trajec-
tories are bounded by a constant Wp.

From the variation of constants formula, the solutions of the linear time-
varying differential equation (30) are written as

- - t ie
Weq(t) = B(1,t0)weq(to) + fto ‘I’(t,ﬂ)myd(a)da
By the virtue of (37), the norm of &¢,(t) satisfies

10a®1] < 1| 8(t0) Ml Guto) 1 +1) | #(t,0)z 2 sia(o)da |
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< 1900 et I+ [ 18,0 1 HE Lo
(38) < (Wo+B); Vi>to

the result follows. O

DEFINITION 2.4.  The system @ey(t) = F(t)dey(t), is exponentially
stable if there exists positive constants ¥ and X such that, for allt > to, the
state transition matriz ®(t,10), associated to F(t), satisfies

(39) l| ®(t,t0) ||< ve X%

PROPOSITION 2.5. The matriz F(t) is bounded if Z(t) is bounded

Proof . We take as definition of the matrix norm the induced norm

(40) I F@) ll= max || F(t)2 |
Evidently, from the definition of F(t) in (35), it readily follows that

QN EA Y
| F(1) |< max Z——"F— <[l 2(1) ||
1< B o |
0
It is well known [2] that if the matrix F(t) is bounded, then exponential
stability is equivalent to the uniform integrability, over arbitrary interval of
times, of the norm of the corresponding transition matrix. We then have

THEOREM 2.3.  Let &(t) be bounded on (—00,+00) and let M be a
constant, independent of to and ty, then, the system Wey(t) = F(t)Deq(t) s
exponentially stable if and only if

t
(41) / | ®(t,t0) || dt <M Yt >to
to

Proof. The proof of this theorem can be found in [2].

The next result touches upon a special form of the well known condition
of persistency of excitation, of common occurrence in linear and nonlinear
adaptive control schemes (see Sastry and Bodson [6] and Sastry and Isodori

[7)-
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THEOREM 2.4. Let &(t) be bounded on (—oc,4oc), moreover, assume
that the following form of the persistency of ezcitation condition holds uni-
formly in t:

There exists positive constants 6 and €, such that the following malrir
condition is satisfied '

e #(0)iT(0) 1.1 o
(42) | /t ®(t,0) [—_(.’Z‘T(O').’;}(O’))?]q) (t,o)do > el Yi>tg

Then, the equivalent adaptation law (30) uniformly yields a bounded trajec-
tory for the vector of weights Geq(t), for every bounded signal 94(l), if, and
only if, the autonomous system @Weq(t) = F(t)e,(t) is exponentially stable.

Proof . 1t is easy to realize, from the definition of the augmented input
vector Z(t) in (2), that the input channel matrix for the signal g4(¢), given
by #(t)/(£T(¢)%(t)), is bounded for all t € (—00,+00). Moreover, according
to proposition 2.5, the boundedness of &(t) implies the boundedness of F(t).
The proof of the theorem may now follow, quite closely, the proof found in
pp. 167 of [2] O
Condition (42) admits the following scalar form ([6])

/ttﬂ To(t,0) [(i(z)i’r—w)-] o7 (t,0)z2do ‘/tH” | M. 2)2(0) [* do

FT(0)5(0))" F(0)3(0)
(43) > eVt>to,; |l z]||=1

which is a condition on the energy, averaged over all directions of a unit

sphere, of the nonsingularly transformed input vector, x(7) = ®(7,t)Z(t)/
(#T(t)(t)). This means that the vector function ¥(r) is quite an “active”
time-varying vector, so that the integral of the matrix %(¢)x7(t) is uniformly
positive definite over any interval of finite length 6.

2.3. Robustness features with respect to external perturbations

One of the well known key characteristics of sliding mode control is re-
lated to the advantageous insensitivity of regulated variables with respect
to parameter variations, and with respect to external bounded perturba-
tions, affecting the underlying system behaviour. Here, we include in our
analysis the presence of bounded external input perturbations, exhibiting
also bounded time derivatives, for two important cases. The proposed slid-
ing mode control algorithms are shown to be robust with respect to such
perturbations.
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2.3.1 Inputs with bounded additive noise

Consider a vector valued norm bounded ezternal perturbation inputs,
denoted by £(t) = (&(2),...,&x(t)), which additively affects the values of
the input vector z(t) to the perceptron. It is assumed that the perturbation
input £(¢) is not “larger” than the input z(t), i.e

(44) L€ I= W) + ...+ () < Ve < Va Wt

The time derivatives of the components of £(t) are assumed to be also
bounded

(45) 1€ lI= V&) + ...+ () S Vi Ve
We define the augmented external perturbation input vector as
(46) (1) = (&1(1),- -+, 6a(1),0)

This means that it is implicitly assumed that the constant input B to the
bias weight w,4(¢) is a fixed value which does not contain the mﬂuence of
perturbation signals.

The perturbed learning error é(t) = y(t) — y4(t) is now given by

(47) é(t) = [#(1) + ED]TB(t) - ya(t)

Note that, in spite of the fact that the perturbed input signal #(t) +

£(t) is actually available for measurement, its time derivative &(t) + £(t) is
nol. This mecans that such time derivatives can not be used in the weight
adaptation law. Hence, only an adaptation law of the type proposed in (10)
can be actually devised for sliding mode creation on the zero learning error
hyperplanc.

By virtue of the above considerations, we shall center our attention of
the perturbed adaptation law:

o #(1) + £
(18) w(b) = <[i~(/)+E(t)]”'[i(t)+5(t)1)

k sign é(t)

The weight adaptation law (48) results, as it easily verified, in the fol-
lowing discontinuous perturbed learning error dynamics

(19) 8(1) = —k sign é(1) = & (D) + 1)) - §a(0)

The robustness result is summarized in the following theorem whose proof
is rather similar to that of Theorem 2.1.
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THEOREM 2.5. Consider the sliding mode creation problem on the zero
learning error hypersurface of an adaline including a perturbed input vector.
If the adaptation law for the augmented weight veclor &(t) is chosen as in
(48) with k being a positive constant satisfying

(50) k>W(\Vit Vi) + VY

then, given an arbitrary initial condition é(0), the periurbed learning error
é(t) converges to zero in finite time t;,, estimated by

t fe(0) ]
h <
k- W(V:+ Vo) -V,

(51)

in spite of all possible assumed (bounded) values of the perturbation inputs
and its time derivatives. Moreover a sliding molion is sustained on é(t) = 0
for all t > ij.

Proof; Immediate upon consideration of (49) and use of similar argu-

ments as in the proof of theorem 2.1. O
The equivalent input v.,(t) is now defined, from (49) as
(52) veg(t) = & (D[E(1) + E(1) - (1)

The equivalent feedback adaptation law is obtained by substituting the dis-
continuous term in the adaptation law (48) by v¢,(f). The obtained average
adaptation law is now a perturbation-dependent feedback adaptation law
given by

(63)  Selt) OO __YoT e +

([x(t>+ [2(t) + £(1)]
5 (1)) — galt )]
)+ EONED + )
( () + E(t) 7[x(t)+£(t)]) s
. 2(1) + £(t) .
* ([i(t) + EOITE() + E(t)]>“(t)

Enforcing the invariance condition, corresponding to zero perturbed
learning error é(t) = 0 on equation (54), one obtains, after some algebraic
manipulations, the following expression

(, _ B + Em)a() + £ )]T) Bun(l) =
[2(t) + E@IT[2(t) + €))7

(54)
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According to the results of proposition 2.1, the matrix multiplying cf)eq(t)
in (54) is a time-varying projection operator. Hence, equation (54) implies
that &(¢) lies in the range space of the perturbed input vector, #(t)+£(t) and
has zero projection onto the zero perturbed learning error hyperplane. The
adaptation mechanism for the perturbed input case has similar geometric
features as the unperturbed case.

2.3.2 Noisy measurements of the unperturbed mputs and neu-
ron output
Consider now the case in which the measurements of the unperturbed
input vector x(t) are corrupted by some unknown but bounded noise signal,
which we still denote by £(t), satisfying the assumptions of the previous
‘subsection. The measured vector is denoted by z,,(t) = z(t) = £(t). We also
assume that the bounded measurement noise component &,41(¢) distorts the
measured value of the constant bias input to the threshold element, assumed
to be nominally equals to B. However, the noise component £,41(t) should
satisfy the restriction | wn41(t) |< Vi,,, < B. The measured input vector
function &m(t) = &(t) + €(t) has the obvious mcaning. Its constitutive parts
are defined as before and they satisfy the same assumptions. In particular
the assumption V¢ < V,. clearly implies that the vector function Z(t) is never
orthogonal to the exterded measured input vector function (), i.e.

#1(0F(1) = [#(0) + EO 31 # 0

Additionally, the measured perceptron output yn,(¢) = y(t) = ((t) is
assumed to be corrupted by some additive noise signal, ¢(t), which has a
bounded time derivative, i.c. |g(l) |< VVl

It is assumed that the time dornvatlvo of the perturbed measured input
vector &,(1) = (1) + £(1) is not synthesizable in practise. The perturbed
adaptation law, proposcd for this case, is of the same form as that in (48).
The perturbed learning error dynamics is now obtained as

(35)  H) = & (DHD +ETOFL) = 1) - galt)
' (O EONES Y,
<mt>_ + O + )+
+o" (1)) + {(1) = §a(t)
To guarantee the existence of a sliding regime on the hyperplane é(t) = 0,

the smallest possible value of the product of the switch gain factor k, and the
time varying scalar quantity modulating its value, has to be sufficiently large
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as to overcome the unknown but bounded values of the term &7 (t)z(t) +
¢(t) — 9a(t) in the error dynamics (56).

Note that

@ +EOED (2(0) + EOI2() + BB+ bnia(1)

[2(t) + £(O)T[2(2) + &(2)) [e(t) + EDOIT (1) + €] + (B + €1 (1))
(56) B? — (Vz + Vg)V - BVE,.+1 _

>
- (V +V§)2+(B+V1‘n+l)

We assume also that 7 > 0. The preceeding developments establish the
basis for the proof of the following theorem which summarizes the robustness
result for this case.

THEOREM 2.6. Consider the problem of a sliding mode creation in a
neuron with noisy measurements of the unperturbed input vector (t) and
output signal y(t). If the adaptation law for the augmented weight vector
&(t) is chosen as in (48) with k being a positive constant satisfying

Wv+v+n

7 2 2

then, given an arbitrary initial condition é(0), the perturbed learning error
é(t) converges to zero in finite time t; estimated by

: ] | €(0) |
(58) ) LWV+V)~V v,

in spite of all posszble assumed (bounded) values of the input measurement
noise. Moreover a sliding motion is sustained on e(t) =0 for all t > iy.

Proof. Immediate from the prececding considerations and arguments
similar to those already used in the proof of theorem 2.1. - a
We use again the method of the equivalent control on the basis of the error
dynamics equation (56).

(1) T .

3T (55 (07 )+ (1)) +¢(t) —ga(t) =0
z (t) m() ,

Note that no singularity ie present in the definition of the equivalent input

eq(t) since the product Z T (t)#(t) is never zero, as remarked before.

 Theideal sliding dynamics, obtained from the invariance condition é(2) =

0, yields, in this case, the following description of the equnalent adaptation
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law for the vector of variable weights

9 bt = =92 0o+ (20 a0 - G0

In accordance with the invariance condition &(t) = 0 one substitutes ga(t) by
y(t) in the preceeding equation. After some simple algebralc manipulations
the following expression is obtained

Em(OET (D)) o _
(60) (1 - T st = 0

which clearly indicates that the velocity vector for the weight evolution be-
longs to the range space of the vector Z,(t) and has zero projection onto
its normal hyperplane. Once sliding occurs, the vector of variable weights is
attached to a fixed point of a hyperplane normal to #,,(t). However, the zero
error learning hyperplane is skewed with respect to this hyperplane and the
weight vector evolution is no longer attached to a fixed, but a variable, point
on the zero learning error hyperplane. We say that an unmatched evolution
is obtained for the vector of adaptive weights.

The projection onto the normal hyperplane to Z(t), of the velocity vector
of the weight adaptation trajectory, cf)eq(t), now exhibits a nonzero compo-
nent. This means that the projection of the vector of weights does move
relative to the error hyperplane é(t) = 0 in a sliding fashion. Moreover,
since the velocity vector of @.y(t) is no longer orthogonal to the zero learn-
ing error hyperplane, the adopted weight evolution law does not guarantee
the fastest approach to the zero learning error condition and boundedness
of Weq(t) becomes highly dependent upon the nature of the noise signal E(t)
The following result establishes structural condition which guarantees the
fastest rate of approach of the vector of adaptive weights to satisfy the zero
learning error condition.

THEOREM 2.7. Let X( ) denote the one-dimensional range space, at
time t, of the vector &(t), then the equivalent feedback adaptation laws, given
by (59), satisfies ’ ‘ - 5
(61) ‘ gty € X(t) Vi

if, and only if, i
‘(62) E(t) e X(t).
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Proof.. Evidently if £(t) € X(t), then, according to the assumption
lating the bounds of #(t) and f(t), by which V, < Vg, there exists a tii
varying scalar function p(t) taking values in the open interval (-1, +1), su
that £(t) = u(t)Z(¢)Vt. It is then easy to sec that the projection along X
onto its normal hyperplane, of the generated average vector velocity of t
weight adaptation trajectories satisfy

(1- 2 ()) ) = (1- EOLHOHO: T(t)) 0

£7.(1)Z(t) [£(2) + (e TE(2)
X IT
- (- 2000

and, therefore Geg(t) € X(1).

Assume now that Ge,(t) € X(t)Vt From (60) it follows that weq(t) m
be expressed, as

(64) Bea(t) = a(t)Em(2)

where the scalar function a(t) is given by

_ ET (e (1)
i (0=0)

in other words Z,,(t) = Z(¢) + £(t) € X(t). But this is only possible,
and only if, £(t) € X(t)Vt

Condition (62) is‘the well known métching condition which is to be s
isfied by the structure of the input measurement perturbation noise. T
matching condition means that all effects of the measurement perturbatic
will be confined to the time varying subspace X(t) where the discontinuc
fecdback actions will overcome them. The boundedness of the perturl
tion signals implies furthermore that the regulated motions of the adapt
weights vector will be robustly brought to the zero learning error hyperpla
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3. Application to inverse and direct dynamics indentification

In discrete time feedforward neural networks, the basic building block
unit connecting physically available input variables to the neurons, or Ada-
lines, is constituted by a transversal filter consisting of an ideal sampler and
a string of pure delay elements in a “ladder” array (see [4]). This unit is usu-
ally addressed as the 1S/F-module (for Ideal Sampler-Filter). The output
of each pure delay unit constitutes a component of the discrete-time state
vector of the ladder filter. These states are provided, as input signals, to the
neuron module.

In continuous time (i.e. analog) neuron units, the I§/F-module must
be replaced by a string of integrators, which is the dynamical continuous-
time “equivalent” of the pure delay element. However, such an arrangement
is inherently unstable and some internal feedback must be devised so that
the resulting unit provides stable, i.e. bounded, signals as inputs to the
neuron unit. We thus propose the use of a stable filter, i.e. a stable time-
invariant linear dynamical system whose (available) states will be used as
inputs to the neuron unit. The scalar input function u(t) is the input to
the filter and represents the physically available signal to be processed by
the neuron (usually a plant input or output). Figure 3 depicts a schematic
representation of the Stable Filter (SF') module connected to the Adaline
module.

Let A denote the constant matrix representing the internal, time invari-
ant, feedback connections of the § F-module. Let b be the vector representing
the input channel structure to the stable filter. The pair (A,b), with state
vector (1) represents the SF-module.

Consider the augmented version of the input pair (A,b), as follows

. c [ao]  [b
- =48] 5[]

'The § F-module state equations are therefore given by
(66) #(1) = AZ(t) + b u(t)

where #(1) is the state vector of the S F-module, constituting also the vector
of augmented inputs, considered in the previous section, to the neuron unit.

Note that since the vector function z(t) is implicitly assumed to be avail-
able for measurement, the vector &(t), and the vector %, are indeed, available
for measurement from the particular topology of the SF module (note that
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each state variable component describing the filter is physically measurable,
and so are all their first order time derivatives, which are just the inputs to
the several integrators present in the constructed filter). Any sliding mode
control strategy to be used on the basis of the §F-Adaline combination can,
therefore, assume that these two signals are actually available for measure-
ment. Note also that any noise affecting the signal u(t) influences the filter
state vector z(¢) in such a manner that the filtered noise components present
on each input z;(t) to the neuron is already of the “matched” type.

The composite discontinuous weight adaptation dynamics takes then the
form ’

(67) 56) = A&(0)+ bu(t)
o (EOETO) i, R\
SO <zT(t)J:(t)A + (t)iT(t)i(t)> (1)

— (:E_Tg(vt()tT)(tj)k sign e(t)

y(t) = & (1)

The corresponding (average) equivalent adaptation law is simply obtained
now as

(68) F(t) = AZ(t)+ bu(?)

‘i’eq(t) = =

y(t) = 5T(t)wesq(t)~yd(t)

The particular form adopted for a:( ) does not have any bearing on the
geometric features associated to the sliding mode adaptation algorithm. As
it can be easily verified, condition (34), is independent of Z(t) and hence,
it is independent of the particular values of the pair (A b) The stability
features of @(t), or of its average value @eq(t) do depend, however, on the
values adopted by the pair (A b), and the value given to the input function
u(t).

PROPOSITION 3.1. The actual and the average sliding mode controlled
dynamics for y(t) (67), (68) are independent of the matrices A and b i.e. the
convergence of the output function y(t) to the desired output ya(t) by means
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of the sliding mode adaptation algorithm is insensitive with respect to the
S F-module parameters '

Proof. We only prove the proposition for the case of (67), since the proof
corresponding to (68) proceeds along similar lines.

Indeed, taking the time derivative of y(t) in (67) and using the expres-
sions in the first two cquations in (67), one finds, after some straightforward
algebraic manipulations, that:

(69) gty = & (03 +oT ()
= -k sign e(t) = —k sign [y(2) - yd(t)]

O
For the forward and inverse dynamics identification tasks we use the follow-
ing definitions, which may also be found in [4].

The forward dynamics identification problem consists in making the out-
put signal of the adaline y(t), follow the output of a given (unknown) dynam-
ical system y,(2), acting as the desired output signal y,(t), when the input
to the system u(t) also acts as an input to the SF-Adaline combination.
Upon convergence of the learning error e(t) to zero, the adaline “emulates”,
in a certain sense, the input-output behaviour of the given system. The
structure of the forward dynamics identification scheme using a SFadaline
combination is shown in Figurce 4. :

The inverse dynamics identification task consists in havmg the output
of the adaline y(t) follow the input u(t) of a given dynamical system (i.e.
ya(t) = u(t)) when the output of such a dynamical system y,(t) acts as an
input to the S F-adalinc arrangement. The inverse dynamics identification
scheme is shown also in Figurec 4. When the output of the adaline y()
converges to the input to the system u(t), we say that the inverse dynamics
of the plant is being “cmulated” by the neuron-filter combination.

3.1. Identification of forward and inverse dynamics for the Ka-
pitsa pendulum

Here we consider a truly nonlinear system of the non-flat type, studied by
Fliess and coworkers in [3], consisting of a unit mass rod with a suspension
point which freely moves only on a vertical direction. The Kapitsa pendulum
is, thus, an inverted pendulum where the control actions are constrained to
move the suspension point only along a vertical axis (see Figure 5).

We considered a nonstabilizing open loop control u(t), applied to the
plant, and obtained the corresponding output y,(¢) of the nonlinear system,
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represented by the angular position of the rod with respect to the vertical
axis. In the forward dynamics identification problem y,(t) is regarded as the
desired signal, y4(t), to be followed by the neuron output y(¢). In that case,
the input function u(t) to the system, is also the input to the SF' unit. For
the inverse dynamics identification the roles of u(t) and y,(t) were reversed,
with respect to the neuron system.

The open loop control function u(t) was chosen according to ([3]), of the
form

t
(70) w(t) = Ay + Ag cos(ét:) ¥ Agsin(:)

where A;, A; and Az are constant parameters. The nonlinear system is
assumed to be unknown and only its input and output signals assumed to
be measurable for the adaptation process. For simulation purposes, however,
the following model was used

()

a = p(t)+ ——=sina(t)
2 _
p(t) = (% - lg ) cos a(t)) sin a(t) — u(t )p(t)cos a(t)
2(t) = u(t)

(1) %) = o)

where a(t) is the angle of the rod with the vertlcal axes, p(t) is proportlonal
to the generalized impulsion. The constants g and [ represents, respectively,
the gravity acceleration and the length of the rod. The velocity of the
suspension point acts as the control variable u(t). The variable 2(t) is then
the vertical position of the suspension point.

Numerical values for the parameters of the Kapitsa pendulum model
were set to be g = 9. 81[sec2] and [ = 0.7[mts]. An open loop control input
signal u(t) of the form given in (70) with the following constant parameters

A =04; A, =2; A3=3; €=0.05.

was used, for both tasks.
The S F module was designed as a stable low pass filter with the following
state representation

(72) &1(t) = 2a(t)
iz(t) = $3(t)

t3(t) = -—z1(t) — 3z2(t) — 3z3(?) + u(l)
) = 0 o
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where the state variable z4(t) represents the bias component with initial
condition equals to B. Such a constant parameter is taken, for this example,
as B = 1.

The results of a simulated forward dynamics identification taks, for an
Adaline with a total of 4 weights (including one bias variable weight) are
shown in Figure 6. In this figure, the desired output trajectory ya(t) is
constituted by the nonlinear pendulum system output i.e. y(t) = a(t)+ya(t)
and the input u(t) to the S F-module is the same input given to the nonlinear
system. The learning (tracking) error response e(t) is shown to converge to
zero in approximately 0.02 sec. To alleviate the “chattering” phenomena,
present in the neuron output and learning error responses, as well as to speed
up the simulation time for the SIMNON package, the following standard
substitution was adopted for the ideal switch function

. ~p )
k signe(t)~ k POIES
with 6 = 0.05.

Highly accurate following is seen to be achieved without chattering a-
round the desired output signal. The open loop unperturbed input signal
trajectory u(t), affecting both the pendulum and the $F-neuron arrange-
ment, is also shown in this figure. In the simulation no additive noise af-
fecting the input signal u(t) was assumed. The value used for the variable
structure gain k was set to k = 5.

For the comparison and qualitative neuron performance evaluation, sim-
ulations were also carried out for the same forward dynamics identification
task with an input signal u(t) subject now to a computer generated additive
bounded noise £(t). The generated noise signal is a discrete time stochastic
process normally distributed at each instant of time with zero mean and
standard deviation equals to 1. The value of k was set to be the same as for
the previous simulation and the same switch substitution was carried out.
The perturbed input u(t) + £(t) affects, as before, both the input signal to
the pendulum and to the S F-adaline system. The measure filter state is now
a perturbed vector function which is measurable. The noisy states are used
to conform the sliding mode adaptive strategy in accordance with equation
(48). The perturbed filter state constituting the input to the adaline is, thus,
of the “matched” type. The corresponding simulation results are shown in
Figure 7.

The inverse dynamics identification task was also implemented using the
same §F-module described above. The variable structure control gain used



124 H. Sira-Ramirez and E. Colina-Morles

in this case was k = 90. The simulation results, without additive noise for the
measured output signal yp(t) of the nonlinear system, are presented, for a 4
weights Adaline, in Figure 8. Figure 9 presents the corresponding results for
an additive noise input signal, of the same characteristics as before, affecting
the measured signal y,(¢) given as an input to the filter-neuron combination.
In this case the value of k was substantially increased to k = 1000 due to
the large values of the first order time derivative of the desired output signal
va(t), represented now by the noisy signal u(t) + £(t), with u(t) as given in
(70). '

4, Conclusions

In this article a new dynamical discontinuous feedback adaptive learning
algorithm has been proposed, for linear adaptive combiners, which robustly
drives the learning error to zero in finite time. The components of the vector
of variable weights are assumed to be provided with continuous time adap-
tation possibilities. The dynamical adaptive learning scheme is based on
sliding mode control ideas and represents a simple, yet robust, mechanism
for guaranteeing finite time reachability of a zero learning error condition.
The approach is also highly insensitive to bounded external perturbation
inputs, measurement noises and designed input filter parameters. The as-
sumptions made about the bounded nature of external input signals and
desired outputs, as well as of their time derivatives, are quite standard in
the literature about adaptive neuron elements, but one which prevents the
consideration of discontinuous memoryless activation functions, of the non-
differentiable type. ’ :

Bounded average weight evolution is guaranteed under several conditions
relative to the underlying linear time-varying system describing the average
evolution of the vector of adaptive weights. Some of these conditions are
closely related to those of persistency of excitation and thus links our ap-
proach with standard adaptive control results. The type of imposed require-

_ments for stability also represent quite natural and prevailing assumptions
in most available adaptive linear and nonlinear control schemes.

The matching condition, with respect to bounded input signal and neu-
ron output measurment noises, guarantecs a minimum norm solution for
the velocity of weight adaptation and fastest convergence to the zero error
hyperplane. Measurable inputs, already containing external perturbation
components, result in a “matched” input channel structure which always
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guarantees orthogonal velocity of convergence to the sliding hyperplane. The
matched structure appears to be trivially satisfied in most automatic control
oriented applications.

Chattering-frec dynamical sliding mode controllers for nonlinear systems
have been recently proposed by Sira-Ramirez ({14]) using input-dependent
sliding surfaces. The adaline case study presented here represents an in-
stance in which the sliding surface (zero learning error condition) is actually
an “input” dependent manifold. The obtained sliding “controller” is thus
continuous rather than bang-bang.

Extensions of the results to more general classes of multilayer neuron
arrangements is being pursued at the present time, with encouraging results.
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Figure 9. Robust Inverse Dynamics Identification with Bounded Noise in-
put for the Kapitsa pendulum.



