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Adaptive dynamical feedback regulation strategies for linearizable
uncertain systems

HEBERTT SIRA-RAMIREZt, MOHAMED ZRIBI} and
SHAHEEN AHMAD#

In this paper, we address the design of adaptive dynamical feedback strategies
of the continuous and discontinuous types, for the output stabilization of
nonlinear systems. The class of systems considered corresponds to nonlinear
controlled systems exhibiting linear parametric uncertainty. Dynamical feed-
back controllers, ideally achieving output stabilization via exact linearization,
are obtained by means of repeated output differentiation and, either, pole
placement, or, sliding mode control techniques. The adaptive versions of the
dynamical stabilizing controllers are then obtainable through standard, direct,
overparametrized adaptive control strategies available for linearizable systems.
Illustrative examples which deal with the regulation of electro-mechanical
systems are provided.

1. Introduction

Asymptotic output stabilization of parametrically uncertain nonlinear systems
constitutes an important problem in control systems design. Contributions, from
differential geometric viewpoints, have been given by Sastry and Isidori (1989),
Kanellakopoulos et al. (1989, 1991), Taylor et al. (1989), Campion and Bastin
(1990), Teel et al. (1991) and many others. For enlightening details, and general
results, the reader is referred to the books by Sastry and Bodson (1989), and
Narendra and Annaswamy (1989). On-going developments in this- area are
contained in the collection of lectures edited by Kokotovic (1991). For other
contributions to the area, the reader is referred to the reprint of the book edited
by Narendra et al. (1991).

In this article, using the results of Sastry and Isidori (1989), an adaptive
asymptotic output stabilization scheme is proposed for dynamical pole place-
ment, and sliding-mode based, exactly-linearizing controllers, obtained via
repeated output differentiation. The schemes are restricted to the class of
nonlinear systems with vector fields that exhibit linear parametric dependence.
The availability of the dynamical controller state variables and overparametriza-
tion (Campion and Bastin, 1990) are the key issues that allow an extension of
direct adaptive control techniques, available for static input-output linearizable
systems, to dynamically controlled systems. Two design examples are presented.
The first one involves the control a DC motor by means of adaptive dynamical
pole placement. The second example deals with the stabilization of a magnetic
suspension system via adaptive dynamical variable structure control strategies.

In §2 of this paper, the adaptive dynamical pole placement stabilization
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scheme is presented along with the DC motor control design example. The
adaptive dynamical variable structure control stabilization problem is presented
in § 3, including applications to a magnetic suspension system. In both examples,
computer simulations are provided to assess the performance of the proposed
controllers. Concluding remarks, and proposals for further research, are col-
lected in § 4.

2. Adaptive output stabilization of linearizable nonlinear systems via dynamical
pole placement
2.1. Input—output linearization by dynamical pole placement techniques
Consider the following n-dimensional state-space realization of a single-input
single-output nonlinear system

= f(x,0) + g(x, O)u}
y = h(x, 6) (2.1)

where f: R"*? — R" and g: R"*? — R" are, for fixed 6 in R?, C* vector fields
globally defined on R", and h: R"*? — R is a C* function. It is assumed that
the system has strong relative degree r < n (Isidori 1989). The parameter vector
0 is assumed to be constant and f, g and h are linear functions of 0.

The ith time derivative of the output function may be written in terms of the
state vector x and the control input u as

y® = bx,6) fori<r; withbo(x,) = h(x, 6) } o
YO = byx, 8,u,u®, ..., u" D) + a(x, Oul"" forr<is<n ‘
In particular, the nth time derivative of y may be obtained as
y®™ = p(x, 6, u, u®, ..., w7 V) + a(x, Ou" (2.3)
We assume that thel‘observability’ matrix, constituted by the (row vector)
gradients, with respect to x, of y® (i=0,1,...,n—1)is full rank n, i.e.
E(y,jgl),a.x- L&) = rank &’jf)éxi’,y(")l =n (2.4)

This assumption implies that (2.1) can be described by an nth order
input—output scalar differential equation (see Conte et al. 1988, Diop 1991). The
implicit function theorem allows one to solve for x locally, from (2.2), in terms
of u and its time derivatives, as well as in terms of the derivatives of y. In other
words, there exists a set of n independent functions #;, implicitly defined by
(2.2), such that

x =%, y®, ...,y u,u® u =Dy i=1,2,...,n (2.5)

rank

In general, one locally obtains a representation of (2.1) in the form
y® = c(y, y®, .., y@ D 6, u, u®, ., u) (2.6)

Definition 2.1 (Fliess 1990 a): Let the output y be identically zero for an
indefinite amount of time. The zero dynamics, associated with (2.1), are defined
as

c©, 6, u, u®, .., u"")=0 2.7)
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We assume that (2.7) is locally asymptotically stable to a constant operating
point, = U. In such a case we say (2.1) is locally minimum phase around the
equilibrium point of interest. a

Proposition 2.2: Let ull denote the following set {u,u®, ..., u®} of control
input derivatives. Then, the dynamical feedback controller
u(n—r) —

n—1

r—-1
bn(xa 07 u[n—r—l]) + Eaibi(xa 0) + Z aj[bj(x’ 0, u[j—r-l]) + a(xa g)u(j_r)]
) i=0 j=r ) o

a(x, 0)
a, =1

drives the output of system (2.1) to satisfy closed loop linearized dynamics of the
form

y(”) + a/n_ly(”—l) + - 4 aly(l) + aoy =] 0 (2,9)

Proof: The proof is immediate upon direct substitution of (2.8) in (2.3) and the
use of the definitions in (2.2). O

Provided that the system is minimum phase, then the scalar time-varying
differential equation (2.8) defines a dynamical feedback controller which can
accomplish exponential output stabilization to zero, in a manner entirely
prescribed by the set of chosen design coefficients {, a1, . . ., @,—1}. Typically,
one chooses the a to obtain asymptotically stable dynamics for (2.9). The set of
input derivatives u("~"~! in (2.8), naturally qualifies as a state vector for the
dynamical controller, which is available for measurement. If the quantity a(x, &)
is bounded away from zero then no impasse points need be considered for the
dynamical system representing the linearizing controller (see Fliess and Hasler
1990). This assumption is equivalent to the strong relative degree assumption
(Sastry and Isidori 1989).

2.2. An adaptive regulation scheme for dynamically linearizable systems

The effectiveness of the dynamical feedback controller (2.8) is highly
dependent upon perfect knowledge of the involved system parameters 6. It is
clear that exact cancellation of nonlinearities would not generally be possible if
the dynamical controller (2.8) was computed using estimated values of such
parameters, which are known to be in error with respect to their true values. In
this section we assume that the components of € are constant, but otherwise
unknown, and present an adaptive approach to dynamical feedback lineariza-
tion. We denote the estimated values of the parameter vector as 6.

Remark 2.3: It may be verified that the linearity of f, g and A with respect to
@ implies that the quantities b; (i=0,1,...,n—1) and a in (2.2) are multi-
linear functions of the components 6; of 6. Hence, if one defines a large
dimensional vector @ containing, as individual components, all possible ordered
homogeneous multinomial expressions in the 6; of degree smaller or equal than
n, then b; (i=0,1,...,n—1) and a are indeed linear functions of @. This
observation and the involved process, known as ‘overparametrization’ (Campion
and Bastin 1990), allows us to extend recently proposed adaptive control
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techniques (Sastry and Isidori 1989), developed for statically linearizable sys-
tems, to systems linearizable by dynamical feedback (see Fliess 1990 b, and also
Sira-Ramirez 1992 a). O

Define

w0 =

r—1 n-1
ba(x, 8, ul= "y + 3 aibi(x, 8) + 3 aj[by(x, B, ulTY) + a(x, Hul7)
) =0 j=r . L

a(x, )
(2.10)
Then, if a dynamical controller of the form (2.10), based on parameter
estimates, is used to regulate the evolution of y (™, the expression (2.3) is found
to be, after some manipulation
y(") + a/n_ly("-l) + e 4 axly(l) + agy =

r-1

bn(x9 0, u[n—r—l]) - bn(x’ av u[n—r—l]) + E ai[bi(x’ 6) - bi(x’ ,0\)]
i=0

n-1
+ 3 a;{bjx, 6, ulNy — bx, 8, ul~"Y) + [a(x, 6) - a(x, H)JuV™"}

j=r
+ [a(x, 6) — a(x, B)]u*" (2.11)
where u("~") represents the expression of the estimated controller given in
(2.10). .
By virtue of Remark 2.3 one may conclude that expression (2.11) can be
written as a linear function of the parameter estimation error @ — © := ¢.

y(") + an_ly("'l) 4o+ aly(l) + agy
= (@ - O)TW(x, 6, ul* 1) = ¢TW(x, §, ul""Y)  (2.12)

where W is the nonlinear state-dependent regressor vector, depending also on
the vector of parameter estimates, 9, and the measurable ‘state’ of the
dynamical controller, represented here by u and the derivatives of u up to order
n—r—1,ie. by ul" 771, By slightly abusing notation we shall write W as a
function of © rather than as a function of 8.

In order to find an appropriate adaptation law, the developments given in
Sastry and Isidori (1989), or in Sastry and Bodson (1989), can be followed very
closely in a rather straightforward fashion. We summarize the developments in
Sastry and Isidori (1989) as follows.

Let L(s) be defined as the characteristic polynomial of the linear differential
equation (2.9) and let L~!(s) stand for the linear time-invariant operator

1
L Ys)y=——+ | = - (2.13)
s" 8T+ e+ s +
The output variable y may then be written as the convolution of the linear

operator (2.13) with the nonlinear time-varying function obtained in the right
hand side of (2.12). One has

y = LY )*¢TW(x, 6, ul="1)) (2.14)

where the “*’ denotes the convolution operation in the hybrid notation of (2.14).
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Let e; denote the augmented output error, defined as
er =y + OTL () [W(x, ©, ul" )] — LN (s)*[ETW(x, &, ul*~-1))
(2.15)

Notice that e; can be calculated from measurable signals. It is now easy to
see, using (2.14) and the commutativity between the operator L~!(s) and the
(constant) value of the actual parameter, that

er = PT(LTI P [W(x, ©, ulr ")) =: ¢7E (2.16)

Where & is the vector of filtered regressor components. From the fact that e,
is a linear error equation (Sastry and Bodson 1989) in ¢, several update laws
may be proposed. One such possibility is represented by the following gradient
type of update law (see Sastry and Bodson 1989, p. 57)

O = —ge,W(x, 8, ulr—r-1) (.17 a)

where g is a positive constant called the adaptation gain.
A second possibility is represented by the normalized gradient update law
(see Isidori and Sastry 1989, and Sastry and Bodson 1989, p. 58)

~O=¢=-——"""1- (2.17 b)

The parameter estimation error ¢ can converge to zero, provided persistency
of excitation conditions are satisfied during the stabilization transient (see Isidori
and Sastry 1989, Sastry and Bodson 1989 chapter 2, and Narendra and
Annaswamy 1989 chapter 6). In such a case the output signal y is asymptotically
stable.

2.3. A DC motor example

2.3.1. Non-adaptive dynamical linearizing control for angular velocity regulation
in @ DC motor. Consider a field controlled DC-motor model (see Rugh 1981,
p. 98) given by

PO S ST
La La La

Xy = —E X, + 5 XU (2.18)
J J

y=x, —

where x; is the armature circuit current, x, is the angular velocity of the
rotating axis. The armature circuit voltage, V,, is assumed to be constant while
the field winding input voltage, u, acts as a control variable. The quantity
represents a desired constant angular velocity.

System (2.18) is of the form

%= 01f1(x) + 0,f2(x) + O3f3(x) + [6481(x) + O582(x)]u 2.19)
y = h(x) '
with
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f1(x) = ‘:—gl] » falx) = |:—(.lz:|’ fa() = |:(1):|
gi(x) = [_32], ga(x) = |:,?1:|

Ra B Va K
91—L 92—1, 93—La, 94—La, 05 =

3
a

and

<[>

It is easy to verify that for the given system (2.18), the rank of the following

2 by 2 matrix
3y 3y® _[ 0o 1 ]
ax’ ax Osu —6,

is everywhere equal to 2, except when u = 0. Angular velocity stabilization tasks
which require polarity reversals in the field winding input voltage u have to be
treated separately by different techniques.

A constant equilibrium point, parametrized in terms of the desired angular
velocity £, for this system is given by

2 11/2
@ =1+ [o - 0] )

26, 6265
(R = Q , (2.20)
o 26,6,2
W)= 40,6,0,2* |
0,051 + |1 — =1 247
0305 )

An input—output representation of system (2.18) readily follows by elimina-
tion of the state vector x from the expressions of y and dy/d¢

y® = 83y + Q) + (8, + 0Dy D + O,(y + Q] + 0405(y + Qu’ — 6;05u
1)
- LSO+ 6+ ]=0  @2)

The zero dynamics associated with system (2.18) are obtained from (2.21) by
letting y = yV) = y@ =0, as
0,6
) = | 2475 2 o 205
u u( 8, u 8,0 u+ 91) (2.22)
The three constant equilibrium points for the zero dynamics are: u =0,
(which was discarded as a singularity), and

05 0,6,0, ( @\~
=——|1%£|1-4— ~—|—=" .
u 20,9 [ [1 4 6, 5, (2.23)

Under the condition that 956§>491626492 (i.e. V§—4R3B92 >0), one
finds quite straightforwardly, by plotting uD against u, from (2.22), that the
larger solution in (2.23) is unstable while the solution with smaller u is
asymptotically stable. The system is thus locally minimum phase.
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Let w, >0 and {>0. Imposing on the output y of (2.18) the following
linear asymptotically stable dynamics

y® +2tw,y® + 0ly =0 (2.24)

one readily obtains, using the result of proposition 2.2 above, the following
stabilizing dynamical feedback controller
1

i =5 - [(2Lw,0; — w; — 63)xz — 6365u
5X1
+ (0, + 0; — 2L0,)0sx1u + 0,05x,u% + 02Q) (2.25)

This dynamical controller achieves asymptotic output stabilization around the
stable equilibrium point (see Sira-Ramirez 1992 a for the non-adaptive tracking
version of this controller).

2.3.2. Adaptive dynamical linearizing control for angular velocity regulation in a
DC motor. Owing to a lack of parameter knowledge, instead of the exactly
linearizing controller (2.25), one uses a dynamical controller, based on the
estimates of the parameters, their products, and powers, as
u =
“ s s AN AN A ~ A~ L,
[(chlejﬂwn—iz)iz— 636iui(929j + 6105 "'2@(0,,95)X11¢+ 0495x2u +(DL§2]

Os5x,

(2.26)

or, equivalently, in terms of the components of an overparametrization vector 2]
defined as

A

6=
@1, 8y, ..., 0n) = (81, 8y, ..., Bs, 00,610y, ..., 6,05, B2 8,05, ..., B
U=
[(260,6,— = B1)x,— Oyu+(Oy4+ 819—2Lw, Os)x 11+ Orox,u’ + w0, ]
Nkdd A Mt B Box. —45%n. “n>e]
(2.27)
Let ¢, denote the parameter estimation error @; — ©; (i=1,...,20), then,

using the results of the previous section we obtain the following expression for
the closed-loop behaviour of the output variable

wi(x, ©, u)
y® + 220,y + wly = [¢1 ... ¢ P (2.28)
wal(x, ©, u)
The elements constituting the parameter estimation error update law are
summarized below.

Parameter estimation error update law

. A &
¢ =-6;,=—¢e T+ 66

i=1,...,20

Regressor vector components
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walx, O, u) = =2Lw,x,
ws(x, O, u)
_ 20,8, = 0}, = Bu)xs = Byu + (Byy + By = 2, O5)x1u + Opyxau® + Q2
Osx,
wig(x, O, u) = —xqu, wy(x, 8, u)=1x;, wux, 8, u)=-xu
wir(x, O, u) = u, wio(x, O, u) = —2x,u?

where those regressor vector entries not listed above have value equal to zero.

Augmented output stabilization error
i=20

e = E_:l ;&

Filtered regressor components (with zero initial conditions)

éi = '2Cwnéi - w%lgl + W,'(x, @’ u[n—r‘ll)
i=2,5,10,11,14,17,19

(& =0, fori=1,3,4,...,18,20)

Parameter estimation error update law

. A E,‘
;= —0; = —e——=—; i=2,5,...,19
¢z i 1 1+ §T E s »
2.3.3. Simulation results. Computer simulations were run to assess the perform-
ance of the adaptive dynamical controller for a DC motor with the following
nominal values for the system parameters

R,=178, L,= 120 mH
K=141x102NmA™' B=6:04x 10" Nmsrad~!
B=6-04 x 107 Nmsrad™! J=1.06 + 10" Nms?rad™!, V,=5V

The dynamically controlled state variable trajectories x;(¢) and x,(¢t) are
depicted, respectively, in Figs 1 and 2, while the adaptive control input trajec-
tory u(¢t) is shown in Fig.3. The state components slowly converge to
x1=0-661 A, and x, = 202-3 rads~!. These values are within 4% of their ideal
equilibrium values given by: x; = 0-702 A, x, = 2 =200rads™!. In Fig. 4, the
value of the estimated parameter 8, = 0, is shown to converge slowly to a
constant value of 5-555 which does not coincide with its nominal value of 5-698.
The rest of the parameters have small variations and they are not shown here.
The dynamical controller parameters were set as: £ =0-7, w, = 30.

3. Adaptive output stabilization of linearizable nonlinear systems via dynamical
sliding mode control
3.1. Linearization by discontinuous dynamical feedback control
In this section we present an adaptive dynamical variable structure lineariza-
tion scheme for asymptotic output stabilization problems in systems described by
(2.1). In spite of the fact that sliding mode control is, per se, a control technique
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Figure 1. Time response of armature current for adaptive dynamically controlled DC motor

example.
200 {\,’—
150 —
100 —
1 - 1 I I 1
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time [s]

Figure 2. Time response of angular velocity for adaptive dynamically controlled DC motor
example.

devised to deal efficiently with parametric and external uncertainty, the class of
systems where the switching surface does not depend on system parameters may
be very limited indeed. Some of the advantages of dynamical sliding mode
control for nonlinear systems lie in the possibility of chattering-free control
inputs and state responses (for more details, and an application example, from
the chemical process control area, the reader is referred to Sira-Ramirez
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Figure 3. Time response of field winding input current for adaptive dynamically controlled
DC motor example.
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Figure 4. Parameter estimate trajectory for adaptive dynamically controlled DC motor
example.

1992 b). However, dynamical sliding modes are naturally created on suitable
input-dependent sliding surfaces, which crucially depend upon system para-
meters. These, in turn, may be completely unknown making the sliding surface
definition somewhat contradictory. In this section we shall address such a class
of problems from an adaptive control viewpoint.



Regulation strategies for linearizable uncertain systems 131

Proposition 3.1: Let u be a strictly positive scalar quantity. Then, the following
dynamical discontinuous feedback controller

r—1
a(x, Ou"" = b, (x, 0, ul ") = 3 abi(x, 6)

i=
n—-1

- > ajlbj(x, 6, uV"U) + a(x, Ouli="]
j=r

r

—psgn {2 a;b;_1(x, 6)

i=
n
+ > @jlbjalx, 6, ul) + a(x, 9)u(f"’1)]}; @, =1
j=r+1

G.1)

drives the output of system (2.1) to satisfy, in finite time, linearized dynamics of
the form
y=1 4 a,n_ly(n—Z) + o+ ay=0 (3.2)

Proof: Define the quantity: s = y*™D + &, 13" + ... + a,y, and let s(0)
stand for the value of s at time ¢ = 0. One easily verifies that ds/d¢ = —usgn (s).
Hence the condition s = 0 is reached in finite time T, given by: T = u~!{s(0)],
and the condition s = 0 is indefinitely sustained in a sliding mode fashion (Utkin
1978). O

Provided that the system is minimum phase, the scalar time-varying differen-
tial equation (3.2) defines a dynamical discontinuous feedback controller which
can accomplish exponential output stabilization to zero. As before, one typically
chooses the gains «; (i=1,2,...,n—1), to obtain an asymptotically stable
dynamics for (3.2).

3.2. An adaptive regulation scheme for linearizable systems using dynamical
sliding-mode control
Consider the time derivative of the quantity s, defined in the proof of
proposition 3.1.:
r—1 n
§ =2 abix, 0) + 2 ajlbix, 8, uli~""y + a(x, O)uUI]  (3.3)
i= j=r
Let §, the estimate of the sliding surface coordinate function, be defined as

r

n
§= 2 abi(x, é) + 2 ajlb;1(x, 8, uli=r=2y 4+ a(x, @)u(j—r—l)]
1

i=1 j=r+

3.4)

Define also
r—1
a(x, Ou=" = —b,(x, 6, u" 1) = > a;b(x, 0)

i=
n—1

- > albfx, 8, ul=r"1) + a(x, B)uli="]
j=r
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r

—usgn {E a;b;_1(x, 9)

i=1

n
+ > afbjax, 8, ulT) + a(x, a)uU-'-D]} (3.5)
j=r+1
Then, if a dynamical controller of the form (3.5), based on parameter
estimates, is used to regulate the evolution of ds/dt, the expression (3.3) is
found to be, after some manipulation
r—1
§=-psgnd + 3 ai[bilx, 6) = bilx, O)]
i=1
n—1

+ > a{bx, 0, "y = byx, 8, w7 M) + [a(x, 6) - alx, 9)Juv="}
j=r

+ by(x, 6, w0y — b(x, B, w1y 4 [a(x, 6) - a(x, B)]u""
(3.6)

where u("~") above represents the expression of the estimated controller, given

by (3.5).
By virtue of Remark 2.3 one may conclude that expression (3.6) can be
written as a linear function of the parameter estimation error @ — ©:= ¢

§=—usgn§ + (@ - 6)TW(x, 8, ulr Uy = —usgn§ + PTW(x, 8, ulr-r-1

3.7
where W is the nonlinear state-dependent regressor vector depending also on
the vector of parameter estimates, 8, and the ‘state’ of the dynamical controller,

re[presented here by u and the derivatives of u up to order n—r—1, i.e. by
ul"="~1_ By slightly abusing notation we shall write W as a function of © rather

than as a function of 6. A
It is easy to see that the switching surface coordinate estimation error s — §

is given by

s — 8= a[bi1(x, 8) — biy(x, )
=

n
i 2 @j{bj-1(x, 6, uli=r=2y — bj_1(x, 8, uli-r-y

j=r+l1
+ [a(x, 8) — a(x, §)]ul~""V}
= (0 - &)TW,(x, ul""1) = ¢TW(x, ul"""1) (3.8)

where W,(x, u!""""1) is a switching surface regressor vector which does not
depend on the parameter estimates.

Let K be a known positive definite (diagonal) matrix of entires K. Consider
the Lyapunov function given by

V(s, ¢) = 3s” + 36TK¢ (3.9)
The time derivative of such a Lyapunov function is obtained as

Vs, $) = 5§ + ¢"K = —pussgn$ + ¢T[sW(x, 6, ul-"1y + K]
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Choosing the variations of the parameter adaptation error according to the
law

o= -6 = —sK'W(x, o, ulr—r-10
—[5 + ¢"W,(x, ul" " H]K W(x, O, ulr71) (3.10)

one obtains

Vs 8) = = —pssgn § ={ uls| forsgns = sgn? G3.11)
us| forsgns = —sgn§

It follows from (3.11) that the values of s will converge towards the manifold

s =0 as long as s and § exhibit the same sign. However, in the region bounded

by the manifolds s =0 and § = 0, both quantities have different signs and the

trajectories of s are actually ‘repelled’ from s = 0. It is easy to see from (3.7)

that if u is large enough to overcome the supremum of the absolute value of

¢TW, then a sliding motion exists, for the trajectory of s, on the switching

manifold § = 0. Hence, the values of s will not converge to zero, but, rather,

they will be ‘trapped’ on the estimated surface § =0 in a sliding motion and
(3.2) will only be approximately satisfied.

Remark 3.2: It follows from (3.8) that, if the parameter estimation error ¢
converges to zero then the actual value of the surface coordinate function s will
indeed converge to zero, while sliding on § = 0. However, convergence of the
estimation error ¢ to zero is very much attached to the condition of persistency
of excitation (see Sastry and Bodson 1989, Narendra and Annaswamy 1989).
This condition may not be fulfilled while the output is being driven to zero in a
stable fashion. O

We have thus proven the following result.

Theorem 3.3: Let u be such that
> sup|pTW(x, 6, ulr=r"1)) (3.12)

Then, the adaptive dynamical discontinuous control law (3.4), (3.5), (3.10)
renders a sliding mode trajectory on the switching manifold § = 0 which asymp-
totically stabilizes the output of the system (2.1) to the equilibrium value of the
approximately linear dynamics given by

YO gy @D 4k gy = W ) G3)

Remark 3.4: Condition (3.12) cannot be verified a priori due to is dependance
on the state of the system (2.1) and on the state of the dynamical controller
(2.12). If a ‘modulated’ gain u is allowed for the discontinuous controller then
one may choose p= k|¢TW(x, ®, ul"~"~1)|, with k> 1. This guarantees exis-
tence of a sliding regime on § = 0. O

3.2. A magnetic suspension system example

3.2.1. Non adaptive dynamical linearizing sliding mode controller for a magnetic
suspension system. Consider the magnetic ball suspension system described by
(see also Kuo 1991):
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X=X

g Lk _a Y

Xy = M x, 8 elx1 (3.14)
y=x-X

Where x; represents the position of the ball measured from the magnet. The
state variable x, represents the ball’s downwards velocity and u is the non-ne-
gative control variable (actually representing the square of the current flowing
through the electromagnet coils). M is the mass of the ball and c is a constant.
The ratio ¢/M is assumed to be unknown.

It is desired to regulate the position of the ball to a prescribed set-point
value specified by the constant X. It is assumed that the control variable u is
naturally bounded in the closed interval [0, U pa]-

System (3.14) is exactly linearizable by static-state feedback. A sliding mode
controller design would entitle large chattering of the input variable. However, a
dynamical sliding mode controller can still be designed for (3.14) by considering
the extended system model (see Nijmeijer and van der Schaft 1990) of (3.14).

X=X

u
i, = g - O
2= 8 (3.15)

u=v

y=x1-X
Consider the following input-dependent sliding surface for (3.15):

s=g- 6 xll + 2bw,x5 + 03(x; — X) (3.16)

If s can be brought to zero in finite time, the ideal sliding dynamics are seen
to satisfy

Using the results of proposition 3.1, one finds that the dynamical variable
structure controller is represented by

X1

u 6,

x
[2Cw,,(g -6 xll) + wixy + usgns| + _leu (3.18)

3.2. Adaptive dynamical sliding mode linearizing control for magnetic suspension
system
Owing to a lack of exact parameter knowledge, instead of the controller
(3.18), one uses a dynamical variable controller, based on estimates of the
parameter and the sliding surface coordinate function

. x1 ~ U 2 ~ X2u
u=-x- [ZCw,,(g -6, ~) + wyxy + usgn§| + —- (3.19)
6, Xy X1
where
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§=g-8 xll + 2bw,xy + 03(x; — X) (3.20)

Let ¢, denote the parameter estimation error, 6; — @1. Then, the evolution
of the sliding surface coordinate function s obeys

§= —usgn’s - _%’1 [ZCw,,(g -8, ii) + wf,xz + usgn§ (3.21)
1 1
A sliding motion is induced on the estimate of the switching surface § =0.
Notice that, from (3.16) and (3.20) one obtains
= X3
§=5— ¢ — (3.22)
X1
Using the result in (3.10), we obtain a parameter estimation error update law
of the form
X3

b =-6; = (3‘ - ¢1“)

X1

2wng + wyx;

5. (3.23)

Simulations were run to assess the performance of the adaptive dynamical
sliding mode controller (3.19), (3.20), (3.23) on a magnetic ball suspension
system with the following parameters

£
M

The state variable trajectories x(t), x,(t) are shown in Fig. 5. The non-chat-
tering control input trajectory is depicted in Fig. 6. The state trajectories

6, =—,=100NmA~2, g=981ms

0.5 =

-0.5 —

-1 =

-
-

time [s]

Figure 5. Time response of states variables for adaptive dynamical sliding mode controlled
magnetic suspension system example.
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0.3 —

0.25 ~

0.2 ~

0.15

0.1 ~

0.05 ~

time [s]

Figure 6. Time response of control input variable for adaptive dynamical sliding mode
controlled magnetic suspension system example.

converge to the values x; =0-605m, x; =6-1X 107° ms™'. These values are
reasonably close to their ideal equilibrium values given by x; =0-6m and
x,=0. In Fig.7, the estimated parameter is shown. This ‘parameter slowly
converges to a constant value of 102-4 Nm A~% which does not coincide with the
‘true’ value of 100 NmA~2. Figures 8 and 9 show, respectively, the time

w] ©

95 =

time [s]

Figure 7. Parameter estimate trajectory for adaptive dynamical sliding mode controlled
magnetic suspension system example.
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-2

time [s]

Figure 8. Evolution of sliding surface coordinate function for adaptive dynamical sliding mode
controller in the magnetic suspension system example.

evolution of the sliding surface coordinate function s and its estimated value §.
It is clearly seen that sliding motions take place on § = 0, while the value of s
slowly converges towards § =0 yielding a steady-state error. The variable
structure controller parameters and the constants for the adaptation laws were

setas: u=20,¢=09, w,=7, K;; = K, =0-1.

w»

0~

time [s)

Figure 9. Evolution of estimate values of sliding surface coordinate function for adaptive
dynamical sliding mode controller in the magnetic suspension system example.
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4. Conclusions

In this paper, adaptive dynamical continuous and discontinuous feedback
compensators, which approximately accomplish asymptotic output stabilization,
were examined for a class of parametric uncertain systems linearizable by
dynamical feedback strategies. Adaptive dynamical feedback linearization may
be accomplished by extending the available results for adaptive statically
linearizable systems. This simply entitles the incorporation of the states of the
dynamical controller as part of the adaptation mechanism. A controller design
example was presented for the asymptotic stabilization of the shaft’s angular
velocity in a nonlinear DC motor. The performance of the controller was
evaluated through computer simulations which were encouraging.

An extension of the dynamical variable structure control techniques devel-
oped in Sira-Ramirez (1992b,c) were presented for the adaptive case. The
results show that whenever the input-dependent sliding surface exhibits an
explicit dependance on the uncertain parameters, a sliding motion can only be
generated on an estimate of the switching surface, which is known to be in error
with respect to the exactly linearizing manifold. Thus, a small constant stabiliza-
tion error, directly dependent on the steady-state parameter estimation error,
may always be present in the proposed adaptive scheme, if the condition of
persistency of excitation is not verified during the transient. However, if the
persistency of excitation conditions are satisfied, these will, surely, induce more
accurate results on the stabilization task. This condition, as is well known, is
more naturally verified in adaptive output tracking tasks. An illustrative example
was presented dealing with the adaptive dynamical variable structure stabiliza-
tion of a magnetic suspension system. The proposed adaptive control approach
inherits, from the underlying dynamical sliding mode control scheme, the
chattering-free trajectories for the inputs and the associated state and output
responses.
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