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Abstract. Pulse-Width-Modulation (PWM) control strategies have been of limited interest, and use, in the regulation
of a large class of mechanical systems, such as robotic manipulators and rigid spacecrafts. The chattering associated
to discontinuous bang-bang feedback control input signals has traditionally posed serious concerns when con-
sidering the selection of this robust and efficient control technique over some other smooth control alternatives.
This article proposes a means of circumventing the inconveniences caused by the PWM control signal discon-
tinuities in such a class of systems, while retaining the robust features of the PWM control approach.

1. Introduction

The design of PWM control policies for the regulation of dynamical systems is generally
based on approximating an average (i.e., smooth) desired behavior by means of high fre-
quency discontinuous control signals which, somehow, emulate the effects of the designed
average feedback control inputs. In spite of its well known robustness features, the PWM
control approach induces undesirable bang-bang control inputs causing noticeable high fre-
quency discontinuities, or chattering, in the controlled responses. This kind of discontinuous
behavior severely limits, for a large class of mechanical and electromechanical systems,
the applicability of PWM stabilizing feedback control policies, as well as that of some
other closely related discontinuous feedback control techniques (such as Sliding Mode con-
trol and Pulse-Frequency-Modulation control). For mechanical systems, in general, and
robotic manipulators, in particular, low limits to possible wear and tear effects and high
accuracy of the regulated variables are important design concerns when choosing the
regulating feedback control scheme.

PWM control constitutes a robust feedback control policy due to its insensitivity to ex-
ternal disturbance inputs, certain immunity to model parameter variations, within known
bounds, and enhanced performance in spite of the effects of everpresent modeling errors.
For basic work related to PWM control schemes, in linear and nonlinear dynamical systems,
the reader is referred to Polak [1], Skoog [2], Skoog and Blankenship [3], Tsypkin [4],
La Cava et al. [5], Csaki [6], and also Sira-Ramirez [7-12]. The parallels existing between
a closely related discontinuous control technique, known as Sliding Mode Control (sec Utkin
[13]), and PWM were established in [8] from a purely geometric viewpoint. From the
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viewpoint emphasized in this article, however, sampled sliding mode controllers turn out
to be just a particularization of PWM control strategies in which a fixed, fully saturated,
duty ratio function is adopted throughout the entire controller operation (see Sira-Ramirez
[14] for further details and applications). The robustness associated to PWM control schemes
for nonlinear systems were explored in [9], where it was shown that under certain, tradi-
tional matching conditions, PWM regulation achieves the same insensitivity to parametric
variations and external (bounded) perturbations, as that exhibited by Variable Structure
Control under sliding model conditions.

A large collection of mechanical nonlinear systems belong to the class of systems exactly
linearizable by state coordinate transformations and static state feedback. The generalized
state models (see Fliess [15, 16]) of such systems do not include input signal derivatives.
Thus, static, instead of dynamical, controllers naturally arise from the exact linearization
procedure introduced in [15]. In this article, we present a general design method for syn-
thesizing static, as well dynamical, PWM feedback control laws stabilizing to a constant
equilibrium point the state of any nonlinear dynamical system belonging to the above class.
PWM controllers are proposed which effectively stabilize to zero a suitably designed aux-
iliary scalar output function of the system. The obtained restricted dynamics results, in
turn, in a linearization and local asymptotic stabilization of the original system state to
its equilibrium value. However, the obtained static PWM controller is shown to include
undesirable chattering effects on the generated input signals. A dynamical PWM controller
alternative is then proposed, and synthesized, on the basis of Fliess’s Generalized Con-
troller Canonical Form (FGCCF) (see [15)) of the associated Extended System (see Nijmeijer
and Van der Schaft [17]). Continuous, instead of bang-bang, feedback control input signals
are, thus, obtained which robustly stabilize to a constant operating point the closed loop
system, while effectively smoothing out the chattering effects on the control signals and
regulated state variables.

Section two presents a fundamental result on the PWM control of an elementary scalar
dynamical system. It is shown that, based on this scalar result, a general PWM controller
design procedure can be proposed for higher order nonlinear controlled plants. Section
two also reviews FGCCF on which, both, the static, and dynamical, PWM controller design
scheme for linearizable systems, proposed in this section, utilizes the concept of the Ex-
tended System. Section three presents an illustrative example, constituted by a purely
mechanical system, representing a single link rigid robotic manipulator on which the per-
formances of a static and a dynamical PWM feedback controller are tested by means of
computer simulations. The conclusion of this work is collected in Section four.

2. PWM control of nonlinear systems

2.1. PWM control of a scalar system

Consider the scalar PWM controlled dynamical system with state variable s, in which the
constants a, W and p are all strictly positive quantities.
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s=—as — Wy
. sgn [s(t)] for g, <t < t + 7[s@IIT
v = PWM,(s) =
0 forey + s T =t <, + T (1)
1
1 for | s() | > —
1ls()] = g
p Is(] for | st | = >

k=0, 1,2, o e =tk+T'

The #’s represent regularly spaced sampling instants. The sampling interval [t;, f;41]
is known as the duty cycle and its width is here represented by the constant 7, ie., T =
tev1 — 4. At each sampling instant, #;, the value of the width of the next sign-modulated,
fixed amplitude, control pulse v is determined by the sampled value of the duty ratio func-
tion, represented by 7[s(z)]. The function sgn stands for the signum function:

+1 ifs >0
sgn(s) = < O ifs =90
-1 ifs <0

The pulse width, 7[s(5)]7, saturates to the value of the duty cycle, T, (i.e., 7[s(t)]
saturates to 1) as long as the value of the controlled state s is larger, in absolute value,
than a given prespecified threshhold 1/p (see Figure 1). When the absolute value of the
state, s, of the scalar system (1) is driven below the value 1/p, the duty ratio, 7[s(z;)], also
starts decreasing, in a linear fashion, with respect to |s|. When the scalar system is, even-
tually, at rest in s = 0, no control pulses are then applied to the system.

Remark. The basic idea behind the above discontinuous PWM control law (1) is that large
errors in the scalar state s should require larger corrective pulse widths during the fixed
intersampling periods. Small errors, on the other hand, should be driven to zero, on the
basis of the adopted sampling frequency with corrective pulse widths decreasing to zero
until stabilization. In a sense, PWM policies are proportional feedback policies subject
to saturation.

The following theorem establishes a sufficient condition for the asymptotic stability to
zero of the PWM controlled system (1). The same theorem is also found in [1] and also
in [2]. In [2] it is further established that the proposed convergence condition is also
necessary. We furnish, however, a different proof of the sufficiency result.

Theorem 1. The PWM controlled system (1) is asymptotically stable to s = 0, if:

oW < a tanh [“—;j . @
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Figure 1. Duty ratio function for PWM controlled scalar system.

Proof. Due to the piecewise constant nature of the control inputs and the linearity of the
underlying continuous system (1), it suffices to study the stability of the discretized version
of (1) at the sampling instants. An exact discretization of the PWM controlled system (1)
thus yields

—aT, We=<T WIT
st + 1) = e sty — = - (@@ — Dsgnls(ay]. 3)

Suppose the initial condition s(#y) is chosen deep into the region |s| > 1/p. The evolu-
tion of the sampled values of s(r) obey, according to (I):

Stt) = €T 5(6) = 2 (T — Dsgalsp] @

The absolute value of the incremental step, As(t) := s(fx4;) — $(), is readily obtained
from (4), from where it is easily found that

[s(tk) + %V] ' < (1= e [Is(tk)l + ;,“-’} SN

The condition |As(t)| < 2/p is sufficient to ensure that the value of s(z,) will be even-
tually found within the bounded region |s| < 1/p, irrespectively of the initial condition
value s(fp) given in |s| > 1/p. Sufficiency is clear from the facts that, in the region |s|
> 1/p, the |As(t)| decrease at each step and that one must guarantee that s(z,) does not
persistently jump over the band |s| < 1/p, thus falling into a possible limit cycle behavior.
From (5) and the fact that |s(t;)| > U/p, the condition |As(z)| < 2/p is guaranteed if we let

lAse)] = (1 — 7Ty

1 - e [1 + "—H < 2, 6)

which is just the expression (2) after some straightforward manipulations.
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Suppose now that the initial state, s(z), of the scalar system (1), is found in the region
Is| < 1p. The exact discretization of the PWM controlled system is now given by

Stean) = €Ts(2) — Wf (eI~ 1ysgnls(to). ™

The absolute values of the incremental steps As(f) = s(z + T) — s(t) are thus given by

(plstepl - DT _ ,—aT
|As@rp| = (1 ~ ) ‘ I:s(t) + W (% - e ):] I
a

1 - ey
a(pls@)| - DT —aT
< (1 = e9Ty [|s(t)l + K(—e—k——)} . ®)
a 1 -e°h

A sufficient condition for asymptotic stability of (7) to zero is given by |As(z)| < 2
Is(ty)|. Notice, however, that from the fact that p |s(#)| < 1, (8) implies that

jaseol < 1 = e sl + 2] .

Hence, the above convergence condition is fully guaranteed if we let

jaseol < @ = e [ sl + % | <2 sl ©

i.e., from the second inequality one has

< o] = sl = lsw) tanh [7]

which after multiplication of by p, and the fact that p |s()| < 1, results in

14 2 aT
p <p|s(tk)|tanh[2] <tanh[2j.

The result follows.

A computer simulation of system (1) is shown below in Figure 2. This figure depicts
the state s(r), the PWM control input signal w(#) and the duty ratio function 7(s(#)). The
values of the involved constants were chosenas:a = 4. p = 1.2, T =02, W = 1. Since
pWia = 0.3 < tanh (0.4) = 0.3799 asymptotic stability of s(z) to zero is guaranteed by
Theorem 2.1.

2.2. Fliess' generalized controller canonical form
Consider the analytical n-dimensional state variable representation of a nonlinear system:

x = F(x, u). 10)
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Figure 2. State Response, duty ratio function trajectory and PWM control signal for first order PWM controlled
scalar system.

It is assumed that the nonlinear system (10) exhibits a constant equilibrium point of in-
terest characterized by F(X(U), U) = 0. We refer to this equilibrium point as (X(U), U).
Associated to the system (10) is FGCCF given by (see [16] for further details)

él =&
éz = £
én—l = En
£, =c& uu, ..., u» (11)

Implicit in this representation is the assumption of the existence of an element, &; =
h(x), called the differential primitive element, which generates the generalized state represen-
tation (11) of system (10). Under these circumstances, system (10) is transformed into system
(11) by means of an invertible input-dependent state coordinate transformation of the form

£ =®0x, u, u, ..., u" " 12)
given by

dx, u, u, ..., u® Dy = (&), k@), ..., KO0 w, L, W@ (13)
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We assume that the equilibrium point (X(U), U) of (8) is transformed, by (10), into the
vector £ = 0. i.e., §X(U), U, O, ..., 0) = 0. From this assumption, it readily follows
that ¢0, U, 0, ..., 0) = 0.

Suppose that for a suitably designed feedback control policy the state of (9) is asymp-
totically driven to zero. The autonomous dynamics described by

O, u,u, ..., 8 =0 (14)

constitutes the zero dynamics (see Fliess [18]). In order to guarantee an overall stable per-
formance of the controlled system, it is of crucial importance to assess the stability of such
a dynamics around its possible equilibrium points. Around the equilibrium point of in-
terest u = U we assume that the dynamical system (14) is asymptotically stable, i.e., the
system dx/dt = F(x, u) with output y = h(x) is minimum phase. Nonminimum phase systems
can also be controlled by PWM control policies by means of suitably defined precompen-
sators. This topic, however, will be explored elsewhere (see also Fliess and Messager [19]
for interesting related aspects in connection with sliding mode control of linear time in-
variant systems).

Motivated by the fact that for a large class of mechanical and electromechanical systems
the integer a, in the corresponding GCCF (11), is equal to zero, we shall concentrate our
developments, from now on, on such a particular class of systems. This class corresponds
to systems exactly linearizable by means of state coordinate transformations and static state
Jeedback. i.e., those systems in which the function ¢, in (11), is of the form c(¢, ), and
for which the transformation (12) only involves state variables. We further assume that
dc/0u is nonidentically zero, at least, locally around the equilibrum point.

2.3. Static PWM control for exactly linearizable systems
Let p,_y(\) be an (n — 1)th order Hurwitz polynomial with constant coefficients
PtV = N7U 4+ g, N2 4+ N + a. (15)
Consider now the following auxiliary output function of the system (11):

s(§) = &, + ap_ b+ @k + ardy. (16)

If the condition s = 0 is achieved by means of suitable controls, the restricted motions
of the system (11) satisfy the following asymptotically stable linear time-invariant dynamics:

él =§
£, =4

Erot = — @ fgy — .. .— @mEy — af (1.7)
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The following proposition is a direct consequence of the preceding considerations and
of Theorem 1.

Proposition 14 system of the form (10) is locally asymptotically stabilizable to the
equilibrium point (U, X(U)) if the control action u is specified as a PWM control policy
given by the solution of the following implicit (algebraic) equation

@), w) = = 2, (@, + aa) K7Ox) — WPWM, | D] ah V)|  (18)

i=1 i=1
where ag = 0, and a, = 1.

Proof. Imposing on the auxiliary output function s(£¢), given in (16), the asymptotically
stable discontinuous PWM controlled dynamics defined by (1), one immediately obtains,
in terms of the transformed coordinates £, an implicit nonlinear equation for the required
control input u. Rewriting the obtained expression in original state and input coordinates
the static controller adopts the form (18).

Remark. From the assumption that dc/du is locally nonzero, it follows that (18) can be
explicitly solved for u. We denote, in general, the solution for u in an equation of the form:
ct, u) =z, as u = (¢, 2), ie., c(&, y(&, 7)) = z for some given indeterminate z.
As it can be easily seen from (18), the case of exactly linearizable systems results in
a static PWM controller and, hence the proposed scheme yields discontinuous control ac-
tions. Thus, bang-bang feedback control signals are generated in the closed loop system.

2.4. Dynamical PWM control of nonlinear systems

Consider now the Extended System, associated with system (10) (see [17])

x = F(x, u)

u=v (19)

It is easy to see that if £, = h(x) is a differential primitive element for (10), &, also
qualifies as a differential primitive element for (19). Letting c(§, u) become a new state
variable £,,,, it is follows readily that the GCCF of (19) is written as

él =&
£ =&
En = En+1
_ dc(x, w) dc(x, w)
Ener = ax 2650 =371 du =371
“=’Y(E,En+]) “='Y(E»En+1)

= f(s’ En+1) + g(s9 £n+l)y' (20)
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Hence, if the original system is exactly linearizable by means of state coordinates transfor-
mations and static state feedback, so is the extended system with respect to the new aux-
iliary input ». An equilibrium point of (20) is evidently given by » = 0, u = U, x = X(U).
We denote this equilibrium point by ((X(U), U), 0).

Notice that the state coordinate transformation taking (19) into the linearizable form (20)
is given by

) 3 $(x) R
£ .= = =: &(x, u) @2n
£nri c(®(x), w

which is evidently invertible whenever ®(x) is invertible and dc/du is nonzero. It is easy
to see that £ = 0 is an equilibrium point of (20).
Let p,(v) be an n-th order Hurwitz polynomial with constant coefficients

pN) = N + a N+ + . 22)
If one considers now the following auxiliary output function of the system (20)

o(¢, £n+']) =fp1 T oapd, +o s +oagdy. (23)

Then the condition ¢ = 0 implies that the restricted motions of the system (20) satisfy
the following asymptotically stable linear time-invariant dynamics

él =&
éz =
én = - angn T a2$2 - alSl' (24)

The following proposition is a direct consequence of the preceding considerations and
of Theorem 2.

Proposition 2. A system of the form (10) is locally asymptotically stabilizable to the
equilibrium point (X(U), U), 0) if the control action u is specified as a dynamical PWM
control policy given by the solution of the following explicit first order nonlinear differen-
tial equation with discontinuous right-hand side

f@x, w) + 8@, wy = = Doy + aey) KV ~ (an + @) Kx, u)

i=1

- WPWM, [Z, ah V) + K, u)} 25)

i=1

where ag = 0.
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Proof. As in Proposition 1, above, imposing on the auxiliary output function o(§, £,.,),
given in (23), the asymptotically stable discontinuous PWM controlled dynamics, defined
by (1), one immediately obtains, in terms of the transformed coordinates (¢, £,.), a
nonlinear algebraic equation for the required control input ». Rewriting the obtained static
controller expression in terms of the original state and input coordinates (x, u), the con-
troller adopts the dynamical form of equation (25).

Notice that since g = dc/du is assumed to be nonzero, the controller (25) is locally well
defined and no impasse points needs to be considered (see Fliess and Hassler [20]).
3. An illustrative example
3.1. PWM control of a single link rigid robotic manipulator

Consider the following nonlinear dynamical model of a single link robotic manipulator
(Khalil [21]):

X =X

—%sinx, ——kMx2+Mll7u 26)

X

where x, is the link angular position, x, is the angular velocity and u represents the ap-
plied torque. The mass M is assumed to be concentrated at the tip of the manipulator. The
constant k is the viscous damping coefficient.

It is desired to synthesize, both, a static and a dynamical PWM feedback control policy
which drives the angular position of the system to a constant desired angular position xy,.

Static PWM Controller Design

Let £, = x; — x4 It is easy to see that &, qualifies as a differential primitive element
for (26) and that to obtain the FGCCF of (26) it simply requires the use of the following
(trivial) state coordinate transformation : &, = x; — xyy, & = x5

é1=$2

. . k 1
£ = —%Sm(’él + x4 — 57 &+ iz 27

Let s(¢) = & + a;¢, with a; > 0, be an auxiliary output function for system (27).
Notice that if s(£) is stabilized to zero, the constrained dynamics evolves according to
dt¢/dt = — a\& (or: dxj/dt = — aj(x; — x3)) thus achieving the desired regulation task.
Imposing on the auxiliary output function s(£) the asymptotically stable dynamics of the
PWM controlled system (1) one obtains the following static PWM controller
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u = ML? [_lel + % -a - alj &+ %Sin(& + x40 — WPWM (&, + 0151)}

(28)
which, in original coordinates is rewritten as
2 k
u = ML°< —aa|(x; — x;) + V4T a X, +
£sin () — WPWM,Ix; + a(r — x10)] 29)

L

Simulations were run for the above PWM controlled manipulator (26), (29), with the
following parameters: M = 1 [Kg], L = 1.0 [m], k = 0, x;; = 4 [rad], g = 9.8 [m/s?].
The auxiliary output function was synthesized with @, = 1.25 [s~!]. The static PWM con-
troller parameters were chosen as: a = 4 [s™!'], W = 1.0 [rad/s], T = 0.2 [s], p = 0.2
[s/rad]. Figure 3 depicts the state trajectories of the controlled system clearly showing
convergence to the desired angular position. Figure 4 shows the evolutions of the aux-
iliary output function, of the PWM control signal, constituting (29) and of the duty ratio
function 7(s(#)). Figure 5 shows a magnified view of a portion of the discontinuous (PWM)
applied torque input signal u, as generated by (29), and of the PWM signal.

x;(t) [rad]

X2(t) [rad/s]

Figure 3. Angular position and angular velocity of static PWM controlled robotic manipulator.
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. v =PWM,[ s(t) ]
s(t)
time [s]

_E'JF - = T e

0 1 2 3

Figure 4. Duty ratio function trajectory, PWM control signal and auxiliary output function trajectory for static
PWM controlled robotic manipulator.

10.
u(t) [N-m]

v =PWM[ s(t) ]

rrroTNr

T . 1
0.5 1 1.5 time [s] 2

o

Figure 5. Discontinuous control input torque signal (magnified view of only a portion) and PWM control signal
for static PWM controlled robotic manipulator.
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Dynamical PWM Controller Design

Consider now the extended system of (26)

.X-,'l =x2

. g . k 1

Xy = — Ssinx; - —x + — u

2 LY M7t oML

u=v. (30)

The resulting FGCCF of the extended system is obtained as

é1=$2

£2=$3

i — L b con (b + 0d — S8y + —isy (31)
3 7 & 1 1 IYALNYF)

with £, = x; — x0, & = X3, &5 = —(g/L) sin x; — (kIMyx, + [V(ML?)] u.

Let the auxiliary output function o(g) be defined as a(§) = &3 + at, + a1, with
a, and a; positive constants, chosen in the standard second order system form, with damp-
ing factor ¢ and natural frequency w,: a, = 2¢{w, and a; = w?>. Notice that if o(£) is
stabilized to zero, the constrained dynamics evolves in accordance to the asymptotically
stable second order dynamics: df,/dt = £,; db,/dt = — 2¢w, £, — w? &, thus, achieving
the desired control task: £, = x, = 0 and £, = x; — x; — 0. Imposing on o(£) the same
asymptotically stable dynamics of the PWM controlled system (1) one obtains the follow-
ing static PWM controller for the extended system

v = ML? I:— [a + —1% + 2¢w, | &3 — Qw,a + w?,) £ — aw?,&l +
£ £ cos () + x1) — WPWM(Es + 250,y + o) } (32)

which, in original coordinates, is rewritten as a dynamical PWM controller of the form:

d=ML2—a+—k+2§w" —ﬁsinxl——lf-xz — -u
L M MI?
—Qtw,a + wf,) X3 —-aw?,(xl - X1 + %x?_ cos (x;)
(33)

. k 1
—WPWM, | — %sm X — Exz + ;lzz-u + 28wk + WA (X — X12)
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Simulations were run for the dynamically PWM controlled manipulator (26, 33) with
the same physical parameter values as before. The auxiliary output function o was syn-
thesized such that the corresponding characteristic polynomial of the linearized system is
p(s) = §* + 2fw,s + w2, with ¢ = 0.8 and w, = 2.0 [rad/s]. The static PWM controller
parameters were chosen in the same manner as in the previous example. Figure 6 depicts
the state trajectories of the controlled system clearly showing convergence to the desired
angular position and to zero angular velocity. Figure 7 shows the evolution of the auxiliary
output function ¢ of the PWM control signal, constituting (33), and of the duty ratio func-
tion 7(a(r)). Figure 8 shows the substantially smoothed out (chattering-free) applied torque
input signal u, as generated by the dynamical PWM controller (33).

4. Conclusions

A general stabilizing design procedure, based on dynamical PWM feedback control policies
has been presented for nonlinear systems describing some linearizable mechanical systems.
A stabilizing discontinuous static controller of the PWM type is proposed for an elemen-
tary scalar system. Based on this simple result, a static PWM controller design can be
obtained, for general high order nonlinear systems, by the zeroing of a suitably chosen
auxiliary scalar output function. Zeroing of such an auxiliary output function induces an
asymptotically stable motion for the constrained dynamics characterized by a linear time-
invariant system with eigenvalues placeable at will. The results are easily implemented
on a dynamical extension of the original nonlinear system which now results in a dynamical
PWM feedback controller. In the dynamical controller case, the discontinuities, associated

x(t) [rad]

21
1]
x5(1) {rad/s]
0l — .
| A | e
0 2 4 B time [s] B

Figure 6 Angular position and angular velocity of dynamical PWM controlled robotic manipulator.
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1 [

T(t)

v = PWM, [a(2)]

time [s]

=
2 &l

Figure 7. Duty ratio function trajectory, PWM control signal and auxiliary output function trajectory for dynamical

PWM controlled robotic manipulator.

10,
u(t) [N-m]
5]
Jd
I
!
-5
4
: time [s]
_1Of' e e e e |
0 2 4 6 8 10

Figure 8 Chattering free control input torque signal for dynamical PWM controlled robotic manipulator.

to the PWM regulator, take place on the one-dimensional state space of the dynamical con-
troller and not in the state space of the system. The resulting integrated control actions

are, thus, continuous with substantially reduced (smoothed out) chattering.
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In order to establish the salient stability features of the actual closed loop PWM con-
trolled system, no need arises to resort to average controlled system considerations, nor
high sampling frequency assumptions. As a matter of fact, the sampling frequency plays
no crucial role in the stabilization features of the system, aside from the verification of
a simple algebraic condition. New applications areas, such as nonlinear chemical process
control, nonlinear electromechanical systems control etc., in which PWM control was not
traditionally feasible can now benefit from the inherent robustness and high performance
characteristics of this class of discontinuous control strategies.
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