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PULSE-FREQUENCY-MODULATION
CONTROL OF NONLINEAR
SYSTEMS®

H. Sira-Ramirez!

Abstract. The design of stabilizing Pulse-Frequency-Modulated (PFM) control-
lers is addressed, in all generality, for the case of nonlinear single-input single-
output analytic systems. A dynamical PFM control strategy is developed, in full
detail, on the basis of an elementary scalar PFM controlled system result. An Ilus-
trative design example is provided.
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1. Introduction

Pulse-Frequency-Modulated (PFM) feedback control strategies have been
relatively little studied in the second half of this century. The main reference in
this area is constituted by the work of Skoog and Blankenship (1970) where
many early references can be found. Early works are all centered around the
case of linear time-invariant systems. To our knowledge, no further extensions
of these works, to the nonlinear case, were pursued later on.

In this article, we present a general design method for synthesizing dynami-
cal PFM feedback control laws stabilizing to a constant equilibrium point any
minimum phase single-input single-output nonlinear system. By means of dy-
namical discontinuous feedback, we effectively circumvent the chattering prob-
lem associated with the bang-bang type of discontinuities associated with PFM
control inputs. The dynamical PFM controller design is accomplished by first
proposing a static PFM controller on the corresponding Normal Canonical
Form of a generalized version of the extended system (Nijmeijer and Van der
Schaft, 1990). In contradistinction to the extended system, which uses only one
integrator before the input, the Generalized Extended System is obtained by join-
ing to the original system input a string of integrators of length equal to the
dimension of the zero dynamics of the original input-output system.

Section 2 presents a fundamental result on the PFM control of an elemen-
tary scalar dynamical system. A full PFM controller design procedure, for
higher order nonlinear plants, is based on this elementary result. Section 2 also
introduces the general version of the extended system and discusses some of
its properties. The Normal Canonical Form of the proposed generalized ex-
tended system is intimately related to Fliess’ Generalized Observability Canoni-
cal Form (see Fliess, 1988; Conte et al., 1988). Section 3 develops a dynamical
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PFM control design scheme for nonlinear minimum-phase systems. Section 4
presents an application example of chemical process control. It should be em-
phasized that the control of chemical processes represents an area in which
discontinuous feedback control policies have not been traditionally used. The
conclusions are collected in Sec. 5.

2. Some Fundamental Results

2.1 PFM control of a scalar system Consider the scalar PFM controlled
dynamical system, in which the constants Py Py Py and W, are all strictly posi-
tive quantities.
s = -Wy,
sgn s (¢ for t,<t<t,+tls@)IT[s(t
= PEM, 5 (s) = [FE1C) p <t <ty +TlsE)ITIs )]
0 for t,+7lsG)ITIs@)]I<t <ty +Ts(t)]

1 for |s(®)]> 1

ls()] = !
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Tin + _pg—p3 ATinax = Tinin] (s(t) - _1 )
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for L. <|s(t)] <
Py P,
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p

E=0,1,2 2 tyy =t +Tls(t)]

where it is assumed that p, < p, < p_. The t,’s represent irregularly spaced
sampling instants, determined by the sampled values of the duty cycle function,
denoted here by T'[s(t,)]. The duty cycle function, T [s(¢)], takes values on the
closed interval [Ty;n, Tmax), and it varies linearly with respect to s(¢) in the
region |s|< 1/p,. The duty cycle, or sampling period, saturates to Ty, for
large values of s, and remains fixed at the constant lower bound T, for small
values of s. At each sampling instant, ¢,, the value of the width of the sign-
modulated, unit amplitude, control pulse is determined by the sampled value of
the duty ratio function, represented by 7[s(f;)]. In general, the duty cycle and
the duty ratio functions may be quite independent of each other. The function
“sgn” stands for the signum function

+1 if s>0,
sgn(s)=< 0 if s =0,
-1 if s<0.
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The condition p, < p, < p, indicates that the pulse width, 7, is saturated to
the value of the duty cycle T as long as the value of the duty cycle is itself
saturated to T« (see Fig. 1). When the state, s, of the scalar system is de-
creased, in absolute value, below the boundary value 1/ p,, the duty cycle, T,
starts also decreasing, in a linear fashion with respect to s, while the pulse
width temporarily continues to be saturated to the same valuesladopted by 7. If
the state s further decreases and reaches the interval [-1/ Py 1/ p1] (notice
that 1/p, is intermediate between 1/p, and 1/ p,), the pulse w1dth also starts
decreasing linearly with respect to s. W%len the state s is finally confined to the
band [-1/p,, 1/p,], the duty cycle (sampling period) reaches its minimum
value T,,. In this region, the duty ratio still continues to linearly decrease
towards zero, even if the duty cycle is already saturated to its minimum value
Tmin-

The following proposition establishes a sufficient condition for the asymp-
totic stability to zero of the PFM controlled system (2.1).

Proposition 2.1. The PFM controlled system (2.1) is asymptotically stable
to s =0, if

0 < pW ey < 2. (2.2)

Proof.  Due to the piecewise constant nature of the control inputs and the
linearity of the continuous system, it suffices to study the stability of the
discretized version of (2.1) at the sampling instants. An exact discretization of
the PFM controlled system (2.1) thus yields

s(ty +T) = s(tp) - Wsgnls(ty)]tls(t,) 1T [s(2,)]. (2.3)
Suppose the initial condition s(¢;) is chosen deep into the region |s |
> 1/p,. The evolution of the sampled values of s(t) obey, according to (2.1)

S(ty +T) =s(ty) -~ Wl for s(t,) > O} (2.4)

s +T) =s(tp)+ Wl for s(t,)<0 .

Hence, given an arbitrary initial condition s(¢,) for s, it is obvious from (2.4)
that the condition: 0 < p,WT,,,, < 2 is sufficient to ensure, that the value of
s(t,) will be eventually found within the bounded region | s | <1/p,. This is
due to the fact that the controlled increments taken by s(¢,), in the con51dered

7[s] T(s]
14 — - Tmuf )
) L S 7-:min ' ¢ S
_ 1 1 __1. 1
Py Py P3 Py

Fig. 1. Duty ratio and duty cycle functions for PFM actuator.
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region 1/ p, <|s|>1/p,, are of width WT and, therefore, the condition:
WThax < 27 p, also guarantees that WT. < 2/p,. It follows that s(¢;) can-
not “jump” over the band | s | < 1/p,, and hence, s(t,) will land on this region
for sufficiently large k. Two possibilities arise then: either s(¢;) is found in the
“band” 1/p, <|s(t;) | <1/p,, or s(t,) satisfies | s(t,) | < 1/p,. Suppose first
that: 1/p, <|s(t;)|<1/p,, for some sufficiently large k. In this region, the
value of |'s(t,)| can only further decrease, as it is easily seen from 2.1). In-
deed, the increments: As(¢;) = s(ty,;) — s(t;), that the variable s may take in
the region 1/p, <|s|<1/p,, satisy: WTain < | As(t;) | < WThax . Since, by
assumption, meax < 2/p,, then one has: WTyin < | As(tp) | < Wl < 2/p,
< 2| s(ty) |. It follows that | s(¢,) | decreases, and that the controlled evolution
of s(t;) will reach the region: | s(t;) | < 1/p,. In this last region, the sampled
values of s, in accordance to (2.1), evolve, satisfying

s(ty +T) =s(tp)~ plWTminsgn[s(tk)] | s(t2) |
= (1 - p1WTmin)s(tk)a (25)

which is asymptotically stable to zero, if and only if: 0 < p WT, < 2. T his last
condition is evidently equivalent to W7y, < 2/p,. Notice, however, that from
the assumptions about the parameters in (2.1): WTyn < WTha < 2/p,
<2/p, ie, the proposed condition (2.2) implies the asymptotical stability re-
quirement for (2.5). The result follows.

2.2 The generalized extended system Consider the analytical »-dimen-
sional state variable representation of a relative degree r single-input single-
output system

x = F(x, u)} (2.6)

y = h(x)
One defines a Generalized Extended System of (2.6), as the 2z —r dimen-
sional system obtained by placing a chain of # - r integrators before the origi-

nal system input #, and feeding the resulting system by an external auxiliary
input signal v, i.e.,

% = F(x, x4.1)

‘;‘n+1 = Xn+2
J.Cn+2 = Xp43
2.7)
Xop_y1 = Xon_y
Kooy = 0
y = h(x)

The extended system, as defined in Nijmeijer and Van der Schaft (1990), only
requires placing a single integrator before the input #, regardless of the value.
of the relative degree of the system.
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The following state coordinate transformation takes the 2z — » dimensional
system (2.7) into Normal Canonical form (see Isidori, 1989):

& m

Q(x’ Xntls Xn+20 **7s x2n—-r) = ¢(x‘\)

h(x)
h(x)
h (r)(x xn+l)
= R (2.8)

h(n-l)(x Xntly Xne2r **°s x2n—r)
n+1(x)

¢2n—r(x)

where

E=(G b by 8) = 6 8D,
n= (¢n+1’ T ¢2n—r)'

The components of n are set to be independent of the first # coordinate
components comprising the vector &. It should be obvious that if the n’s, in
(2.8), are chosen in this manner, they are also independent of the new set of
extra state coordinates §_, -+, £ , and the transformation (2.8) is full rank.

The normal canonical form of system (2.7) is, therefore, given by

5.1 =&
& =¢
E = . (2.9)
£ =& n )
f = q )
y=§

In order to be able to solve, even if in a local sense, for the auxiliary control
input » on any relation involving the function c(§ n, v), it is assumed that
dc/dv # 0 in the region of interest. This is equivalent to avoiding the regions
where impasse points may exist for the traditional definition of the state of a
dynamical controller, derived on the basis of (2.9) (see Fliess and Hasler, 1990,
for related details).

3. Dynamical PFM Control of Nonlinear Systems

Let p(A) be an (n—1)th order Hurwitz polynomial with constant coeffi-
cients

pPAY ="y g, (AP 4k ap + 0 (3.1
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Consider now the following auxiliary output function of the system (2.6):
s@) =& +a, b ot @, +al, (3.2)

If the condition s = 0 is achieved by means of suitable controls, the re-
stricted motions of the generalized extended system (2.7) satisfy the following
asymptotically stable linear time-invariant dynamics:

éq:gz

52 =% . (3.3)

Euot = —Gy1bp — - @26, ~ @

The following proposition is a direct consequence of the preceding consider-
ations and of Proposition 2.1.

Proposition 3.1. A minimum phase nonlinear system of the form (2.6) is
locally asymptotically stable to an equilibrium point (%, x, y) = (U, X(U), 0) if
the control action # is specified as a dynamical PFM control policy given, with
slight abuse of notation, by the solution of the following implicit, time-varying,
nonlinear discontinuous differential equation:

C((p(x), u, d» Ty u(ﬂ—f))

r . n . 5
=Y a; W)~ Ya h i, o, D)
] -1
i= i=r+l

_WPFM, 1| 3 a:hV(x) + 3 aih(x, u, i, -, w7 )|, (3.4)

i=1 i=r+1

where a, = 0,and a, = 1.

Proof.  Imposing on the auxiliary output function s(£), given in (3.2), the as-
ymptotically stable discontinuous PFM controlled dynamics defined by (2.1),
one immediately obtains an implicit PFM static controller for v, in terms of the
transformed state variables. In original state and input coordinates, the control-
ler adopts the form (3.4).

Notice that one cannot, in general, assume that a global state variable repre-
sentation exists for the dynamics of the implicit controller given by (3.4). As it
is now known from the differential algebraic approach to system analysis, state
variable representations are only locally possible, in general (see the outstand-
ing work of Fliess (1990), and the references therein).

4. An Application Example

4.1 Example (A Dynamical PFM Control Approach for Regulating the Con-
centration in an Exothermic Continuously Stirred Tank Reactor).

Consider the following nonlinear dynamical controlled model of an exo-
thermic reaction occurring inside a CSTR (see Parrish and Bosilow, 1986),
where the control objective is to regulate the outlet concentration through
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manipulation of the water jacket temperature:

% = E-(co —x1)~ax1exp( _ )
V X9

, 4.1

-xlexp(—-l)-)——hﬁ(xz—u) S

. F al
=—(Ty - =
. V( 0%+ ¢ X9 Ve,

»

y=x-T

where x; represents the product concentration. The state variable x, repre-
sents the reactor temperature. The control variable # is the water jacket tem-
perature. F is the reactor throughput in Ib/hr, ¢, is the inlet flow concentration
in Ib/Ib, Ty, is the inlet flow temperature measured in deg.R, ¢, is the material
heat capacity in BTU/1Ib.R while V and L are, respectively, the reactor holdup
(in 1b.) and the heat of the reaction (in BTU/Ib.). The constant % is the heat
transfer parameter (in BTU/hr.R), b is the activation constant (in deg.R) and a
is the pre-exponential factor in hr~!. A constant temperature 7 is to be stably
maintained to control indirectly the product concentration x; to its constant
equilibrium value Xj.
A stable constant equilibrium point for this system is then given by

. _Co_ )
1+V/Faexp(-b/T)

_ o SF o alV _ coexp(-b/T)
u=UD) =T == o= D) == g Raexp(ob/ T)

t2=T; x=X(T)=
4.2)

We next summarize the design procedure leading to a dynamical stabilizing
PFM controller for system (4.2), based on the extended model. As it is easily
verified, the relative degree of the system (4.1) is equal to one, and hence, the
dimension of the zero dynamics is also one.

Extended system model of CSTR.

% = —E—-(co - %) - axlexp< —-b-)
|4 X9

1 =Ew(To—xl)+ﬁlix1exp(——IL>——L(xz—x3) . (4.3)
|4 Cp X2 Vcl’

i.rg =7

y=%-T

State coordinate transformation to normal canonical form for the ex-
tended system.

51 = X9 — T
F al. b h
£ = T/-(To = x2)+—zp-x1 exp( —;;) “T,c;(xz - x3)¢, (4.4)

n=x3
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¥ = ﬁprD(zliT){fz ‘TI’}(TO -T —51)+—I7?;(51 +T - TI)}

al
(4.5)
Xy = él +T
X3 =1
Normal canonical form of the extended system.
& =5
. _ alL b _ S V.
52‘c,,exp( .§1+T){ o (;+T) (”F”
b
X € T, -T -
Xp( §1+T> F (§1+T)2 )( (° % 4.6
S ernl (£ s
i=o
y=¢
Auxiliary output function.
s=&,+a&; a>0. 4.7)

Restricted asymptotically stable motions of the controlled dynamics.

£ = -a&. (4.8)
Static PFM controller for the extended system.
p= . _géexp(__b ) F, _ip.exp(-bﬁ)f.
h ¢y E+T )|V al E+T )V

v b N &

.x(1+ F aexp( §1+T ) F (§1+T)2 )
&-Fr—rog)s Lo +T- }
X(z e 51>+ch(;+ n))

+<§—+T/h7—al>§2—WPFM,TS(i)]} (4.9)

Asymptotically stable zero dynamics.

P Y sexo| b
= V<1+Faexp< T))

CpT _ alV ¢oexp(- -b/T)
[" 7+ 2501y h 1+ V/Faexp(- b/T)} o)
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Dynamical PFM controller in original state and input coordinates.

_Ye, J(F _h _ abL b\ x4 F
=L L _n__ 40 R g Lt -
“ h {( vV i Ve, s exp( x5 )x% al) V( 0~ ¥2)
+£lix1exp<——b )——h (xz—u)}—ﬂl’ﬁexp(——ll-)
Cp X2 Ve, Cp Xy
X (‘5‘(6’0 - 1) - ax exp( = _xé )) - WPFM, rs(x, u)]} Aty
2
F F
s(x, u) = T/-To -aqT - (7+—I7}CI;-— al>x2
+£L-x1exp(——b)+-—h u
Cp L2 Ve,

Simulations were performed for a dynamical PFM controller CSTR charac-
terized by the following parameters (Parrish and Bosilow, 1986):

F = 2000 [Ib/hr); ¢ = 0.50 [Ib/Ib]; V' = 2400 [Ib.];
a=708x10" [hr'']; b =15080 [deg.R]; T, = 5320 [deg.R];
L =600 [BTU/Ib.]; ¢p = 0.75 [BTU/Ib.R];  h = 15000 [BTU/hr.R].

For such values of the parameters, the equilibrium point (4.2) of the system
results in

%y =T =600 [deg.R]; # = U(T) =107.679 [deg.R]; X\ (T') = 0.246 [Ib/Ib].

The PFM controller parameters were chosen as: @ =8, W =50, T
=8x 107 [hr], Tin =2x 107 [hr], p, = 15, p, = 10, p, = 40. Figure 2 por-
trays the time response of the dynamical PFM controlled state variables x; and
x5, the chattering-free (smoothed) continuous control input trajectory #(¢) and
the evolution of the auxiliary output function s(x, ).

5. Conclusions

A general stabilizing design procedure, based on dynamical PFM feedback
control policies, has been presented for minimum phase nonlinear single-input
single-output systems. Such a controller is obtained on the basis of zeroing an
auxiliary output function, defined in terms of the normal canonical variables of
the Generalized Extended system. The dynamical controller results are based on
elementary considerations concerning the asymptotic stabilization of such a
scalar auxiliary output function by means of a simple PFM feedback controller
of the ON-OFF-ON type. Zeroing of the auxiliary output function induces an
asymptotically stable motion of the constrained dynamics, characterized by a
linear time-invariant system with eigenvalues placeable at will. The
discontinuities, generated by the PFM controller, take place in the state space
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Fig. 2. Dynamical PFM controlled state variables, chattering-free control
input trajectory and auxiliary output function for CSTR example.

of the dynamical controller, and not in the state space of the system. The result-
ing integrated control actions are, thus, continuous with substantially reduced
(smoothed out) chattering.

Within the proposed approach, no need arises to resort to average con-
trolled system considerations, nor high sampling frequency assumptions, in or-
der to establish the salient stability features of the actual closed loop PFM con-
trolled system. Such approximation schemes have been customarily exercised
in, both the analysis and the design methods available for discontinuously con-
trolled systems. New applications areas, such as nonlinear chemical process
control, nonlinear electromechanical systems control etc., in which PFM con-
trol was not traditionally feasible, can now benefit from the inherent robustness
and high performance characteristics of this class of discontinuous control
strategies. '

The obtained results may be extended to nonlinear multi-input systems.
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