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Abstract. This article proposes the use of a dynamically generated pulse-width-modulation (PWM) control
scheme, defined on the basis of the zeroing of a suitable stabilizing input-dependent manifold which represents
a known smooth fecdback regulation scheme already available for the given nonlinear plant. The proposed
control scheme constitutes a means of robustifying, via discontinuous feedback control of PWM type, any
model-based smooth feedback control policy previously designed for the stabilization of the given nonlinear
system. The approach naturally produces a redundant smoothed discontinuous fecdback scheme of the PWM
type, with several advantageous properties regarding insensitivity to external perturbation signals and to
modelling errors, as inherited from the underlying PWM scheme. The scheme is also shown to be robust with
respect to sudden failure of the smooth portion of the proposed fecdback loop.
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Redudantno upravljanje nelinearnih regulacijskih sistemov s PSM

regulacijo

Povzetek. V prispevku je predlagana uporaba regulatorja z dinami€no generiranim pulznoSirinsko moduliranim
(P3M) izhodom, ki temelji na upravljivi, asimptotsko stabilni mnogoterosti dolofeni z obstojeto
povratnozanno nclinearno progo. Predlagana regulacijska shema je dopolnitev zvezne, nelinearne regulirane
proge, ki izbolj§a robustnost celega sistema. Ta podvojitev daje vet prednosti glede obtutljivosti na zunanje
motnje in na nemodelirano dinamiko reguliranega sistema. Predlagana shema zagotavlja stabilnost sistema tudi

v primeru nenadnega izpada zvezne povratne zanke.

Klju¢ne besede: nelinearni sistemi, pulzno $irinsko modulirane regulacije

1 Introduction

In recent times, the use of the differential algebraic ap-
proach (Sec Fliess, 1990) in the design, and analysis,
of discontinuous feedback control policies, for nonlin-
ear systems, has been shown to result in several ad-
vantageous properties of the closed loop dynamics and
the involved controller. Fist of all, a unified approach
has clearly emerged for the design of stabilizing dis-
continuous feedback strategies which includes: sliding
modes, pulse-width- modulation and pulse-frequency-
modulation (PFM) control of nonlinear systems (See
Sira-Ramirez, 1992c). The prevailing characteristic of
this unified approach is the use of dynamical discontinu-
ous controllers providing the system with smoothed (i.e.,
continuous, as opossed to bang-bang) inputs. The ori-
ginal idea of using differential algebra in sliding mode
control is due to Fliess and Massager (1990, 1991) and
later developed by Messager (1992) for the linear sys-
tems case. Based on these works, Sira-Ramirez (1991,
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1992a, 1993a) proposed a rather significant departure
from traditional discontinuous feedback control design
schemes by proposing input-dependent stabilizing sur-
faces. The use of such input- dependent stabilizing sur-
faces was shown to yield dynamical discontinuous fecd-
back policies, with the effective elimination of bang-
bang inputs and the associated chattering responses (Sira-
Ramfrez, 1992c). The possibilities of using discontin-
uous feedback control policies, such as sliding mode
control, pulse-width-modulation, and pulse-frequency-
modulation based strategies in non traditional application
areas, such as chemical processes and mechanical sys-
tems, is also one of the developments that immediately
emerged from this new viewpoint (see Sira-Ramirez,
1992b, 19924).

In this article we propose the use of a redundant
dynamical PWM control strategy based on an input-
dependent stabilizing manifold directly suggested by a
model-based designed smooth nonlinear feedback con-
trol law, assumed to ideally stabilize the nonlinear system
according to a preselected stabilization criterion (optimal
performance, pole placement, exact linearization, etc.).
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Such a stabilizing surface coordinate prescription may
be interpreted as a feedback control implementation er-
ror which needs to be zeroed. Thus, any deviation of the
implemented input signal, from the required value, gen-
erated by the smooth state fecdback control law, yields
an error which immediately triggers a PWM based fecd-
back control correction signal which forcefully imposes
the designed feedback control law. The activation of the
resulting dynamical PWM fecdback controller mecha-
nism, here proposed, complements the original feedback
scheme in a redundant fashion. This feature results in
the possibilities of tolerating sudden failures in the main
smooth designed feedback loop. Feedback implementa-
tion error signals are frequently caused by the presence of
independent perturabtion input signals to the actuator, by
feedback designs carried out under unknown modelling
errors and, also, because of sensor failures. The bene-
fits of our proposed dynamical PWM feedback control
scheme are: 1) enhanced robustness for the actual oper-
ation of the originally designed smooth fecdback control
law, 2) feedback correction based on smoothed discon-
tinuous feedback control actions 3) redundancy, in the
form of a dynamical PWM fecdback law, of the origi-
nally designed smooth fecdback control scheme and 4)
robustness with respect to a class of sudden feedback
signal failures.

Section 2 presents the general feedback control
scheme based on utilizing the designed smooth feed-
back control law as an input-dependent stabilizing scalar
function which is to be zeroed by means of a PWM
based control strategy. In this section we derive and
analyze some of the advantageous features of such an
approach. Section 3 is devoted to an application exam-
ple drawn from the chemical process control area. Sim-
ulations studies which clearly portray the performance
of the proposed controller under fecdback signal failures
are also included. Section 4 contains the conclusions and
suggestions for further research,

2 Main results

2.1 A dynamical PWM controller based on
prescribed smooth feedback control law

Consider a nonlinear n-dimensional single input smooth
system of the form:

&= f(z,w) M

Suppose, furthermore, that a smooth feedback controller
has been designed which locally stabilizes the trajectories
of the control system (2.1) to a desirable constant equi-
librium point X (), dependent upon a constant value of
the input signal U. ie., f(X(U),U) = 0. We assume,
without any loss of generality that U is nonzero. The
stabilizing feedback control law is assumed to be explic-
itly given by:

u = —k(z) @
In other words, the closed loop system:
&= f(x,—k(z)) 3

is assumed to locally exhibit desirable asymptotic sta-
bility features towards the equilibrium point. In equi-
librium, the value of the feedback signal —k(X(U))
is compatible with the equilibrium value for u, ie.
=-kX{))#0.
Suppose now that an auxiliary input-dependent func-
tion of the form:

s(z,u)=u+k(z) 4

is synthesized, and that the condition s(z,u) = 0 is pro-
posed as an input-dependent stabilizing surface on which
the following discontinuous dynamics of the PWM type
is imposed:

§(z,u)y=—~W PWM;[s(z,u)]; W >0 ()
where:

sign{s(z,u)]; for t <t <
te + Tls(x(ts), uteDIT
PWM, [s(z,u)] =

0 for i+ rls(z(ts), ute)))T
<t<tp+T
k=0,1,2,.. ; tr+T =trs ©6)
with:
e for |s(z, w)] 2 1/8
Tlee,wi= { Bls@,w| forlse,wl<1/8 O

and W being a sufficiently large, strictly positive, con-
stant quantity.

In Sira-Ramirez (1992b), the trajectories of the closed
loop system (5)-(7) have becn shown to be asymptoti-
cally stable to s(zx,u) = 0, if, and only if, the following
condition:

WpT < 2 8)

is satisfied. The appendix, however, presents a different
proof of this result.

Ideally speaking, under stabilization to zero of the
scalar function s(z,u), one has: u = —k(x) which is
assumed to be a desirable stabilizing fecdback law. The
next step is concerned with computation of the discon-
tinuous feedback control control law, of the PWM type,
that accomplishes the asymptotic zeroing of the auxiliary
output function s(z, u).

Replacing (4) into (5) leads to the following dynam-
ical PWM controller for the nonlinear system:

i [2’5?2] f@, )= W PWM, [u+k@)]  ©)

Equation (9) represents a time-varying nonlinear first
order differential equation for the control input signal
u, with a discontinuous right hand side. The additional
complication incurred in building such a dynamical dis-
continuous feedback controller is supersecded by the sev-
eral advantages it bestows on the closed loop features of
the confrolled system.
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A block diagram of the feedback controller (9) in
shown in figure 1. A straightforward integration of the
above expression (9) allows for the reinterpretation of
the controller in terms of a redundant “hybrid” controlier
comprising the original feedback law (2) implemented
in parallel to an integrated (i.e. smoothed) discontinu-
ous feedback signal, of the PWM type, triggered by the
incipient values of the feedback error signal u + k(z).
Indeed, integration of (9) yields:

“_'UF el
# [ b fpode Or -

L S
- [ (3% f<x,u)|<

Figure 1. Dynamical PWM controller enforcing a designed
smooth feedback control law.

t
u== [ [Z5 o), uon+
0
+ W PWM, [u(0) + k(z(0))}|do + u(0) =

t

= —k@(t) - / W PWM, [u(e) + k(z(0))}do +

0
+ [u(0) + k(x(0))) =

t
= —k(z(t)) - W / PWM, [u(0) + k(z(0))}do +
0
+ 5(z(0), u(0))

A block diagram depicting this reinterpretation of the
controller (9) in shown in figure 2.

By virtue of the above developments, we finally
rewrite the dynamical controller (9) as:

u=v— k()

& = —W PWM, [u + k(z)] (10)

2.2 Some properties of the proposed dynamical
PWM controller

The dynamical controller (10) exhibits several advanta-
geous properties which are summarized below:

1)The discontinuities associated to the underlying
PWM signals, are relegated to the first order time deriva-
tive of the control input signal u. Hence, the result-

’ — k(x) }-
Figure 2. Reinterpretation of dynamical PWM controller en-
forcing a designed smooth fecdback control law: u = —k(z).

ing controller is, indeed, continuous. Bang-bang in-
put signals, otherwise characteristic of PWM control
schemes (sec Sira-Ramfrez, 1989a), are thus effectively
suppressed by the dynamic nature of the proposed con-
troller (sec also Sira-Ramfrez, 1992c).

2)Suppose that at certain time ¢ = 77, the smooth por-
tion of the feedback loop, fecding the signal component
—k(z) to the control input signal u, fails for an indefinite
period of time (see figure 3). Assume, furthermore, that
at the failure time 7% the discontinuous portion of the
controller was currently exhibiting a stable behaviour on
s(z, u) = 0 (i.e., assume that, ideally, s(zT}), u(T})) =0
). Suppose also that the system’s state was already sta-
bilized at its equilibrium value z = X (U) and, hence,
w(Ty) = —k(X(U)) = U. The feedback control law
being enforced at any time ¢ > Ty, after the feedback
failure, safisfies:

t
u=v=—-W /PWM, [u(o) + k(z(o)))do (11)
Ty

ie.,
() = 4= —W PWM,[a(t) + k(z(t))]

Tl
T =t

12

v

Figure 3. A feedback signal failure in the smooth portion of
the redundant controller.

It follows that the vatue of u(t) is instantancously set
to zero immediately after 7. It easily follows from (11)
and (12) that u evolves, for t > T, in such a fashion
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that the feedback error signal: s(z, u) = u+k(z) is being
constantly diminished in absolute value. The remain-
ing, discontinuous, part of the failed controller locally
forces the motions of the controlled system towards the
input-dependent manifold: s(z,u) = u + k(z) = 0, thus
asymptotically recovering the original feedback control
law u = —k(z).

Indeed, from (12) and the form of the PWM con-
troller (6), it follows that either u remains constant, dur-
ing the (OFF) intervals: #; + r[s(t))T <t < 41 + 7T,
or, else, it evolves with constant slope, of value W, dur-
ing the (ON) intervals: ¢; <t < t; + 7[s(tx))T. On
these last intersampling intervals, the control u exhibits
a constant slope which is opposite in sign to that of the
error signal s(z, u) i.e., if the sampled value of s(z, u), at
time ti, is positive (u > —k(z)), then u decreases with
constant slopc —W. Otherwise, if the sampled value
of s(z,u), at time tg, is negative, (v < —k(z)) then u
increases with constant slope +W. It follows that, if in
absolute value, the rate of change of —k(z), with respect
to time, which is given by:

dk(z) _ Ok(x)
Ta T T TEW

, is slower that the rate of change of the generated u
(+W or —W), then the control u asymptotically ap-
proaches, in a pulsed manner, the required condition:
u = —k(z) .i.e., the control u “catches up” with the de-
signed fecdback value --k(z). Thus, for a sufficiently
large value of the constant W, the surviving portion of
the feedback control input signal approaches, in a pulsed
manner, the right feedback law values.

3)PWM controllers are known to be highly insensi-
tive to external perturbation signals and to modelling er-
rors (Sec Sira-Ramfrez, 1389b). Thus, the above scheme
always imposes, in a robust fashion, the “right feedback
control law”. Changes in state, due to external perturba-
tion inputs to the system, result in corresponding changes
in the feedback control law —k(z), both, at the smooth
and discontinuous portions of the proposed controtler.
If the designed smooth control law is known to enjoy
robustness properties, with respect to a certain class of
perturbation input signals, the proposed controller simply
inherits those properties and results in a forceful impo-
sition of the designed smooth control law.

3 An application example

3.1 Concentration control in an exothermic
continuously stirred tank reactor

Consider the following nonlinear dynamical controlled
model of an exothermic reaction occuring inside a CSTR
(see Parrish and Bosilow, 1986), where the control objec-
tive is to regulate the outlet concentration through regula-

tion, to a constant value, of the water jacket tempcrature:

. _F _x
i) = V(co — 1) — azie 2

F al,  _» h
iy= V(To ~z)+ ?p"lle 2 - -V'c“p'(xz —wy (13

y=z,-T

Where z; represents the product concentration. The state
variable z, represents the reactor temperature. The con-
trol variable u is the water jacket temperature. F' is the
reactor throughput in lb/hr, ¢y is the inlet flow concen-
tration in 1b/lb, T is the inlet flow temperature measured
in deg.R, c, is the material heat capacity in BTU/IbR
while V and L are, respectively, the reactor holdup (in
1b.) and the heat of the reaction (in BTU/b). The con-
stant h is the heat transfer parameter (in BTU/rR), b
is the activation constant (in deg R) and a is the pre-
exponential factor in hr=!, A constant temperature T is
to be stably maintained to indirectly control the product
concentration z, to its constant equilibrium valve X;.

A stable constant equilibrium point for this system is
then given by:

Co
=T 1}1=X1(T)=_ ot e
1+—F»ae“r

F
w=UT)=T- g’};(To—T)— (14)

allV coe'r"ir_
h 1+%ae"’7'

3.2 A smooth linearizing controller design for the
CSTR system

It is easy to verify that the following smooth state fecd-
back controller results in an exact input-output lineariza-
tion of the given system (13):

u= [l+%p~(F— )\V)] z) — %V-zle'fi-i-

AVe, I Fep
(-5

where A is a positive quantity regulating the exponen-
tial decay in the imposed linear asymptotically stable
dynamics for the output y:

(15)

==Xy (16)
It may be verified, after some tedious but straightfor-
ward computations, that the closed loop system (13), (15)
exhibits a globally asymptotically stable zero dynamics
around the equilibrium point (14) (see also Sira-Ramfrez,
1993b). Hence, the ggstem is globally minimum phase
and its output may be controlled to zero by exact can-
cellation of the nonlinearities.
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3.3 Redundant dynamical sliding mode controller
design for the CSTR system

According to the results of section 2 we choose as the
scalar stabilizing relation the input-dependent auxiliary
output function:

s(z,uy=u— [1.,.%([‘_,\‘/)] )4

an
LV - (AT Fep
h T h RO

By imposing the PWM controlled dynamics (5) on the
scalar quantity s(z, u), one obtains the following dynam-
ical discontinuous feedback controller:

u=v+[1+2F - AV) 25 -

= == 1€ i

alV _b ANWe, ' Fe
. ag)
o= —W PWM, |u— [1+f(F-,\V)] 23+

alV.  _ AVe, T F
+ = me —( h" ’fp-To)]

3.4 Simulations

Simulations were performed for the system (13) with the
dynamical PWM controller (18). The numerical values
adopted for the system parameters were taken from Par-
rish and Basilow, (1986):
F=20001bMhr; ¢ =0501bb; V =24001b;
a=708 x 10"° hr=! ; b =15080 degR ;
To = 5320 deg.R; L =600 BTU/b. ;
¢, = 0.75 BTU/Ib.R ; h = 15000 BTUMLR;

For such values of the parameters, the equilibrium
point (14) of the system results in:

2y =T =600 degR ;
u=U(T)=107.679 degR ;
X1 (T) =0.246 1b/1b.

The values of the dynamical PWM controller parameters,
W and A, were set to be:

W=30; X\=2hr!

Figure 4 shows the state responses of the dynami-
cally PWM controlled system asymptotically converg-
ing to their corresponding equilibrium points. Figure
5 depicts the continuous trajectory of the dynamically
generated control input signal u, along with the time
evolution of the input-dependent stabilizing surface co-
ordinate function s(z,u). The value of s(z,u) is seen

0.3
xi(t]
0.2} .
[ ] 2 4 6
689
xa(t]
8,
569
8 2 4 6

Figure 4. State trajectory responses of dynamically PWM con-
trolled system.

to asymptotically converge to zero. Figure 6 shows the
evolution of the duty ratio function 7 and of the un-
derlying discontinuous (PWM) signal adscribed to the
dynamical controller.
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- ult)
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40, .
(] 3 4 6

Figure 5. Continuous trajectory of the Dynamical PWM gener-
ated control input input signal and the corresponding evolution
of the stabilizing surface coordinate fauntion, s(z, u).

3
22 '
46
11 2 i ]

Figure 6. Evolution of the duty ratio function of the dynami-
cally PWM controller and the associated PWM signal.

In order to check the robustness of the proposed dy-
namical PWM control scheme, with respect to sudden
failures in the originally designed smooth feedback loop,
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we also simulated the performance of the system with the
following dynamical discontinuous feedback controller:

u=v+n{[1+%f—(F—/\V)]x2—

19

o= —W PWM, [u - [1+ %’(F—,\V)] 22+

alV  _» AVe, ' Fe
+—hff:cle - (—— hP - — 7—”ng)]

where the variable «, simulating the feedback loop fail-
ure, was allowed to be:

ool
10

with Ty = 3.5.

Figures 7 shows the state responses of the dynami-
cally PWM controlled system subject to the sudden fail-
ure of the form (20). The PWM controller is seen (o
re-stabilize the state trajectorics to their corresponding
equilibrium points. Figure 8 depicts the corresponding
trajectory of the failed control input, showing, at failure
time T, the instantaneous resetting to the value zero
of the control input signal and its subsequent asymp-
totic recovery to its pre-failure equilibrium value, thus
achieving asymptotic stabilization of the system. Notice
that the surviving portion of the controller still generates
a continuous fecdback control signal in spite of its un-
derlying (PWM) discontinuous nature. In figure 8 it is
also shown the bchaviour of the input dependent stabi-
lizing scalar function s(z, u) before and after the smooth
feedback loop signal failure. Figure 9 depicts the cor-
responding trajectories of the duty ratio function and of
the underlying PWM signal beng internally generated by
the (failed) dynamical discontinuous feedback controller
arrangement.

fort < Ty

fort > Ty (20

4 Conclusion

A robust redundant feedback control scheme, based on
dynamical PWM control, has been proposed for nonlin-
ear systems for which a smooth feedback control policy
is already known. The proposed scheme utilizes the de-
signed smooth feedback control policy as a scalar stabi-
lizing condition and proceeds to forcefully impose this
desirable relation by means of a discontinuous feedback
policy of the PWM type. The resulting dynamical con-
troller is then reinterpreted in terms of two subsystems.
One being the smooth, static, portion of -the controller
represented by the originally designed stabilizing fecd-
back control law, and the second one being a parallel

04
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Figure 7. State trajectory responses of dynamically PWM con-

trolled system subject to a sudden failure in the smooth portion
of the feedback controller.
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Figure 8. Trajectories of the control input signal u and of the
corresponding stabilizing surface coordinate function s(z, u)
when PWM controlled system is subject to a sudden feedback
loop failure.
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Figure 9. Behavior of the duty ratio function and of the as-
sociated PWM signal when the system is subject to a sudden
feddback loop failure.
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regulator based on dynamically generated (i.e smoothed)
discontinuous PWM control actions. The scheme was
shown to be advantageous in several respects, among
which, we found local robustness with respect to sudden
failures in the static portion of the proposed feedback
controller. An application example, drawn from a non-
traditional application area for PWM control, was also
presented. The basic features of the proposed redundant
dynamical discontinuous feedback control scheme were
illustrated by means of simulations.

Dynamical PWM control of nonlincar systems has
been extended, in a unifying manner, to sampled slid-
ing modes and to pulse-frequency-modulation based
schemes (sec Sira- Ramirez, 1992c). Such unified treat-
ment involves a systematic use of generalized canoni-
cal forms of nonlincar systems as proposed by Fliess
(1990). The redundant feedback controllers, here de-
scribed, can also be extended, in a rather similar manner,
to the above mentioned classes of discontinuous feed-
back control policies. Extension to multi-input systems
should have little or no difficulties, provided dccoupled
PWM controlled motions of the form (5) are imposed on
the several input-dependent stabilizing manifolds repre-
senting every component of the designed multivariable
smooth feedback controller.
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Appendix

In this appendix we give a proof, based on Lyapunov
stability arguments, of the fact that the scalar dynami-
cal PWM controlled system (5) - (7) is asymptotically
stable to zero if and only if the condition (8) is valid.
A different proof of this result appears in Sira-Ramirez
(1992b)

Proposition

The dynamical PWM controlled scalar system:

=-W PWM,[s]; W >0 (21)

where:

sign[s) ; for # <i<
ik + T[S(tk)]T
PWM,[s] =
0; for tp +7[s@)IT <
t<ty+T

k=0,1,2,.. ; e+ T =tra (22)

with

/B
1/8

is asymptotically stable to zero if, and only if, the con-
dition: SWT < 2, is satisfied.

r[s]={ 1 for |s| > 23)

Bls| for |s| <

Proof

Suppose the initial state of (21) is chosen such that the
condition: |s| > 1/8 is valid. Consider then the follow-
ing Lyapunov function candidate for the system (21),
22):

V(s)=s? (24)

(notice that, in this case 7[s(tx)] = 1, according to (23)).
The time derivative of the function V' (s) results then
in:

V(s)=-W]|s| <0 25)



i.e., the scalar controlled function s decreases, in absolute
value, independently of the numerical values of W, T', 3,
and of the initial value for s, as long as the condition:
|s| > 1/8 remains valid. Since the right hand side of the
controlled system in decided precisely at the sampling
times ¢, the value of s may enter a limit cycle type of
behaviour if, and only if, the step by which s(t) decreases
(f it is positive), or increases (if it is negative) during
the sampling interval, is such that s(tx) = —s(tg+1), with
values of a satisfying: |s(tx)| > 1/B8. The condition
|s] > 1/8 may then be violated in finite time, inde-
pendently of the inital value of s, if and only if such a
limit cycle behaviour does not exist. It is easy to sec,
by straightforward exact discretization of (21), that, for
[s(tx)} > 1/8, one has:

s(tr+1) = s(te) — WTsign[s(te)]
Thus:
[$(tka1) — ste)| = WT
i.e., the limit cycle condition prevails if and only if:

ls(tre1) = 8@l = [25ke1)] = [25()| =
2ste) = WT > 2/8

Therefore, for any given initial value of s, in the
region |s| > 1/4, a limit cycle behaviour of the sam-
pled values of s does not exist, and hence the condition:
|s(te)] > 1/ may always be violated in finite time, if,
and only if, the following condition is valid:

BWT <2

Suppose now that |s| < 1/3. The time derivative of
the Lyapunov function candidate (24) now results in:

—Wis]; for 4 <t<
t)c +T[S(tk)]T
Vi(s) =
0 for tp+7[s)IT <

t<ty+T

e+ T =ty (26)
and, therefore, during the intersampling interval, the
scalar value of the state s, of the controlled system, de-
creases (if it is initially positive) or increases (if it is
initially negative) during an interval of time equals to:
7{s(tx)]T, and then procecds to remain constant, at the
attained value, during the rest of the intersampling in-
terval. The corresponding discrete time evolution of the
state, in the region: |s| < 1/, is obtained from (21),
(22) by means of exact discretization as:

s(tk+1) s(te) — WB|s(te)|T'signls(t)] =
5(@x) — BWTs(ty) = (1 — BWT)s(tx)

The trajectories of the sampled system are asymptot-
ically stable to zero, if, and only if, the eigenvalues of

the characteristic polynomial of the above linear discrete-
time system are, in absolute value, strictly smaller than
1. Hence, once the system state is found in the region
|s] < 1/8, the controlled trajectory of s converges to
zero if, and only if:

[1-8WT|< 1

which, due to the positivity of 3, W and T, is equivalent
to the announced result.
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