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SUMMARY

In this article an adaptive discontinuous dynamical feedback strategy is presented for asymptotic output
stabilization problems defined on nonlinear controlled systems exhibiting linear parametric uncertainty.
A dynamical feedback controller, ideally achieving output stabilization via exact linearization, is obtained
by means of output differentiation and sliding mode control ideas. The adaptive version of the dynamical
variable structure controller is then obtainable via standard, direct, overparametrized adaptive control
techniques available for linearizable systems through static state feedback. An illustrative example from
the chemical process control area, including simulations, is provided.
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1. INTRODUCTION

Asymptotic output stabilization for parametric uncertain nonlinear systems constitutes a most
important problem in control systems design. Contributions, from the differential geometric
viewpoint, were given by Isidori and Sastry,' Kanellakopoulos et al.,** Taylor et al.,*
Campion and Bastin,” Teel et al.® and many others. For enlightening details, and general
results, the reader is referred to the books by Sastry and Bodson,” and Narendra and
Annaswamy. ® Research trends are contained in the collection of lectures edited by Kokotovic. 9
For other contributions to the area, the reader is referred to the reprint book edited by
Narendra et al.'°

In this article, using the results of Reference 1, an adaptive asymptotic output stabilization
scheme is proposed for dynamical sliding-mode-based exactly linearizing controllers, obtained
by repeated output differentiation. The scheme is restricted to the class of nonlinear systems
which exhibit linear parameter dependence in their defining vector fields. Overparametrization®
and availability of the dynamical controller state variables are the key issues that allow
application of direct adaptive control techniques, available for statically input—output
linearizable systems, to dynamical controlled systems. A chemical process control application
example is presented.
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In Section 2 of this paper, the adaptive dynamical variable structure control stabilization
scheme is presented (see Sira-Ramirez'"'? for the non-adaptive case). Section 3 deals with a
chemical process control example including computer simulations. Concluding remarks, and
proposals for further research, are collected in Section 4.

2. ADAPTIVE OUTPUT STABILIZATION OF DYNAMICALLY LINEARIZABLE
NONLINEAR SYSTEMS

2.1. Linearization by discontinuous dynamical feedback control

Consider the following n-dimensional state-space realization of a single-input single-output
nonlinear system:

x=f(x,0)+ g(x,0)u
y=nh(x,0)

where f: R"*?— R" and g: R"*?— R" are, for fixed § in R”, C* vector fields globally
defined on R", and A: R"*? — R is a C* function. It is assumed that the system has strong
relative degree r < n (Isidori'?). The parameter vector § is assumed to be constant and f, g
and h are linear functions of 6.

The ith time derivative of the output function may be written, in terms of the state vector
x and the control input u, as:

¥y =bi(x,0) fori<r with bo(x,0) = h(x,0)
YD =bi(x,0,u,u®, .., 0 )+ a(x,)u"" forrgign

1

)

In particular, the nth time derivative of y may be obtained as:

Y = b, 0, u,u®, ., a0+ a(x, 0u"" (3)
We assume that the ‘observability’ matrix, constituted by the (row vector) gradients, with
respect to x, of ¥V (i=0,1,...,n— 1) is full rank n, i.e.,

) (n-1) @) (n)
rankg(f‘yj—3""y )~=rank§£y"x L”’y'ﬁ)=n “@)

dax ax
This assumption implies that (1) can be described by an nth order input—output scalar
differential equation (see Conte et al.,* Diop'®). The implicit function theorem allows one to
locally solve for x, from (2), in terms of u and its time derivatives, as well as in terms of the
derivatives of y. In other words, there exist a set of n independent functions ¢;, implicitly
defined by (2), such that:

xi= 8y, YD,y u®, L u Yy = 1L2,000 Q)
In general, one /ocally obtains a representation of (1) in the form:
YD =c(y, y®, .,y 0,0, u,u®, L u"T) 6)

Definition 2.1 (Fliess'®)

Let the output y be identically zero for an indefinite amount of time. The zero dynamics,
associated with (1), is defined as:

c(0,0,u,u®, .., u"""?M=0 o
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We assume that (7) is locally asymptotically stable to a constant operating point, ¥ = U. In
such a case we say (1) is locally minimum phase around the equilibrium point of interest.

Proposition 2.2

Let u'? denote u,u™,...,u'”, and let u be a strictly positive scalar quantity. Then, the
following dynamical discontinuous feedback controller:

r-1 n-1 " . .
a(x,0u""" = ~ba(x,0,u" ") = 3 aibi(x,0)— 2, ajlbi(x,0,u """y + a(x, 0)ut "]
( i=1 j=r
-u sgn[Z} aibi-1(x,0)+ 2, ajlbj-1(x,0,ut/ """ )+ a(x,())u‘j""')]} san=1 (8)
i=1 J=r+1

drives the output of system (1) to satisfy, in finite time, a linearized dynamics of the form:

y(n-l)+an_ly("‘2)+ ...+al_y=0 (9)

Proof. Define the quantity: s= y™ D + ay_1y""? + - + a1y, and let s(0) stand for the
value of s at time 7 = 0. One easily verifies that ds/df = — u sgn(s). Hence the condition s=0
is reached in finite time (given by: T=pu""|s(0)|) and it is indefinitely sustained in a sliding
mode fashion.!’ O

The scalar time-varying differential equation (8) defines a dynamical feedback controller
which can accomplish exponential output stabilization to zero, in a manner entirely prescribed
by the set of chosen design coefficients [a1, o, ..., an-1}, provided that the system is minimum
phase. Typically, one chooses the as to obtain an exponentially asymptotically stable dynamics
for (9). The set of input derivatives u” ="~ 1, in (8), naturally qualifies as a state vector, for
the dynamical controller, which is available for measurement. If the quantity a(x,8) is
bounded away from zero then no impasse points need be considered for the dynamical system
representing the linearizing controller (see Fliess and Hasler '®). This assumption is equivalent
to the strong relative degree assumption adopted in Reference 1.

Remark 2.3

Notice that the discontinuities associated to the underlying variable structure control
strategy, imposed on the auxiliary function s, directly affect the (n — r)th derivative of the
input signal u. The output of the dynamical controller (8) is, thus, a smoothed signal. This
feature thus provides a chattering-free, yet robust, control input to the regulated plant.
Evidently, a simpler static sliding mode controller may also be directly obtained from (2), by
stopping the differentiation process when i = r. However, our main objective is to propose a
feedback regulation scheme which retains the smoothness, and robustness, inherent in (8) for
those cases in which the vector of system parameters, 8, is unknown.

2.2, An adaptive regulation scheme for dynamical sliding-mode linearizable systems

In this section we propose, for the class of systems described by (1), a chattering-free
adaptive variable structure control linearization scheme for asymptotic output stabilization
problems. We should stress that even though, traditionally, the sliding mode control technique
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has been specially devised to efficiently regulate systems with parametric and external
ungertainty, the class of systems where the switching surface does not depend on system
parameters may be quite limited. Dynamical (non-adaptive) sliding mode control for nonlinear
systems, as proposed in Reference 12 and described above, exhibits the advantageous
possibility of smoothed (i.e., chattering-free) control input signals and state responses.
However, dynamical sliding modes are naturally created on suitable input-dependent sliding
surfaces which generally depend, in a crucial manner, upon the system parameters. These
parameters may, in turn, be imprecisely known, or, still worse, completely unknown. This fact
makes the sliding surface poorly defined and switchings cannot take place, as precisely
required, on the switching manifold. We address this class of discontinuous control problems
from the perspective of an adaptive control viewpoint.

The effectiveness of the dynamical feedback controller (8) is thus highly dependent upon
perfect knowledge of the involved system parameters 8. it is clear that exact cancellation of
nonlinearities would not be generally possible if the dynamical controller (8) was computed
using estimated values of such parameters, which are known to be in error with respect to their
true values. In this section we assume that the components of 8 are constant, but otherwise
unknown, and present an adaptive approach to dynamical discontinuous feedback
linearization. We denote the estimated values of the parameter vector as 6.

Remark 2.4

It may be verified that the linearity of f, g and h with respect to 6 implies that the quantities
bi(x,0) (i=0,1,...,n—1) and a(x,0), in (2), are multilinear functions of the components 6;
of 0. Hence, if one defines a large dimensional vector © containing, as individual components,
all possible ordered homogeneous multinomial expressions in the fis of degree smaller than n,
then the expressions for bi(i=0,1,...,n—1) and a are indeed linear functions of ©. This
observation and the involved process, known as ‘overparametrization’,S allows us to extend
recently proposed adaptive control techniques,' developed for systems linearizable by static
feedback, to systems linearizable by dynamical feedback (see Fliess, 19 and also Reference 11).

g
Consider the time derivative of the quantity s, defined in the proof of Proposition 2.1:
$= 2]: aibi(x,9) +J_Z"}r ajlbj(x, 0,uV """y 4 a(x,0)u""] (10)
Let §, the estimate of the sliding surface co-ordinate function, be defined as:
§= ‘Zr;l abi-1(x,8) +j—$+l ajlbj—1(x, 0, ut/ ="y + a(x, B)u ") (n

We explicitly assume that the originally specified sliding surface is ‘robust’ with respect to
small parametric perturbations, in the sense that motions constrained to its estimated value §
do not result in unstable constrained dynamics. This assumption means that small parametric
perturbations do not result in large discrepancies between the actual and the perturbed sliding
surface co-ordinate functions. If the imprecision of system parameters is so large that
estimated values of the sliding surface do not, somehow, guarantee stability of the
corresponding ideal sliding dynamics, then, surely, the method here proposed is not applicable.

Define also the following dynamical discontinuous feedback controller, based on estimates
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of the system parameters:

. r=1 n-1 . R i
a(x’é)“("—-’) = —bn(x, é’ u[n—r— ”) - Z aibi(x’é) - Z a,-[b,-(x, éa uli=r- ”) + a(x,0)u“")]
i=1 j=r

i=1 Jj=r+1

—n szn{Z’J aib:-u(x,9)+,i ojlbj-1(x,8,u ="y 4 a(x,é)u”"“’]} (12)

Then, if a dynamical controller of the form (12) is used to regulate the evolution of ds/dt, the
expression (10) is found to be, after some manipulations:

r—1
§=—psgné+ 2, ailbi(x,8) - bi(x, )]
i=1

n-1 . . i R .
+ 2 oylbi(x, 0,ul ="y — bk, 6,ul " ) 4 [a(x,6) ~ a(x,)]uV ")

j=r

+ ba(x, 0,0~y — by(x,8,u" """ ) + [a(x,8) — a(x,8)]u""" (13)

By virtue of Remark 2.4, expression (13) can be written as a linear function of the parameter
estimation error © - 0 := ¢

S=—psgn§+ O -0 W, u" " y= —psgn s+ ¢ W(x,ul""") (14)

where W is the nonlinear state-dependent regressor vector, dependent also upon the ‘state’ of
the dynamical controller, represented by # and the derivatives of u up to order n —~r -1, and
w7 is as given by (12). Thus, the regressor vector W is actually of the form
W(x,6,u”-7-1) but we prefer to use the simpler form: W(x,u"~"1). The following
assumption is quite standard in adaptive control schemes.

Assumption 2.5

We assume that the regressor vector W(x,u!" ") is well defined and it is a bounded
function for bounded values of all its arguments.

It is easy to see that the switching surface co-ordinate estimation error s — § is given by:

s—8§= 2, ailbi—1(x,8) = bi-1(x,0)) + 2 ajlbj-1(x,0,ul/=7=3)
i=1 j

J=r+1
—bjo1(x,8,u """y + [a(x,0) - a(x,6)u V) (15)
= (9 - é)TWS(X, u["_" 1]) = ¢TWs(x’ u[”"‘ l])

where Wi(x,u" ="~ 1) is a switching surface regressor vector which does not depend on the
parameter estimates. The following assumption is not very restrictive.

Assumption 2.6

We assume that the switching surface regressor vector Ws(x, u!"~7=1y has bounded first-
order partial derivatives, with respect to all its arguments, for bounded values of its arguments.

Lemma 2.7

Suppose ¢ and its time derivative ¢ are bounded functions. Assume also that ¥ and all its
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time derivatives up to order n — r are bounded. Then, the time derivative of the estimate of

the sliding surface co-ordinate function, d§/d¢ is also bounded. Hence, § is uniformly
continuous.

Proof. From (14), the assumption in the lemma about the boundedness of ¢, and
Assumption 2.5, it follows that § is bounded. Using now (15), and the previous
Assumption 2.6, it readily follows from the fact that ¢ is assumed to be bounded, that ds/d¢
is also bounded, provided the control input # and its involved time derivatives are bounded.
It is well known that a sufficient condition for a function to be uniformly continuous in time

is that its time derivative be bounded (see Reference 20, p. 125). Hence § is uniformly
continuous. The lemma is established. O

Let K be a known positive definite matrix. Consider the Lyapunov function given by:
V(s,¢)=15+1¢"Ko (16)
The time derivative of such a Lyapunov function is obtained, after use of (14) and (15), as:

V(s,$)=5§+ ¢ Kp=—pssgns+ o T[sW(x,u" ™) + K¢)
= —p|$|+ 0T [W(x,u" "N+ ¢TW(x, w7 = w Wi, 1~ V) sign § + K9]

Choosing the variations of the parameter adaptation error according to the law:

b= —O = — K ([§+ o Wi(x, u "~ M W(x,u" ="y — uWi(x,u" "~ ) sign §) (17)
one, hence, obtains: "
V(s,¢)= —puSsgné=—p|§| <0 (18)

The Lyapunov function (16) decreases along the trajectories of the controlled system and,
therefore, both, the sliding surface co-ordinate s and the estimation error ¢ are bounded. The
boundedness of s and ¢ implies, by integration of both sides of (18), that the estimated sliding
surface co-ordinate function § is absolutely integrable. Notice, moreover, that, from the
definition of s, a bounded s implies bounded values for y and for all its time derivatives, up
to order n — 1. This, together with the minimum phase assumption means, by virtue of the full
rank condition in (4), that the state vector x is bounded. This in turn implies, by Assumptions
2.5 and 2.6, that the regressor vector W is bounded and that the partial derivatives of the
switching regressor vector W; are also bounded. Since ¢ is bounded, it then follows by virtue
of Lemma 2.7, in conjunction with the demonstrated boundedness of ¢, that ds/d¢, the time
derivative of §, is bounded and, hence, that § is, indeed, uniformly continuous. Evidently, this
result implies that the absolute value of § is also uniformly continuous. The following
‘Lyapunov-like’ lemma, based on Barbalat’s lemma (see Slotine and Li,?° pp. 125-127)
guarantees then the convergence of | §| to zero.

Lemma 2.8%°

If the scalar function V(s, ¢) is lower bounded, and its first-order time derivative V(s, ¢)
is negative semidefinite and uniformly continuous in time, then V(s, ¢) tends to zero as time
goes to infinity.

Evidently, the Lyapunov function (16) satisfies all the assumptions of Lemma 2.8 and,
therefore, | §| asymptotically approaches zero as time goes to infinity.
Let | §| asymptotically approach zero. Then, the linearized dynamics (9) will not be exactly
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satisfied and, instead, the following output dynamics, obtained from (15) and the definition
of s, will be valid, when §=0:

YD 4y D h by =W u 1 19)

The choice of the as in s is such that the system (19) is exponentially stable when the right-
hand side is set to zero. It follows, by a well-known bounded input—bounded output theorem
for linear systems (see Brockett,?! p. 196), that system (19) is then uniformly bounded
input—bounded output. This means that y, and all its time derivatives, are uniformly bounded,
whenever the scalar input ¢ W;(x, u!"=7=1y is uniformly bounded. Moreover, y and all its
time derivatives approach zero if the bounded scalar input is known to converge to zero, as
t approaches infinity.

Remark 2.9

It follows from (15) and the previous considerations that, if the parameter estimation error
&, converges to zero then the actual value of the surface co-ordinate function s will, indeed,
converge to zero. However, convergence of the estimation error ¢ to zero is very much
attached to a condition of persistency of excitation (see also References 7 and 8). This
condition may be derived, in this case, as follows: Consider that § = 0. Then, one may rewrite
(17) as:

¢=—K "W, u" Hwlx,u"-r"he (20)

i.e. the parameter update law is represented by a time-varying linear differential equation with
solution given by:

o(0) = [exp(—K" SO W(x,u" - MywI(x,ul"-r-1) dt)]¢(0) @n

It is well known that if the regressor vectors are persistently exciting, i.e., if there exist a1,
a» and §, all positive, constant, quantities such that, for all #:
t+6
al> | Weur WG d > al @)
t
then, both, s and ¢ exponentially converge to zero. Condition (22), however cannot be verified
a priori owing to the fact that both regressor vectors W and W, are functions of the state x
of the system, and of the state u!" ="~} of the dynamical feedback controller. O

As it is standard in nonlinear adaptive control theory, it should be stressed that equation (17)
must be regarded as a set of simultaneous, coupled, time-varying (discontinuous) nonlinear
ordinary differential equations in the unknown components of both the parameter estimation
error vector ¢ and the parameter estimate vector 6, i.e., :

b= —K Y[+ TWolx,u" "~ D W(x,ul" =) — yWilx, u"" """ V)sign §)

A 23
&= —K [+ TWo(x,un ") W(x,ul" 1)~ yuW(x, u'" ="~ Nsign §) @3)

Initial conditions for the coupled system (23) are usually arbitrarily chosen for the unknown
components of the composite vector [¢T,0T) 7. The parameter update equations are, hence,
assumed to be solved on line, and their generated solution trajectories immediately delivered
to the dynamical adaptive controller (12).
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3. AN APPLICATION EXAMPLE IN CHEMICAL PROCESS CONTROL

3.1. A continuously stirred tank reactor model**
Consider the following simple nonlinear dynamical model of a controlled CSTR in which
an isothermal, liquid-phase, multicomponent chemical reaction takes place:

)21 = —(1 +Dal)xl +u
)22=D.,1x| —X2—Dazx% (24)
y=x1+x-Y

Where x; represents the normalized (dimensionless) concentration Cp/Cpo of a certain species
P in the reactor, with Cpo being the desired concentration of the species P and Q measured
in mol m™3. The state variable x, represents the normalized concentration Co/Cpo Of the
species Q. The control variable u is defined as the ratio of the per-unit volumetric molar feed
rate of species P, denoted by Npg, and the desired concentration Cpo, i.€., ¥ = Npg/(FCpo)
where F is the volumetric feed rate in m3s~'. The constants D, and D, are respectively
defined as k;V[F and k2 VCpo/F with V being the volume of the reactor, in m?, and k; and
k, are the first-order rate constants, in s~!. Y represents a desired total concentration value.

It is assumed that the species Q is highly acidic while the reactant species R is neutral. In
order to avoid corrosion problems in the downstream equipment, it is desired to regulate the
total concentration x; + x2 to a prescribed set-point value specified by the constant Y. It is
assumed that the control variable u is naturally bounded in the closed interval [0, Umax]
reflecting the physical limits of molar feed rate of the species P.

System (25) is of the form:

X=00/1(x) + 02/2(x) + 03f3(x) + 64 g1 (x)u 25
y=h(x)
with:
Silx) = [:2] W2 (x) = [_;:] 3 filx) = [_Ox%] ; &1(x) = [(])]
hx)=x1+x2-Y
and:

01=1;0,="Day; 03=Dy; 04 =1

It is easy to verify that for the given system (24), the rank of the follqwing 2 by 2 matrix

9_(}’,}'(”)._ 1 1 ]
ax  |-1 -(1+26:x2) 26)

is everywhere equal to 2, except on the line x; = 0. Natural physical considerations lead us to
restricting x> to values greater than zero. Negative values of x, have no physical significance.
A stable constant equilibrium point for this system is given by:

[ /AN o 40:05U
u=U; xl(U)—(l+02),Xz(U) 203[ 1+J:+(1+02):| 27

An input—output representation of system (24) readily follows by elimination of the state
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vector x from the expressions of y and dy/dt:

. PN} B 72 (v vD
Yy = _3,0) 2y—20203[y+ Y—J;_ iyjby +Y)]J£-, iyjroyft Y)
3 3

P SRR
—2Y+20§J(1 U’—“Loyfi Xl) +2u+u (28)
3

The zero dynamics associated to system (24) is obtained from (28) by letting y = y =0, as:

v Ty T W\3
U+ 2(u-Y)—20:0; [Y— J{-lf] \/75-"’ +2603% J(“—’ Z) =0 (29)
93 03 03

It can be verified after tedious but straightforward manipulations that the system is minimum
phase around the physically meaningful equilibrium point of (29), given by the largest solution,
u=U> Y, of the resulting quadratic equilibrium equation. This solution coincides with the
one obtained from (27) under the equilibrium condition: ¥ = X\(U) + X>(U).

3.2. Non-adaptive linearizing sliding mode controller for continuously stirred tank reactor
model

Imposing on the output y of (24) the following linear asymptotically stable dynamics:
yP4ray=0; o1>0 (30)

one readily obtains, using the result of Proposition 2.2 above, the following stabilizing
discontinuous dynamical feedback controller: '

= —(1 = ar)[x1 + X2+ 03x3 — u] — 263x3 + 20205x1 2 — 203x3

—usgn[-x1-x2—03x3+u+ar(xy+ x2- Y)] Gh
The ideal sliding dynamics (30) takes place on the input-dependent sliding surface:
s, u,0)= —x1—x2—0sx3+u+a(xi+ x2—-Y)=0 (32)

The performance of controller (31) is depicted in Figure 1, where the computer-generated
state variable trajectories x;(f) and x:(¢) are shown, along with the non-chattering control
input trajectory u(¢). The evolution of the sliding surface co-ordinate s is shown in Figure 2.

6 4
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1+ ——— e - —— =
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0 0.s 1 ts 2

Figure 1. Time response of states and input variables for non-adaptive dynamical sliding mode controlled continuous
stirred tank reactor example
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Figure 2. Sliding surface co-ordinate function evolution for non-adaptive dynamical sliding mode controlled CSTR

The variable structure controller parameters, used in the computer simulation, were: u =5,
a0 =3,0=Da=1,0:=D,;=1and Y= 3. The state trajectories are seen to converge to their
equilibrium values given, according to (27), by x; =2, x;1 = 1. Unax Was taken as 8.

3. Adaptive sliding mode dynamical linearizing control for continuously stirred tank
reactor model

Owing to lack of parameter knowledge, instead of the exactly linearizing controller (31), one
uses a dynamical variable structure controller, based on estimates of the overparametrization
vector components, given by: ‘

u=-(1-a)lxi+x—u+ égx%] - 2é3x% +264x1x2 — 205x3

—usgn[—xi = x2+u—63x3+ a1 (x1 + x2- Y)) e

where O3, O4 and Os are, respectively, the estimates of 83, 8,03 and 63.
The sliding mode approach would then be based on an estimate of the switching surface
co-ordinate function, given by:

§(xu,0)=—-x1-x2-O3x}+u+ai(xi+x2-Y) (34)

Let ¢; denote the parameter estimation error ©; — ©; (i = 3, 4, 5). Then, the evolution of the
sliding surface co-ordinate function s obeys:

(3 - ar)x3
§=—psgn§+ ¢ W= —psgn+ [psads] | —2x1x2 3%
2x3
Notice that, from (32) and (34) one obtains:
§=5+¢3x3 (36)

Using the results of the previous section, and using a diagonal matrix K in the proposed
update law (17), we obtain a parameter estimation error update law of the form:
by = — é, = —Ki' t[8(x, u, 0) — $3x31 3 — a1)x3 — pux3 sign §(x, u, ©))

ba= —04= — K5 (2[5(x, u, ©) — 3x3] x102 — ux} sign $(x, u, ©)} (37

bs= —Os = — K5 [~ 2[§(x, u, ©) — $3x3] x} — px3 sign §(x, u, ©))

Simulations were run to assess the performance of the adaptive dynamical sliding mode
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controller (33), (34), (37). The state variable trajectories xi(f) and x:(¢) are depicted in
Figure 3, together with the non-chattering control input trajectory u(r). The state trajectories
are seen to converge to their ideal equilibrium values given by x1 =2, X2 = 1. The time
evolutions of the sliding surface co-ordinate function s, and of its estimate §, are shown in
Figure 4. Besides the small discrepancy between the two surface co-ordinates, it is clearly seen
that § converges to zero reasonably fast while the actual sliding surface converges to zero in

B e i e g e
6 U 4
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4t e e —

o " o2 04 Toe o8 1 12 Tia

Figure 3. Time response of states and input variables for adaptive dynamical sliding mode controlled continuous
stirred tank reactor example
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Figure 4. Estimated sliding surface and (actual) sliding surface co-ordinates functions evolution for adaptive
dynamical sliding mode controller case
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Figure 5. Evolution of estimated parameters for adaptive dynamical sliding mode controlled continuous stirred tank
reactor example



194 H. SIRA-RAMIREZ AND M. ZRIBI

a much slower fashion. In Figure 5, the estimated parameters are also shown to converge to
constant values not coinciding with their ‘true’ values. The variable structure controller
parameters and the constants for the adaptation laws were set as: u=35, a1 =3, K1 = 10,
K> =10, K33 =20.

4. CONCLUSIONS

In this paper, adaptive dynamical discontinuous feedback compensators were examined for a
class of parametric uncertain systems linearizable by dynamical sliding mode based strategies.
The results show that whenever the input-dependent sliding surface exhibits an explicit
dependence on the uncertain parameters of the system, an estimate of the switching surface,
which is known to be in error with respect to the exactly linearizing manifold, must be used
for the generation of the controlled switchings. A Lyapunov approach shows that the
estimated trajectory of the sliding surface co-ordinate function is asymptotically driven to zero
by means of the dynamical variable structure control strategy. It should be remarked, however,
that such asymptotic behaviour is not, generally speaking, achieved by means of sliding
motions taken place on the zero level set of the estimated value of the sliding surface. The
parameter estimation error adaptation law is of the discontinuous type, with discontinuities
taking place precisely on the estimated values of the sliding surface co-ordinate function. As
it is quite standard, parameter convergence is achieved to the actual, or nominal, sliding
surface if a modified version of the well-known condition of persistency of excitation is
verified.

The proposed adaptive dynamical sliding mode control approach to stabilization tasks
benefits from the fact that the generated input trajectories, and the associated state and output
responses, are non-chattering. This is due to the smoothing of the discontinuities accomplished
by the integration features imbedded in the dynamical discontinuous feedback controller.

An illustrative chemical process control example was presented along with highly
satisfactory simulation results.
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