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A Dynamical Variable Structure Control Strategy in
Asymptotic Output Tracking Problems

Hebertt Sira-Ramirez

Abstract—In this article a dynamical disconti fecdback strategy
of the sliding mode type is pr d for asymptoti tput tracking
probl in li dynamical sy Fliess’ generalized observabil-

ity canonical form (GOCF) is used in the derivation of the dynamical
variable structure fecdback controller. For a large class of nonlinear

systems, a truly effective thing of the sliding mode controlled
responses is possible, while substantially reducing the chattering for the
control input. For this reason, the technique is especially suitable for the

control of some mechanical and electromechanical systems. An example,
including simulations, is provided.

I. INTRODUCTION

Asymptotic output tracking problems in nonlinear dynamical
systems have been extensively studied in the control systems
literature. Contributions from a differential geometric viewpoint
are summarized in Isidori’s outstanding book [1], where clear
connections are established with the concept of the inverse
system, and the zero dynamics (see also Nijmeijer and Van der
Schaft [2]). Within the same setting, an adaptive control ap-
proach to the output tracking problem has also been explored by
Isidori and Sastry [3].

Recently, differential algebra has been proposed by Prof. M.
Fliess for the study of nonlinear controlled systems (see Fliess
[4] and [5]). Among many other deep contributions, Fliess’
remarkable studies have found, for instance, that the concept of
state only has a local validity. Implicit ordinary differential equa-
tions account for a more general and enlightening setting from
which a unified and far reaching treatment is possible for basic
control theoretic concepts. Within this new viewpoint, naturally
emerging generalized canonical forms for linear and nonlinear
controlled systems are introduced which explicitly exhibit time
derivatives of the control input functions on the state and output
equations [5]. Only in the case of linear systems, elimination of
these input derivatives from the state equations is possible via
control-dependent state coordinate transformations. Kalman’s
original formulation is thus, completely recovered (see [5] and
Diop [6)).

Section II of this article presents the asymiptotic output track-
ing problem from the perspective of dynamical variable structure
feedback control. The proposed control scheme is based on
Fliess’ generalized observability canonical form (GOCF) [4]. The
approach represents a viable feedback alternative exhibiting
attractive features such as robustness and, more importantly,
certain degree of input—output smoothness, dependent upon the
relative degree of the system. The proposed “chattering-free”
features, nontypical of sliding mode controlled behavior, make
the approach especially suitable for controlling some electrome-
chanical devices (see Sira-Ramirez et al. [7]). In Section III, we
present, along with computer simulations, an application exam-
ple that illustrates the advantages of the proposed discontinuous
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dynamical controller for a DC-motor angular velocity tracking
task. The concluding remarks and proposals for further work are
collected in Section IV.

A different approach to dynamically generated sliding regimes
has been presented by Fliess and Messeger in (8] In a
simple-—but important—example, dynamical sliding regimes
were shown to asymptotically stabilize a nonlinear second-order
system which is not stabilizable by any smooth feedback strategy.
Output stabilization problems treated via dynamical discontinu-
ous control have recently been presented by Sira-Ramirez in
[9]-[11] for some aerospace control problems.

11. AsYMPTOTIC OQUTPUT TRACKING VIA DYNAMICAL
VARIABLE STRUCIURE FEEDBACK CONTROL
The following proposition is quite basic in the developments
presented in this section:

Proposition: 1.et p and W represent strictly positive quantities
and let “sgn” stand for the signum function. Then, the scalar
discontinuous system:

@1

globally exhibits a sliding regime on w = 0. Furthcrmore, any
trajectory starting on the initial value w = w(0), at time ¢ = 0,
reaches the condition w = 0 in finite time 7', given by:

Jw(0)]
i )

w= —u(w+ Wsgnw)

T=u"h (1 +

Proof: Immediate upon checking that globally: wdw /dt < 0
for w # 0, which is a well-known condition for sliding mode
existence (see Utkin [12]). The second part follows casily from
the linearity of the two intervening system ‘‘structures.” [ ]

Let o be a strictly positive integer. Consider a nonlinear
dynamical system cxpressed in Fliess' GOCF [4):

=M

M=
(22

Tyt = T

My = c(mou 1, 1)
y=m-

Under rather mild conditions, any analytic nonlinear system,
given in the traditional Kalman state variable representation,
dx/dt = F(x,u), y = hi(x), can be transformed to Fliess' GOCF
by means of a suitable input-dependent state coordinate trans-
formation (see Fliess [13], Conte et al. [14], and also [2, ch. 4]
and references therein). Notice that the integer a in (2.2) is
intimately related to the relative degree r of the system [1] by the
relation: a@ = n — r. Hence, a coincides with the dimension of
the zero dynamics.

Tracking problems in systems which are exactly linearizable by
static state feedback, i.e., those in which a = 0, can be similarly
treated by the techniques presented here simply by considering
the “extended system” proposed by Nijmeijer and Van der
Schaft in [2].

Let yg(t) be a prescribed reference output function, assumed
to be sufficiently smooth. The asymptotic output tracking problem
consists in specifying a dynamical controller, possibly described
by an implicit time-varying scalar ordinary differential equation
with discontinuous right-hand side, which accepts as input func-
tions: 1) the output refercnce signal yg(t), together with a finite
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number of its time derivatives y§(¢) (i = 1,--,n) and 2) the
generalized phase variable coordinates n; (i = 1,--,n), of the given
system, and is capable of producing—as a solution output signal
~—a scalar control input function u, which locally forces the
system output y = 7, to asymptotically converge toward the
desired output reference signal yg(¢).

Define a tracking error function e(¢) as the difference be-
tween the actual system output y(r) and the output reference
signal yp(f):

e(t) = y(t) = yr(t). (2.3)
We then have:

Nty =y~ Osisn— 1 29

e"(t) = @, — yR'(6) = c(muyth,, W) =y, (2.5)

Defining e; = ¢~ " (i = 1,2,---, n), as components of an error
vector e, we may also express the tracking error system (2.4) and
(2.5) in GOCF as:

éy=e;
éy=¢;
(2.6)
Chy=e,
by = c(Ep(l) + e u it o, 1) = y(1)
e =0
with
£r(1) = col (3(1), yR'(1) =, yi V(1))
e =col(e, e, 0,). (2.7)

Suppose that the asymptotic equilibrium point of the con-
trolled tracking crror system (2.6), for some suitable control
input stratcgy, is given by e, = ¢, = --- = ¢, = 0. Hence, under
such an equilibrium condition, i.c., under perfect tracking, the
system exhibits the following “remaining dynamics” or “interse
dynamics”

c(€g(t), u ity 1ty = y§0(1).

For the particular case in which the tracking signal yg(1) is
identically zero, or a given constant, ie., for the case of an
output nulling, or stabilization, task, the expression (2.8) consti-
tutes the so called zero dynamics (see Fliess [15] and also Isidori
et al. [16]). In such a case, the nature of the local stability of (2.8)
around an equilibrium point determines the feasibility of the
stabilizing controller scheme. The system is said to be minimum
phase, around such an cquilibrium point, if the zero dynamics is
asymptotically stable to the particular equilibrium point. It will
be a nonminimum phase if the zero dynamics is unstable [1].
Critical stability cases are usually treated via center manifold
theory (see Appendix B of Isidori’s book [t], or other techniques
such as Lyapunov’s stability theory.

The stability features of (2.8) for reference signals y,(t) which
are bounded with bounded derivatives, y§(1) (i = 1, 2,--,n)
also deterniine, to a large extent, the physical realizability of any
tracking control strategy which asymptotically achieves the per-
fect tracking condition e = (. We assume that the solution u of
(2.8) is defined for all times, and is bounded for all bounded
input functions y.(1) which also exhibit bounded derivatives (sec
[3D.

(2.8)
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Let the set of real coefficients {m, -, m, _,} be such that the
following polynomial, in the complex variable “s,” is Hurwitz:

s m, ,sm T 4 e s +omy. 2.9)

Consider now an auxiliary scalar output variable w, defined in
terms of the output tracking error coordinates ¢; (i = 1,-+, n)
as:

n
G-1) = .
m_ye N = Y m, e
1 i=1

™=

w= with m, , = 1. (2.10)

i

If we impose on the evolution of the auxiliary output variable
w, the discontinuous dynamics considered in (2.1), one obtains,
from (2.6) and (2.10):

n—1

W=¢,+ Y om_e.,
i=t

= —u| ¥ om;_ e, + Wsgn ( i‘,m,»_le,v)]. (2.11)

i=1 i=1

Using (2.5) one obtains the following dynamical feedback
controller in terms of an implicit ordinary differential equation
with discontinuous right-hand side:

c(ép + e u i, ut®)

n-1

=yl _
=Yr Z mi_1€i44
i=1

n n
—u|l ¥ m,_e; + Wsgn ( Y m,-_le,»)]. (2.12)
i=1 i=1

On each one of the regions w > 0, and w < 0, a different
feedback control “structure” is generated by (2.12) and the
corresponding implicit differential equation is to be indepen-
dently solved for the controller u, on the basis of knowledge of
the error vector e and the vector of functions £x(¢). Under the
additional assumption that, locally, dc/du'® is nonzero in (2.12),
then no singularities, of the impasse points type (Fliess and
Hasler [17]) need be considered. Moreover, by virtue of the
implicit function theorem, controller equation (2.12) is then
locally equivalent to an explicit system of first-order discontinuous
differential equations which can be solved on line with no further
difficulties than those involved in, say, a dynamical sliding mode
observer system acting in a closed-loop scheme.

Since w was shown to exhibit a sliding regime on the disconti-
nuity surface w = 0, Filippou’s continuation method (see Filippov
[18)), or, aiternatively, the method of the equivalent control [12],
must be used for defining the idealized solutions of (2.12) on the
switching manifold w = 0. According to the method of the equiv-
alent control, the discontinuous motions on the sliding surface
w = 0 can be described, in an idealized fashion, by the following
invariance conditions: w =0 and dw/dt = 0. The condition:
dw/dt = 0, allows, in turn, the definition of a virtual control
action, known as the equivalent control, which would be responsi-
ble for locally smoothly maintaining the evolution of the track-
ing error system state variables e; on the manifold w = 0, should
the motions precisely started on such a manifold. The resulting
autonomous dynamics for the controlled output tracking error,
ideally constrained to the switching manifold and “regulated” by
the equivalent control, is generally known as the ideal sliding
dynamics. 1t follows from (2.6), (2.10), and the invariance condi-
tions, that such an ideal sliding dynamics is nonredundantly
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given by:
é =e,
€y =e;
(2.13)
n-1
€y =~ E m;_,€&;
i=1

which exhibits an asymptotically stable motion toward the origin
of the error vector coordinates, with eigenvalues uniquely speci-
fied by the prescribed set of constant coefficients {mg, -+, m, _,}.
In particular, the output tracking error function e, = 7, — yg(¢)
asymptotically converges to zero, as desired. Using the condition
dw/dt = 0, on (2.11), with w = 0, it follows that the equivalent
control, denoted by ug,, is defined as the solution of the
implicit time-varying differential equation:

c(£r(t) + e ugd, tipg,, uE))
n—-1
=y~ X lmiy—m,_ym_le; (214)
i=1
withm_, =0.

In view of the stability property imposed on (2.13) and by
virtue of (2.10), when w = 0, the tracking error vector e asymp-
totically converges to zero. The equivalent control is then given
by:

C(fR(t)v UEQ> dEQv"') ug&) =Y;?n)(‘)

i.e., once more we find that the stability properties of the
“inverse dynamics” play a crucial role in the solution of the
tracking problem. In this case, it bears a definite influence in the
rightful definition and existence of the equivalent control func-
tion under perfect tracking conditions.

Remark: Two important advantages can be readily established
about the dynamical variable structure controller represented by
(2.12). The first one is the fact that the output tracking error
function e(t) asymptotically approaches zero with substantially
reduced or smoothed out “chattering.” Notice that n integrators
stand between the tracking error variable e, = e(t) and the
discontinuous control actions regulating the behavior of the
auxiliary output variable w to zero. Therefore, with respect to a
static variable structure controller alternative, based on Isidori’s
normal canonical form approach (see Sira-Ramirez [19] and [20)),
n — r additional integrations contribute to further smooth out
the controlled tracking error signal e(¢). Secondly, and this is
possibly the most important advantage of the approach, a tradi-
tional explicit canonical phase variable representation for the
dynamical controller (2.12) indicates that the control input u is
the outcome of a integrations performed on a nonlinear func-
tion of the discontinuous actions that lead the auxiliary output w
to zero. This implies substantially smoothed control inputs which
do not result in a “bang-bang” behavior for the actuator. [ ]

(2.15)

- III. AN APPLICATION EXAMPLE

The following nonlinear dynamical model of a field controlled
DC-motor is taken from Rugh [21, page 98] ~

. R, K v,
e i sl

. B K

X, = - 7x2 + Tx,u. 3.1
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Where x, represents the armature circuit current, x, is the
angular velocity of the rotating axis. V, is a fixed voltage applied
to the armature circuit, while u is the field winding input
voltage, acting as the control variable. The constants R,, L,,
and K represent, respectively, the resistance, the inductance in
the armature circuit and the torque constant. The parameters J
and B are thc load’s moment of inertia and the associated
viscous damping coefficient.

Suppose v (1) is a known, desired. bounded refetence trajec-
tory for the angular velocity x, considered as the output fune-
tion. One can obtain a GOCF for the dynamics of the tracking
error e = x, — yg(t), by defining a time-varying input dependent
state coordinate transformation of the form:

e, =x; = yp(t) Xy =e, +yp(1)

B

K
€= TRt N = yr(1)

J B
Xy = E[E’z + 7(6‘1 +ye(1)) +)'/R(1)] (3.2)

yielding
¢ =e
)("z +ye(1))

. RIIB B RH
€ = ‘H(l’x el — |54 T

KV, K? 9
+L—ﬂju = T,j(e’ + yp(t)u
u B - I
+; e, + 7(91 +yr(1)) + yr(){ — Fe(t)
e=e|. (3.3)

Notice that v = 0 corresponds to a singularity of the transfor-
mation (3.2) and, hence, stabilization or tracking tasks that imply
polarity reversals in the field winding input voltage must be
treated by different techniques which imply inducing appropri-
ate “jumps,” or discontinuities, in the input variable u or in
some of its time derivatives (sec Fliess ef al. [22] and Abu el Ata
and Fliess [23]).

Since the problem of smoothly transferring the constant oper-
ating angular velocity, yp(t) = (2, to a new constant reference
value, yp(t) = O, eventually entitles the need for a controiled
stable steady-state operation, we first study the stability features
associated to the zero dynamics of system (3.3) when yp(t)is a
nonzero constant of value, say, (). .

The zero dynamics, as defined in Section I1, is easily obtained
from (3.3) as follows:

Ry K oo K 0 34
-—u + - —ut+ =0, ’
L' oL T Tttt G4

The constant equilibrium points u = U of (3.4) are obtained
from the solutions of the following third order algebraic equa-
tion:

(3.5)

One of the possible solutions of (3.5) corresponds to the
singular equilibrium solution u = 0, which is, hence, discarded.
The two other solutions of (3.5) arc given by:

V.K R,BQ?
1+4/1—4 :

—R_Bu + &uz -K¥ut=0
w Q M

U=

) 3 (3.6)

If the discriminant D = V,? — 4R_BQ? is negative, then there
is no real solution to the stabilization problem. If, on the other
hand, D is zero, or positive, then there are two real, positive,
roots for u in (3.5). The stability properties of these equilibria
may be directly determined via approximate lincarization of
3.4).

Linearization of the zero dynamics (3.4) around the equilib-
rium point ¥ = U yields:

!
s+ B—LH(R‘,B = K2UYuy =0 3.7

where u; = u — U represents the incremental field circuit input
voltage. The lincarized zero dynamics (3.7) is cvidently asymptot-
ically stable to zero, provided the constant cquilibrium input
voltage U satistics the condition:

R,B > K*U? 3.8)
which identifics, together with the condition: V,? = 4R, B(}?, the
minimum phase region in the input-output space for the given
system (3.1). The operating equilibrium points, @ and Q*,
associated to the smooth angular velocity transfer mancuver
defined via a suitably proposed tracking problem, must then be
tested via the corresponding values U and U* obtained from
(3.6) against condition (3.8). This will assess the stability of the
corresponding zero dynamics on the involved cquilibria,

Consider the auxiliary output variable w, written now in terms
of the tracking crror velocity and acceleration error variables, as
it was defined in (2.10):

w=¢, + mye,. (3.9

Imposing on w the discontinuous dynamics given in (2.1), a
time-varying differential equation for the dynamical controller is
obtained which synthesizes the control signal u, in terms of the
reference input signal y.(¢), its time derivative dyg(t)/dr and
the tracking error variables e, and e,. Writing, however, the
variable structure dynamical feedback controller in terms of the
original state coordinates x, and x, of the controlled system
(3.1), one obtains

o B* B

u= K, —gz (et my) = pmy x;
K (B R, V,.K K? P
+7 7 + E — K= My fxqu - JT,,M + Exzu

tumyyp(1) + (1 + my)yp(e) + Jp(1)

B K
— ul sign (—7 + m(,),\r2 + ik

—nmgyp(t) "‘}"R(’))]~ (3.109)
Simulation Results

Simulations of a tracking task were performed for a DC-motor
with the following parameter valucs:
R,=70hm; L, ,=120mH; V,=5V;
B =604 X 107% N-m-s/rad; J = 1.06 X 107 Nm-s?/rad;

K=141%10"2 N-m/A.
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A desired output reference trajectory yg(t) was considered
which allowed for a smooth transition from a nominal (equi-
librium) angular velocity €2, to a new chosen operating angular
velocity Q*. Such reference function was set to be:

Qfor0 <t <t
YR = Ve 4 (0 - Q%yexp(=kiP) fort > 1 k>0,
@G.11)

Fig. 1 portrays the time response of the dynamical sliding
mode controlled angular velocity. The dynamical variable struc-
ture controller smoothly leads the angular velocity from (@ = 300
rad/s to a new operating value Q* = 200 rad/s. The parame-
ters of the induced dynamics (2.1) were set as: u = 100, W = 10,
myg = 20. For all practical purposes, perfect tracking was achieved
in this simulation since the obtained plots for yg(¢) and x,(¢)
are indistinguishable. It may be verified that according to the
chosen values of the parameters, the initial and final angular
velocities are located on the minimum phase region of the
system. Time ¢, and the constant k in (3.7) were set, respec-
tively, as ¢, = 0.5 s and k = 3. Fig. 2 portrays the time response
of the armature circuit current for the transition maneuver,
while Fig. 3 shows the corresponding control input voltage
trajectory exhibiting almost no chattering.

IV. CONCLUSION

Dynamical variable structure controllers accomplishing
asymptotic reference output tracking are readily obtainable for
nonlinear systems described in Fliess’ local generalized observabil-
ity canonical form. Such a canonical form naturally leads to a
dynamical sliding mode controller which zeros, in finite time, an
auxiliary output function defined in terms of the tracking error
time derivatives. The resulting ideal sliding dynamics induces an
asymptotic stabilization of the output tracking error function
with eigenvalues totally prescribed at will. The obtained discon-
tinuous controller design exhibits two main advantages, aside
from the well-known robustness properties, which are implicit in
every sliding mode control scheme. These advantages are related
to the possibilities of obtaining a degree of smoothness in the
output error response, as well as reduced chattering in the
synthesized control input signals, in strict accordance with the
relative degree of the given nonlinear dynamical system (i.e.,
effective chattering reduction for, both, the input and the output
signals is entirely feasible, without resorting to the well-known
high-gain amplifier alternative. See Slotine and Li [24]). The
approach, however, requires full state feedback and it entitles
dealing with the complexity of nonlinear time-varying implicit
dynamical controllers, which may not be globally defined. Some
of the associated difficulties include the presence of impasse
points, or the operation of the controller in a region of nonmini-
mum phase characteristics. In such pathological cases, the usual
remedy indicates the use of discontinuities in the control signal.
This prescription has been shown to produce the required desir-
able results, without disturbing side effects (see [22] and {23)).

It should be stressed that using time varying, input-dependent,
sliding surfaces, the discontinuities associated to the proposed
dynamical sliding mode control strategy take place in the state
space of the dynamical controller and not in the state space of the
system itself. Since the vast majority of controllers are nowadays
synthesized by means of electronics hardware, or software, the
fast switchings requirement is much easier to handle. This is to
be compared with the demands of the traditional (static) sliding
mode control techniques whereby the controlled system vari-

Angular velocity response for dynamical sliding mode contzol tracking task
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ables as well as actuator inputs and outputs directly undergo the
(usually disastrous) effects of the generated bang-bang type of
discontinuities. This fact makes possible the application of slid-
ing mode control techniques to areas where they were not
traditionally feasible, such as, chemical process control, bilogical
systems control, and the regulation of mechanical and elec-
tromechanical systems (see also [7]).

In this article a nonlinear DC-motor example, dealing with
smooth controlled transitions of nominal angular velocities to
new constant operating values was presented along with encour-
aging simulation results. As topics for further research, the
dynamical variable structure feedback controller here proposed
could be implemented in an actual DC-motor using nonlinear
analog electronics. Also, a robust controlicr that effectively
handles the uncertainty of system parameters could be devel-
oped. Profitable connections could also be established with the
work of Charlet et al. [25].
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