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On the dynamical sliding mode control of nonlinear systems
HEBERTT SIRA-RAMIREZ*

The consequences of the differential algebraic approach in the sliding mode
control of nonlinear single-input single-output systems are reviewed in tutorial
fashion. Input-dependent sliding surfaces, possibly including time derivatives of
the input signal, are shown to arise naturally from elementary differential
algebraic results pertaining to the Fliess’s Generalized Controller Canonical
Forms of nonlinear systems. This class of switching surfaces generally leads to
chattering-free dynamically synthesized sliding regimes, in which the highest
time derivative of the input signal undergoes all the bang-bang type discon-
tinuities. Examples illustrating the obtained results are also included.

1. Introduction

Sliding mode control of dynamical systems has a long history of theoretical
and practical developments. A rather complete chronological collection of
journal articles and conference presentations has been gathered by Professor S.
V. Emelyanov (1989,1990a), who is one of the founding fathers of the
technique. Extensive surveys, with an enormous wealth of information, have
been presented over the years by Utkin (1977, 1984, 1989). Several books have
also been published on the subject: Emelyanov (1967), Itkis (1976), Biihler
(1986), Utkin (1978, 1992). Contributed volumes by Zinober (1990) and Young
(1993) reveal sliding mode control as an active discipline of research with
enough theoretical maturity. A survey of the numerous industrial and laboratory
applications of sliding regimes around the world is well beyond the scope of this
article. In the following paragraphs we provide a necessarily incomplete over-
view of some of the contributions in sliding mode control for nonlinear
dynamical systems. Many interesting developments in controller robustness,
adaptive regulation, and observer design are not mentioned.

In recent years, the outstanding developments for nonlinear control systems
based on differential geometric ideas (see the books by Isidori 1989, Nijmeijer
and Van der Schaft 1990) have found immediate applications, and extensions, to
sliding mode control, and closely related areas, such as high-gain, pulse-width-
modulation and pulse-frequency modulation. Seminal work on sliding regimes
for nonlinear systems is due to Luk’yanov and Utkin (1981). Starting with the
contributions by Slotine and Sastry (1983) devoted to the field of robotics
automation, the differential geometric approach to nonlinear systems control
was exploited and put in perspective, within the sliding mode control area, by
the independent work of several authors. An important contribution relating
sliding mode systems to high-gain feedback controlled systems from a geometric
standpoint was given by Marino (1985), Bartolini and Zolezzi (1986) presented
interesting developments of sliding mode control as applied to robust lineariza-
tion of nonlinear plants. A full case study of sliding mode control design for a
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nonlinear system was presented by Mathews er al. (1986). The sliding mode
control of nonlinear multivariable systems was addressed by Fernandez and
Hedrick (1987). A quite readable tutorial dealing with multivariable nonlinear
systems was written by DeCarlo et al. (1988). Later, in a series of articles,
Sira-Ramirez (1987, 1989a, 1989b, 1990) contributed some formalizations,
application examples and generalizations, of sliding regimes in nonlinear sys-
tems. More recently, a rather complete picture of the nonlinear multivariable
case has been provided by Kwatny and Kim (1990).

Recent developments in nonlinear systems include the use of differential
algebra for the formulation, understanding, and conceptual solutions of long
standing problems in automatic control. Developments in this area are funda-
mentally due to Professor Fliess (1986, 1988, 1989a, 1989 b, 1989 ¢, 1990 a,
1990 b). Some other pioneering contributions were also independently presented
by Pommaret (1983, 1986). Sliding mode control, and discontinuous feedback
control, in general, have also benefited from this new trend. A seminal
contribution in the use of differential algebraic results to sliding mode control
was given by Fliess and Messager (1990). These results were extended and used
in several case studies by Sira-Ramirez et al. (1992), Sira-Ramirez and Lischin-
sky-Arenas (1991) and by Sira-Ramirez (1992a-1992d). A most interesting
article extending some of the ideas to multivariable linear systems and to the
regulation of non-minimum phase linear systems is that of Fliess and Messager
(1992). Extensions to pulse-width modulation control strategies from this view-
point were also contributed by Sira-Ramirez (1991 a, 1992 e).

This article is an attempt to present, in tutorial fashion, some of the
developments in sliding mode control theory that are a direct consequence of
elementary results in the application of the differential algebraic viewpoint to
control systems theory. It should be pointed out that some of the results
obtained for sliding mode control via the use of differential algebra are closely
related to previous ideas presented by Emelyanov (1987, 1990b), from a quite
different viewpoint, in his ‘binary systems’ formulation of control problems.
Also, in a contribution by Bartolini and Pydynowsky (1991) smoothing of the
input signals is achieved through continuous first-order estimators. It must be
pointed out that in a paper by Kostyleva (1964) input dependent sliding surfaces
were proposed for the sliding mode control of linear systems. Again, in these
works, the basic developments are not drawn from differential algebra.

Section 2 of this article is devoted to presenting some simple examples which
utilize sliding surfaces which not only depend on the state of the system but also
on the system’s inputs, thus resulting in dynamic sliding mode controllers. These
examples try to motivate the need for a more general class of sliding surfaces
which directly leads to such dynamical sliding modes and some of its advan-
tageous properties. Section 3 presents some fundamental results of sliding mode
control theory stemming from the differential algebraic approach to system
dynamics.

2. Some motivating examples

In this section we provide simple, yet motivating examples which not only
justify the differential algebraic approach in sliding mode controller design but
they also point to the need and advantages associated to more general classes of
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sliding surfaces. In particular, we are interested in those sliding surfaces which
include expressions in the input signal and (possibly) some of its time deriva-
tives. The class of input-dependent sliding surfaces motivate our additional
developments.

2.1. An example of smoothing the banging of the input signal in discontinuous
feedback control
Let us begin by a simple example in which the smoothing properties of
dynamical sliding regimes, arising from input-dependent switching surfaces, are
clearly portrayed.
Consider the scalar system

r=u } (2.1)
y=x-—-X

where y represents the scalar state error with respect to a pre-assigned constant
reference value X. The variable u is the scalar input signal, constrained to take

values in the discrete set {—U, U}, where U > 0.
It'is well known that the following discontinuous feedback policy, given by:

u = —Usign(y) 2.2)

results in a sliding regime on the line y = 0. This is easily seen from the fact that
the product odo/dt := y dy/dt = —U|y!| < 0. The required sliding surface is then
represented as:

S={x:o=x—-X=0} (2.3)

The ideal sliding dynamics are obtained from the condition do/ds =0, i.e.
dx/dt=0,and 0=0,i.e. x = X.
A simulation of the controlled system is shown in Fig. 1, with X =1 and
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Figure 1. Simulation of (statically) sliding mode controlled responses of single integrator
plant.
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U = 1. The controlled state response, the sliding surface coordinate response
and the discontinuous (bang-bang) features of the resulting input signal u are
separately portrayed in such a figure.

The effects of the above discontinuous feedback policy are summarized in
two important features: (1) The condition o=y =0 is reached in finite time
(given by T = U !x(0)|, 2). After reaching the desired condition, the same is
indefinitely guaranteed to hold. It may be easily proved that this condition can
be sustained, in spite of the presence of bounded perturbations affecting the
system behaviour through the input channel u.

Suppose we would like to trade the finite-time reachability of the zero state
error condition by a smoother behaviour of the input variable u while still,
possibly, being constrained to utilize auxiliary input signals (here denoted by v)
taking values in the set {—U, U}. In order to achieve this purpose, let us
propose the following asymptotically stable closed loop behaviour of the
controlled scalar state:

f=u=—Mx - X) (2.4)

If we now take as the sliding surface one representing a suitable input-
dependent switching condition depicting the feedback input signal error:

S={(x,u):0=u+Ax - X) =0} (2.5)

one ideally obtains the required closed loop behaviour whenever 0=0. A
sliding regime guaranteeing such a condition can be established by requiring now
that odo/dr < 0. This may be accomplished by imposing on o the discontinuous
dynamics specified by do/ds = —W sign (o), where W > 0 is an arbitrary positive
real number. Using the new expression for ¢, one obtains:

i+ Au= —Wsign[u + Mx — X)] (2.6)

which is a differential equation with discontinuous right-hand side, whose
solution represents the required control input variable. It is easy to see from the
above equation (2.6) that the control input signal u is actually the outcome of a
first-order low-pass filter with cut-off frequency represented by A. Indeed, using
the, by now popular, hybrid notation that merges frequency domain quantities
with others in the time domain, one easily obtains:

—;A.
s+ A

w A
—|si - =" 7
()L)SIgn[u+l(x X))} Tl (2.7)
Thus, the input u may be synthesized as the output of a low-pass filter which
accepts as an input a discontinuous (bang-bang) signal v, of amplitude W/A. By
virtue of the amplitude restriction on the ultimate (auxiliary) input signal v,
mentioned above, this ratio is taken as:
—‘%,*=U©W=AU (2.8)
The diagram in Fig.2 depicts the structure of the dynamical discontinuous
feedback controller explicitly exhibiting the imbedded low-pass filter character-
istics which are excited by a bang-bang input signal of amplitude U, as initially
required. For a given fixed value of U, relation (2.8) establishes a trade-off
between the exponential rate of approach of the controlled state x to its desired

u =
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Figure 2. Filtering effect of dynamical sliding mode control of a single integrator plant.

value (alternatively, the cut-off frequency of the low pass filter, or filter
bandwidth) and the design value of the amplitude W, which indirectly measures
the reaching time of the condition o =0, through 7 = W ~!|6(0)|. The faster it
is desirable to reach o = 0, the faster x will approach X, but then, the larger the
cut-off frequency of the low pass filter, a larger number of harmonic compon-
ents of the bang-bang signal v, and external noise, directly affect the input to
the system.

A simulation of the dynamically discontinuously controlled system (2.1),
(2.6) is shown in Fig. 3 with X =1, W =1 and A = 1. The resulting input signal
u is shown to be substantially smoothed out with respect to its previous
behaviour when the static discontinuous controller was used. Further smoothing
of the controlled scalar state x can be equally inferred from such a figure.

2.2. Zeroing of input-dependent output signals via dynamical discontinuous
control
A rather general model for nonlinear single-input single-output nonlinear
systems is constituted by the following n-dimensional single-input single-output

oz a 6

Discontinuous auxilirary input

Figure 3. Simulation of dynamically sliding-mode controlled responses of single integrator
plant.
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analytic system, in Kalman form:

X = f(x, u)} (29)
y = h(x, u)

in which the output y is allowed to depend explicitly on the input variable u
(such systems may be properly addressed as systems with relative degree zero).
Suppose it is desired to ‘zero-out’ the scalar output variable y, possibly in finite
time, through a discontinuous feedback control policy. This control task is
possible by imposing, again, the following autonomous dynamics on the scalar
output signal:

y = —Wsign(y) (2.10)

and computing the required control signal u. Using (2.9) and (2.10) one obtains:

[gil] flx, u) + [ ]‘* = —Wsign{h(x, w)] (2.11)

which may be locally rewritten as a first-order, time-varying, ordinary differen-
tial equation with discontinuous right-hand side:

_[ ] {[— f(x, u) + Wsign[h(x, u)]} (2.12)

A block diagram depicting the dynamical discontinuous feedback control
scheme summarized in (2.12) is shown in Fig. 4.

The ideal sliding mode behaviour obtained on the input-dependent manifold
y = h(x, u) = 0 is obtained as follows. Let the feedback law u = @(x) be the
(unique) control law satisfying h(x, ¢(x)) =0. Then ¢(x) also plays the role of
the equivalent control and it is, evidently, a particular solution of (2.12), for
suitable initial conditions. Indeed, the solutions of (2.12) locally yield dy/d¢ =
i.e. they yield constant output responses under ideal sliding mode conditions. If
the initial value of the output is zero, then the dynamical controller locally
induces the condition y =0 on an open interval of time. This means, by virtue
of the assumed uniqueness, that the actual (dynamically generated) applied
control input u takes precisely the same values as ¢(x).

The ideally controlled dynamics are then obtained as

i = f(x, q)(x))} (2.13)
y=0

y=Nx,u)

J‘l o x=1x,) d
; - ——

X

L) 1(x,u) _.rJ

—

Figure 4. Dynamical sliding mode control scheme for zeroing of input-dependent outputs.
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which, for obvious reasons, is assumed to be locally asymptotically stable to a
desired equilibrium state.

Remark: An interesting feature of the above class of problems lies in the
possibilities of robustly imposing ideally designed feedback control solutions to
nonlinear plants. For instance, let u = —k(x) be a desirable scalar feedback
control law for the plant dx/d¢ = f(x, u). Then, adopting as an output function
the expression: y = h(x, u) = u + k(x), the dynamical controller obtained from
(2.12) imposes, in finite time, the required feedback control law on the given
system. 0

2.3. A simple application example in rest-to-rest reorientation manoeuvres for
single axis spacecraft
Consider the nonlinear second-order plant representing the kinematic and
dynamic equations of single-axis jet-controlled spacecraft with the attitude
variable measured with respect to a skewed axis and specified in terms of the
Cayley-Rodrigues parametrization (see Dwyer and Sira-Ramirez 1988):

=051 + x})o
W= % u (2.14)

y=x—-X

where x represents the Cayley-Rodrigues orientation parameter, w is the main
axis angular velocity and u is the externally applied input torque. J is the
moment of inertia of the spacecraft around its principal axes.

It is easy to show that the following nonlinear feedback control law, arising
from extended linearization considerations, asymptotically stabilizes the system
toward the desired reference attitude value x = X, with zero final angular
velocity w (see also Sira-Ramirez and Lischinsky-Arenas 1990):

u=-2J{tw,0 + oitan"! (x) - tan"! (X)]} (2.15)

where w, and { are positive design parameters with: 0 << 1.

Figure 5 depicts the simulated responses of the state variables x and w as
well as the required control input signal u, as computed from (2.15) with
£=0707, o, =2 [rads™!], X = 1-5 [rad].

One may, alternatively, take, as remarked above, an auxiliary output
function y, for system (2.14), which is constituted by the control input error
with respect to the required stabilizing feedback function, i.e.

y=u+2J{{w,ow+ wi[tan™! (x) — tan"! (X)]}

The discontinuous dynamical feedback controller induces a sliding regime on
the input-dependent sliding surface S with coordinate function o given, evid-
ently, by:

S = {(x, o, u): 0 = u + 2J[{w,0 + wi(tan"! (x) ~ tan”1 (X))] = 0}  (2.16)

A dynamical sliding mode controller, which robustly enforces the feedback
control law (2.15) by zeroing the above input-dependent (auxiliary) output
function y, is given, according to the previously stated results, by:
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Applied input torque

Figure 5. State variables responses and applied input torque for continuous feedback con-
trolled single-axis spacecraft.

i = —Qfw,u + Joiw) — Wsign(y) (2.17)

Simulations were carried out for the dynamical sliding mode controlled
system (2.14), (2.17) with a sliding surface given by (2.16). The spacecraft
moment of inertia was taken as J=70Nms™2. The desired attitude
X =1-5rad, and the controller design parameters were taken as: §=0-707,
w, =2,and W = 40.

Figure 6 depicts the dynamically sliding-mode controlled state variables
responses for x and o, the sliding surface coordinate ¢ and the smoothed
externally applied input torque u, expressed in newton-metres.
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Sliding surface coordinate Control input torque

Figure 6. State variables responses, sliding surface coordinate evolution and applied input
torque for dynamically sliding-mode controlled spacecraft.
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In spite of the slower response of the dynamical sliding-mode controlled
system, the applied input torque is considerably smaller than the one obtained
with the continuous feedback control strategy represented by (2.15). This fact
has a definite bearing on the stability and performance features of the closed
loop system when amplitude control input torque restrictions are enforced. If,
for instance, one limits the amplitude of the applied input torque to a
reasonable value of, say, 2:5 Nm, the (saturated) continuous feedback controller
(2.15) leads to a stable, but quite degraded, response for the attitude parameter
x, with exceedingly large overshoot. The dynamical sliding mode controller, on
the other hand, still yields a perfectly asymptotically stable response with
reasonably small overshoot. This is depicted in Fig. 7.

Remark: In all of the above examples the use of input-dependent discontinuity
surfaces clearly results in dynamical sliding-mode controllers which exhibit a
smoothing of the bang-bang control action traditionally associated with stabiliz-
ing schemes based on sliding regimes. These simple examples point to the need
for a more general approach to discontinuous feedback control which naturally
considers input-dependent sliding surfaces. This may be accomplished in two
different ways. One is to resort to appropriate systems extensions (see Nijmeijer
and Van der Schaft 1990) and use the conventional (input-free) design approach
or to resort to the recently developed differential algebraic approach. Due to the
theoretical richness of the developments found in the last approach, we shall
choose this method in the hope of making it clear that from this new viewpoint
discontinuous feedback control of nonlinear systems has a lot to gain from,
both, the conceptual and the practical viewpoints. a

3. Some consequences of the differential algebraic approach in sliding mode

control of nonlinear systems

In the previous section, some of the advantages of using input-dependent
sliding surfaces were explored through quite simple illustrative examples. These
examples point, essentially, to new possibilities of sliding-mode control when
input-dependent switching surfaces are used. Such possibilities could also have
been arrived at, by using the concept of the extended system (Nijmeijer and Van
der Schaft 1990) in combination with traditional static sliding mode controller

0 (TS R —— - 0 - P
0 10 20 30 v 4 0 10 20 30 40
Continuous feedback controlled Dynamical sliding mode controlled

Figure 7. Continuous and dynamical sliding mode feedback controlled responses of attitude
parameter subject to saturation of control input torque (torque saturation limits:
Ju| <2-5Nm).
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design. However, input-dependent sliding surfaces may be seen as natural
switching surfaces for nonlinear systems. This fact is a direct consequence of the
differential algebraic approach, proposed by Fliess (1986, 1988, 1989 a, 1989 b,
1989 ¢, 1990a, 1990b), for the study of control systems. In this section we
present some simple results of such a differential algebraic approach related to
sliding mode control. The required background may be found in Fliess’s
numerous articles and outstanding contributions. However, we will try to be as
self-contained as possible. The following developments closely follow those
found in Fliess (1990 a).

3.1. Fliess’s generalized controller canonical forms

One of the consequences of the many results drawn by Fliess (1990 a), is that
a more general and natural representation of a nonlinear system requires
implicit algebraic differential equations. Indeed, it may be easily shown, using
elementary facts of finitely generated differential algebraic extensions of fields
(see Fliess 1990 a) that a controlled dynamical system may always be implicitly
defined by means of n polynomial differential equations of the form:

PG x, Uy ity .., u®)y=0; i=1,...,n (3.1)

It has been shown by Fliess and Hassler (1990) that such implicit representa-
tions are not entirely unusual in physical examples. The more traditional form of
the state equations, known as normal form is recovered, in a local fashion,
under the assumption that such polynomials locally satisfy the following rank
condition:

I~ N
3P,
ey 0
axl
rank : : =n
P,
0 —_
0 dx,
- -

The time derivatives of the x; may then be locally solved for
%= plx,u, i, ., u) =0 i=1,..,n (3.2)

It should be pointed out that even if (3.1) is in polynomial form, it may
happen, in general, that (3.2) is not. Representation (3.2) is now known as the
generalized state representation of the nonlinear dynamics.

The following statement constitutes a direct application of the theorem of the
differential primitive element (Kolchin 1973). This theorem plays a fundamental
role in the study of systems dynamics from the differential algebraic approach
(see Fliess 1990 a).

A system of the form (3.2) can always be canonically represented in terms of
a Global Generalized Controller Canonical Form (GGCCF):
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d |
a T
d
a2
(3.3)
d
aqn—l =4qn
C(qn’ q, u, 1'4, Ceey u(a)) =0

where C is a polynomial function of its arguments. If one can locally solve for
the time derivative of g, in the last equation, one locally obtains an explicit
system of first-order differential equations, known as the Local Generalized
Controller Canonical Form (1.GCCF):

.

P

da _

dr d2 = 4q3

! (3.4)

d _
dt qn—l - qn

d

ot = . e (a)

ar 97 (g, u, u, i, ..., u )J

The generalized phase variables ¢ =(q;, ..., ¢q,) are obtained from the
so-called differential primitive element § whose existence is always guaranteed.
The quantities: &, d&/dt, . .., " DE/d: "D qualify as state variables since they
do not satisfy any algebraic relation among themselves. One then simply lets:
q1=§&, q,=dE/s, ..., q,=d" VgD It should be emphasized that (3.3)
is obtainable from (3.2) by means of an invertible input-dependent state
coordinate transformation of the form: ¢ = &(x, u, . . ., u‘* D).

Remark: We assume throughout that o= 1. The case a =0 corresponds to
that of exactly linearizable systems under state coordinate transformations and
static-state feedback. One may still obtain the same smoothing effect of the
dynamical sliding mode controllers we derive in this article by considering
arbitrary prolongations of the input space. This is accomplished by succesively
considering the ‘extended system’ (see Nijmeijer and Van der Schaft 1990) of
the original one, and proceeding by using the same differential primitive element
yielding the Generalized Controller Canonical Form of the original system. O

3.2. Dynamical sliding regimes based on Fliess’s GCCF

The preceeding general results on canonical forms for nonlinear systems have
an immediate consequence in the definition of sliding surfaces for stabilization
and tracking problems in nonlinear systems.

Consider the following sliding surface coordinate function, expressed in the



1050 H. Sira-Ramirez

generalized phase coordinates g:
o=c1qr+ -+ Cp1qn-1 T Gy (35)

where the scalar coefficients ¢; (i =1, ..., n — 1) are chosen in such a manner
that the following polynomial, p(s), in the complex variable s, is Hurwitz:

p(sy=ci+ s+ + c,,_ls”_2 + 57! 3.6)

Imposing on the sliding surface coordinate function o the discontinuous
dynamics:

o = —W sign (o) 3.7

then, the trajectories of o are seen to exhibit, in finite time 7 given by
T = W1 0(0)|, a sliding regime on o = 0. Substituting on (3.7) the expression
(3.5) for o, and using (3.4), one obtains, after some straightforward algebraic
manipulations, the following dynamical implicit sliding mode controller:

c(q,u, iy .., u'®) = —cigy — c2q3 =+ = Cas1qa
— Wsign[cigy + -+ + ¢u1gn-1 + q4]  (3.8)

Evidently, under ideal sliding conditions o =0, the variable g, no longer
qualifies as a state variable for the system since it is expressible as a linear
combination of the remaining states. The function sign ¢ is then ideally replaced
by zero. The ideal (autonomous) closed loop dynamics may then be expressed in
terms of a reduced state vector which only includes the remaining n — 1 phase
coordinates associated with the original differential primitive element. This leads
to the following ideal sliding dynamics:

d

a;(h =4q2

d

a‘t(12=¢I3 . (39)
d
d_i Gn-1 = —C1q1 — ' 7 Cp—1q4n-1

The characteristic polynomial of (3.9) is evidently given by (3.6) and, hence,
the (reduced) autonomous closed loop dynamics are asymptotically stable to
zero. Notice that by virtue of (3.5), the condition o =0, and the asymptotic
stability of (3.9), that g, also tends in an asymptotically stable fashion to zero.

The equivalent control, denoted by ugq is defined as a virtual feedback
control action ideally achieving a smooth evolution of the system trajectories on
the constraining sliding surface o =0, provided initial conditions are precisely
set on such a switching surface. The equivalent control is formally obtained from
the condition do/dt = 0. i.e.

(g, Upqs UEQs - - - UEQ) = C16a-1q1 + (C26n-1 = €1)G2
+ o4+ (Cn—ZCn—l - Cn—3)qn—2 + (Cn—lcn—l - Cn—2)qn—1 (310)

Since g asymptotically converges to zero, the solutions of the above
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time-varying implicit differential equation, describing the evolution of the
equivalent control, asymptotically approach the solutions of the following
autonomous implicit differential equation:

c©, u, i, ..., u®)y=0 (3.11)

Equation (3.11) constitutes the zero-dynamics (See Fliess 1990 b) associated
with the problem of zeroing the differential primitive element, considered now
as an (auxiliary) output of the system. Notice that (3.10) may also be regarded
as the zero-dynamics associated with zeroing of the sliding surface coordinate
function o. If (3.11) locally asymptotically approaches a constant equilibrium
point u = U, then the system is said to be locally minimum phase around such
an equilibrium point, otherwise the system is said to be non-minimum phase.
The equivalent control is, thus, locally asymptotically stable to U, whenever the
underlying input—output system is minimum phase.

One may be tempted to postulate, for the sake of physical realizability of the
sliding mode controller, that a sliding surface o is properly defined whenever the
associated zero-dynamics are constituted by an asymptotically stable motion
towards equilibrium. In other words, that the input-sliding surface system is
minimum phase. It should be pointed out, however, that non-minimum phase
systems might make perfect physical sense and that, in some instances, instabil-
ity of a certain state variable, or input, does not necessarily means disastrous
effects on the controlled system. The following example illustrates this fact.

Example 3.1. Control of a non-minimum phase system: Consider the problem
of manoeuvring a motor-driven unicycle which advances with constant (ground)
speed V on a plane equipped with cartesian coordinates, given by the ordered
pairs (x, y), describing the position of the contact point. The control input is
represented by the heading angle u, measured with respect to the x axis. The
objective is to manoeuvre the unicycle to follow a circle of radius R, drawn on
the plane, and centred at the origin O of coordinates (see Figure 8). For
simplicity, we assume that u takes values in the interval (—, 7/2) and, hence,
only counter-clockwise solutions are considered.

It is easy to see that the motions may be described by the following set of

—

Figure 8. Geometry of the unicycle control problem of following a prescribed circular
trajectory with constant velocity.
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analytic differential equations:

x

V cos (u)} (3.12)
V sin (u)

y
or, in polar coordinates p, ¢ by:

p=Vcos(u — @ (3.13)

.V
=—sin(u — @
v=, ( )

In spite of the analyticity of the expressions in the differential equations, the
system may be reduced, by straightforward elimination, to an algebraic implicit
differential equation:

L1 aal’ .
{p ) v - (9)2]} - @V = (=0 (3.14)

The condition

(p)? # V?
must be enforced, so that the radial position coordinate does not become
uncontrollable. The uncontrollable motions correspond to uniformly sustained
purely radial motions from (or towards) the origin of coordinates. Moreover,
notice that, unless u is allowed to become constant (i.e. unless du/d¢ = 0), the
implicit differential equation (3.14) does not have any real solutions if the
following strict inequality:

(»)? < V? (3.15)
is violated. a

Remark: The phenomenon of obtaining implicit differential equations and
inequalities as the input—output description of a system, arising from a state
elimination procedure, has been demonstrated to hold in full generality by Diop
(1989). O

We consider the following position error: {= p— R, with respect to the
circle line.

The control task consists of stabilizing the value of { to zero and, thus,
obtain a perfectly circular motion of radius R for the unicycle. Notice that under
perfect tracking of the circle, dp/dt =0 and the inequality (3.15) is always
satisfied.

It is easy to see that g; = {=p— R qualifies as a differential primitive
element. The GCCEF for the system is, evidently, given by:

q1 = q2

2 3.16
{"12 - 51 _IF’R [V2 - (42)2]} - (L'l)z[V2 - (42)2] =0 ( )

The sliding surface candidate o is constituted, in this case, by an appropriate
stabilizing linear combination of the generalized state components:

o=¢qy+cq; ¢1>0 (3.17)
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Notice that in original coordinates, ¢ is an input dependent switching
surface.

Under ideal sliding conditions o = 0, the unicycle asymptotically approaches
the circle of radius R. The dynamical sliding mode controller is obtained by
imposing the discontinuous dynamics (3.7) on ¢. Such a dynamical discontinuous
controller is, implicitly, given, in terms of the transformed coordinates q;, g»,
by:

2
[v? - (qz)zl} - (@)?V* = (g2)*]1=0
(3.18)

The zero dynamics associated with the stabilized (closed loop) system are
immediately obtained, according to (3.11), from (3.16) by letting q;, g, and
dg,/dt be zero:

. 1
{6‘142 + Wsign(q; + ¢191) — ;1_}_ R

(&)? = % (3.19)

The imposed restrictions on the heading angle u dictate that the physically
meaningful solution to the zero-dynamics implicit equation is given by:
du/dt = —V/R, which is, evidently, unstable.

Remark: The physical meaning of such unstable zero dynamics is quite clear:
in order to maintain the motion of the unicycle on the prescribed circle, one
must turn the heading of the unicycle at a fixed rate, which precisely coincides
with the constant angular velocity —V/R of the contact point moving, counter-
clockwise along the circle, with fixed tangential velocity V. The fact that the
heading angle is constantly decreasing, without bound, can hardly be considered
to represent a physically harmful behaviour for the system or for the associated
control task. a

An explicit representation of the system, which is necessarily local, may be
obtained by solving with respect to dg,/d¢ from the second equation in (3.16):

41 =q2
q1 + R
It is easy to see, from equilibrium considerations, that the two possible
solutions for dq,/dt represent the possibility of clockwise and counter-clockwise
motions along the circle, in inverse correspondence with the sign adopted for the
(unstable) zero dynamics above. We take the positive sign as the solution for
dg,/dt in (3.20), since we have explicitly assumed that only counter-clockwise

motions are allowed.
The explicit dynamical sliding mode controller is then readily obtained as

1
T

(3.20)

4 [V2 - (g2)*] £ @)[V? - (2)*]"*

[VZ - (g2)*] + Wsign(g, + c1q1)
(3.21)

or, by carefully taking into account the right angular relation, in original polar
coordinates, as:

1
+ p— -
¢192 41+ R
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vV .
0= ey, {clcos(u -+ —Esm2 (u - @)

+ %-sign[Vcos(u - @)+ c(p— R)]} (3.22)

Simulations of the dynamically sliding-mode controlled unicycle were per-
formed with the following parameters: V =Sms™!, R=5m, W =10,
¢y =2 s~ . The results are shown in Fig. 9.

The smooth trajectory on the plane is portrayed showing the asymptotic
approach to the target circle. The sliding surface coordinate evolution is also
shown in this figure and it is easily seen to comply with the imposed
discontinuous dynamics. The angular position of the contact point of the
unicycle on the plane exhibits an (unstable) ever-decreasing behaviour as
pointed out above. The heading angle response, acting as an external control
input, is also shown to grow without bound, asymptotically to a linear growth,
as demanded by the nature of the equivalent control dynamics and their limiting
behaviour, represented by the zero-dynamics.

3.3. Higher-order sliding regimes

Consider (3.1), with o as an output. We may rewrite such implicit dynamics
as the following Global Generalized Observability Canonical Form (GGOCF)
(see Fliess 1988):

01 =0y

J; = 03 .
(3.23)
P(0y, ..., Opy Gp s bty .., uP) =0
0 =0

Angular position of unicycle Heading input trajectory

Figure 9. Simulations of dynamically sliding-mode controlled unicycle.
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As before, an explicit LGOCF can be obtained for the element o whenever
the condition:

3P

a—(op)- #0
is valid.
0, =0y
4, = 03
(3.249)
Gy =p(O1, ..y Op U, U, ..., u?)
0 =0

Definition: An element ¢ admits a p-h order sliding regime if the GOCF
(3.24), associated with o, is pth order. O

One defines a pth order sliding surface candidate as any arbitrary (algebraic)
function of o and its time derivatives, up to (p — 1)st order. For obvious
reasons, the most convenient type of function is represented by a stabilizing
linear combination of o and its time derivatives.

s =moy+ myoy + -+ my_10,.1 + 0, (3.29)

A first-order sliding motion is then imposed on such a linear combination
of generalized phase variables by means of the discontinuous sliding mode
dynamics:

§ = —Msign(s); M>0 (3.26)
This results in the implicit dynamical higher-order sliding mode controller:
p(o1, ..., 0p, U, 1L, ..., uy = =M, 10, = "+ — My03 — M0,
— Msign[myo; + + -+ + mp_ 10,1 + 0]

(3.27)

As previously discussed, s goes to zero in finite time and, provided the
coefficients in (3.25) are properly chosen, an ideally asymptotically stable
motion can be then obtained for g, as governed by the following autonomous
linear dynamics:

0L =0y
03 = 03
r (3.28)
Op-1 = —M0] — M0y =+ — My_10,
o =0 J

Remark: It should be pointed out that a definition of static higher-order sliding
modes is also available from the work of Korovin (1992). Our definition of
higher-order sliding regimes ensures the possibilities of creation of a sliding
regime, on a given surface candidate, only in an asymptotic fashion, by
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discontinuously controlling higher-order derivatives of the sliding surface candi-
date. a

Example 3.2: In Example 3.1, the first-order sliding regime obtained for o is
actually a second-order sliding regime for the radial position error:
gi=¢=p—R. As is easily seen from (3.13), such an error quantity does
qualify as a sliding surface candidate and, hence, a non-smoothed first-order
sliding regime could have also been created on it. O

Example 3.3. Continuously stirred tank biological reactor: The following dif-
ferential equations describe a simplified model of methanol growth in a
continuously stirred tank biological reactor which utilizes methylomonas organ-
isms (see Hoo and Kantor 1986, and Sira-Ramirez 1992 ¢). Let x; represent the
density of methylomonas cells and let x, represent the methanol concentration:

X1 = Aup(xg)x, — uxy

iy = —As{x3) x1 + u(Af — x,) (3.29)
Yy =Xx2
where -
X2
Pl =5 | Xy (3.30)

The control input u represents the dilution rate of the substrate and A¢ is the
feed substrate concentration, assumed to be constant. A, and A, are known
constants.

For constant values u = U, of the dilution rate, the system exhibits two
constant equilibrium points. One of the equilibrium points is located at (0, Ay),
which is of no physical interest, and the second one is given by:

AfA“ - (Af + B)U . _ BUﬁ )
X(U) = A, A, XoU) = A,-U (3.31)

The equilibrium value U, for the dilution rate, must necessarily satisfy the
following relation:

U< _xifA‘,‘ .

(At + B)
in order to have physically meaningful (i.e. positive and finite) equilibrium
values for x; and x,.

Suppose it is desired to regulate the methanol concentration x; to its
equilibrium point X,(U) for a given U.

The methanol concentration error, o = x; — X,(U), evidently qualifies as a
sliding surface candidate, since its time derivative is dependent on the control
input u. The resulting static ‘first-order’ sliding-mode controller does not seem
to have much practical sense, since a discontinuous dilution rate u, i.e. one
including arbitrarily large frequency switchings, is difficult, if not impossible, to
achieve:

1
u=_— .

(A = xp) [AoPX) = Wsign(x2 = Xy(D))] (3.32)
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A simulation of the static sliding-mode controlled biological tank reactor is
shown in Fig.10. The system, and design, parameter values used for the
simulation were chosen as: 5

A;f=18,A4,=0504, A, = 1-32, B = 849 x 10*
U=04, X,(U)=33%x1073W=10

The state trajectory response for x; is sufficiently smooth and is seen to
converge slowly to its equilibrium value X(U) = 0-6849, while the trajectory of
x, exhibits significant chattering around its pre-assigned equilibrium point. The
feedback control input also exhibits a chattering response, thus making the
feasibility of the controller quite questionable from practical grounds.

The concentration error ¢ is seen to satisfy a second-order algebraic
differential equation of the form:

& = —A @' (0 + Xo(U))6 + @lo + Xa(U))

u(As — 0 = Xy(U)) )
Aqp(0 + X5(U))
+u (Af -0~ Xz(U)) — ud (333)

X(Aup(o + X,(U)) — u)]

where ¢'(.) stands for dep(.)/d(.).
The LGOCF, which in this case is also a GGOCF, associated with the
concentration error o is then given by:

01 =0y
0y = A @' (01 + X5(U))o, + (o1 + X,(U))

u(Ag — 0y = X(U)) 2)

A,p(o1 + Xo(U)) [ G349

X(Aup(or + X5(U)) ~ u)](

+12(Af - 0y — Xz(U)) = U0y

g = 01

0.6 0 - . o
0 05 1
Density of methylomonas Methanol concentration
cells
e - 04— —
e u
0 prrnvmssmn s 0.35 W
— — 03—
0 0.5 1 0 0.5 1
Sliding surface evolution Dilution rate input

Figure 10. First-order sliding-mode-controlled continuously stirred tank biological reactor.
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A second-order sliding regime may now be created for o using the sliding
surface:
s =0, + mo; (335)

Notice that, expressed in terms of the state variables, such a sliding surface is
actually an input-dependent switching function. Indeed, one obtains the follow-
ing alternative expression for s:

s = =A,p(x2)x; + u(As — x3) + my(xz — Xo(U)) (3.36)

Imposing the discontinuous dynamics ds/dt = — M sign(s), on the second-
order sliding surface candidate s, yields the following dynamical sliding mode
controller:

u (As— o — Xp(U)) =
— Ao@' (01 + X2(U))oy + gloy + Xo(U))(Ap(01 + X5(U)) — u)]

(E(Af—"l - Xa(U))

Aoy + Xo(U) "2) + (u = m)oy — Msign(o; + ma)  (3.37)

which, expressed now in terms of the state variables of the system, reads

i= o (A + WA= XA Gx + u = my)
£ X2
+ A @(x2)x1(Ap(x2) — u)
—Msign[—A,p(x))x; + u(A¢ — x3) + my(x2 — X2(U))]} (3.38)

The dynamical controller (3.38) exhibits a singularity (impasse point) at
x, = Ay The desired value X,(U) must then be chosen far away from A;. If,
however, trajectories must necessarily cross through this singularity, then suit-
able discontinuities must be appropriately devised on the control input prescrip-
tion (see Abu el Ata-Doss er al. 1992 for details).

The simulations shown in Fig. 11 depict the higher-order sliding mode

0.7
0.65

0.6

0 1 2
Methylomonas cell concentration ~ Methano] concentration

2
Dilution rate Methanol concentration ercr

Figure 11. Second-order sliding-mode-controlled continuously stirred tank biological reactor.



Dynamical sliding mode control of nonlinear systems 1059

controlled state responses x; and x, converging towards their equilibrium points,
the smoothed nature of the dilution rate u, acting now as a dynamically
generated feedback input and, finally, the asymptotic convergence of the
concentration error o, to zero. ]

4. Conclusions and suggestions for further research

The differential algebraic approach to system dynamics provides both
theoretical and practical grounds for the development of sliding mode control of
nonlinear dynamical systems. More general classes of sliding surfaces, which
include the presence of inputs and, possibly, their time derivatives, were shown
to allow naturally for chattering-free sliding mode controllers of dynamical
nature. Although equivalent smoothing effects can be similarly obtained by
simply resorting to appropriate systems extensions, or prolongations of the input
space, the theoretical simplicity, and conceptual advantages, stemming from the
differential algebraic approach, bestow new possibilities to the broader area of
discontinuous feedback control. For instance, the same smoothing effects and
theoretical richness, can be used for the appropriate formulation and the attack
of many potential application areas based on pulse-width-modulated control
strategies (see Sira-Ramirez 1992 e). The less explored pulse-frequency-modu-
lated control techniques have also been shown to benefit from this new
approach (Sira-Ramirez 1992 f).

Discontinuous feedback controller design will undoubtedly be enriched by
the differential algebraic approach. For instance, it has been shown, in a most
elegant manner, by Fliess and Messager (1992), that non-minimum phase linear
systems can be asymptotically stabilized using dynamical precompensators and
sliding mode controllers. Such results could be extended to the nonlinear
systems case with, possibly, some significant additional efforts. This topic, as
well as possible extensions of the theory to nonlinear multivariable systems and
to infinite dimensional systems, deserves some attention in the forseeable future.

ACKNOWLEDGMENT

This work was supported by the Consejo de Desarrollo Cientifico, Humanis-
tico y Tecnolégico of the Universidad de Los Andes, under Research Grant
I-358-91.

REFERENCES

Aru EL ATta-Doss, S., Coic, A., and FLiess, M., 1992, Nonlinear predictive control by
inversion: discontinuities for critical behaviors. International Journal of Control, 55,
1521.

BartoLing, G., and Pypynowsky, P., 1991, Approximate linearization of uncertain non-linear
systems by means of continuous control. Proceedings of the 30th IEEE Conference on
Decision and Control, Vol. 3, Brighton, U K., pp. 2165-2167.

BartoLini, G., and Zorezzi, T., 1986, Journal of Mathematical Analysis and Applications,
118, 42.

Bunrer, H., 1986, Réglage par Mode de Glissement (Lausanne: Presse Polytechnique
Romande).

Cuanc, L. W., 1991, A versatile sliding control with a second-order sliding condition.
Proceedings of the American Control Conference, Vol.1, Boston, Massachusetts,
pp. 54-55.



1060 H. Sira-Ramirez

DeCarrLo, R. A., Zak, S. H., and MaTtews, G., 1988, Proceedings of the Institute of
Electrical and Electronics Engineers, 76, 212.

Diop, S., 1989, A state elimination procedure for nonlinear systems. New Trends in Nonlinear
Control Theory, edited by J. Descusse, M. Fliess, A. Isidori and D. Leborgne, Lecture
Notes in Information Science, Vol. 122 (New York: Springer-Verlag).

Dwyer, T. A. W., III, and Sira-Ramirez, H., 1988, Variable structure control of spacecraft
attitude maneuvers. Journal of Guidance, Dynamics and Control, 11, 262.

EMELYANOV, S. V., 1967, Variable Structure Control Systems (Moscow: Nauka); 1987, Binary
Control Systems (Moscow: MIR); 1989, Titles in Theory of Variable Structure Control
Systems (International Research Institute for Management Sciences) (Moscow: Irimis);
1990 a, Titles in New Types of Feedback, Variable Structure Systems and Binary
Control (International Research Institute for Management Sciences) (Moscow: Irimis);
1990 b, The principle of duality, new types of feedback, variable structure and binary
control. Proceedings of the International Workshop on Variable Structure Systems and
their Applications, Sarajevo.

FErRNANDEZ, B., and Heprick, J. K., 1987, International Journal of Control, 46, 1019.

Friess, M., 1986, Systems and Control Letters, 8, 147; 1988, Nonlinear Control Theory and
Differential Algebra. Modelling and Adaptive Control, edited by Ch. 1. Byrnes and A.
Kurzhanski, Lecture Notes on Control and Information Science, Vol. 105 (New York:
Springer-Verlag), pp. 134-145; 1989 a Proceedings of the Forum Mathematics, 1, 227,
1989 b, International Journal of Control, 49, 1989; 1989c, C. R. Acad. Sci. Paris,
1-308, 377; 1990a, IEEE Transactions on Automatic Control, 35, 994; 1990b, What
the Kalman state variable representation is good for. Proceedings of the 29th IEEE
Conference on Decision and Control, Honolulu, Hawaii, Vol. 3, pp. 1282-1287; 1991,
Controllability revisited. Mathematical System Theory: the Influence of R. E. Kalman
(New York: Springer-Verlag).

Friess, M., and HassLER, M., 1990, Questioning the classical state-space description via circuit
examples. Mathematical Theory of Networks and Systems, edited by M. A. Kaashoek,
A. C. M. Ram and J. H. van Schuppen, Progress in Systems and Control Theory
(Boston, Mass: Birkhiuser).

FLiess, M., LEving, J., and RoucHoN, P., 1991, A simplified approach of crane control via a
generalized state-space model. Proceedings of the 30th IEEE Conference on Decision
and Control, Brighton, U.K., Vol. 1, pp. 736-741.

Fuiess, M., and MessaGER, F., 1990, Vers une stabilisation non linéaire discontinue. Analysis
and Optimization Systems, edited by A. Bensoussan and J. L. Lions, Lecture Notes on
Control and Information Science, Vol. 144 (New York: Springer-Verlag); 1992, Sur la
commande en régime glissant. C. R. Acad. Sci. Parfs, 1-313, 951.

Hoo, K. A., and KanToR, J. C., 1986, Chemical Engineering Communication, 46, 385.

Isipor1, A., 1989, Nonlinear Control Systems (New York: Springer-Verlag).

Itkis, U., 1976, Control Systems of Variable Structure (New York: Wiley).

KorLcHiN, E. R., 1973, Differential Algebra and Algebraic Groups (New York: Academic
Press).

Korovin, S. 1992, Higher order sliding modes. Proceedings of the IEEE International
Workshop on Variable Structure and Lyapunov Control of Uncertain Dynamical
Systems, University of Sheffield, U.K.

KostvyLEvA, N. Y., 1964, Application of variable structure control systems to processes with
zeros in the transfer function. Applications of Automatic Systems (Nauka: Moscow), in
Russian.

Kwa1ny, H., and KM, H., 1990, Systems and Control Letters, 15, 67.

Luk’vyanov, A. G., and UtkiN, V. 1., 1981, Automation and Remote Control, 42, 5.

MagriNo, R., 1985, International Journal of Control, 42, 1369.

Matuews, G., DECarLO, R. A., HawLEY, P., and LErFeBVRE, S., 1986, IEEE Transactions
on Automatic Control, 31, 1159.

Numeuer, H., and VAN DER ScHAFT, A., 1990, Nonlinear Dynamical Control Systems (New
York: Springer-Verlag).

Pommarer, J. F., 1983, Differential Galois Theory (New York: Gordon and Breach); 1986,
Proceedings of the C. R. Acad. Sci. Paris, 1-302, 547; 1988, Lie Groups and Mechanics
(New York: Gordon and Breach).



Dynamical sliding mode control of nonlinear systems 1061

Sira-Ramirez, H., 1987, International Journal of Systems Science, 18, 1673; 1988, Interna-
tional Journal of Control, 48, 1359; 1989 a, IEEE Transactions on Automatic Control
34, 1186; 1989 b, International Journal of Control, 50, 1487; 1990, International Journal
of Systems Science, 21, 665; 1991 a, Control-Theory and Advanced Technology, 7, 301;
1992 a, Dynamical variable structure control strategies in asymptotic output tracking
problems. IEEE Transactions on Automatic Control (to be published); 1992b,
Asymptotic output stabilization for nonlinear systems via dynamical variable structure
control. Dynamics and Control 2, 45; 1992 ¢, The differential algebraic approach in
nonlinear dynamical feedback controlled landing maneuvers. IEEE Transactions on
Automatic Control, 37, 518; 1992 d, Dynamical sliding mode control strategies in the
regulation of nonlinear chemical processes International Journal of Control, 56, 1,
1992 e, Dynamical pulse width modulation control of nonlinear systems. Systems and
Control Letters, 19, 302; 1992 f, Dynamical discontinuous feedback control in nonlinear
systems. Proceedings of the IFAC Nonlinear Control Systems Conference (NOL-
C0S’92), Bordeaux, France, p. 471.

Sira-Ramirez, H., AumAD, S., and Zrisi, M., 1992, Dynamical feedback control of robotic
manipulators with joint flexibility. JEEE Transactions of Systems, Man and Cybernetics
(to be published).

Sira-RaMirRez, H., and LiscHINSKY-ARENAs, P., 1990, IEEE Transactions on Automatic
Control, 35, 1373; International Journal of Control, 54, 111.

Sroming, J. J. E., 1985, International Journal of Control, 40, 421.

ScomiNg, J. J. E., and SasTRY, S., 1983, International Journal of Control, 38, 465.

UtkiN, V. 1. 1977, IEEE Transactions on Automatic Control, 22, 212; 1984, Automation and
Remote Control, 44, 1105; 1987, Discontinuous control systems: state of the art in the
theory and applications. World Triennial IFAC Congress, Munich, pp. 75-94; 1978,
Sliding Modes and their Applications in Variable Structure Systems (Moscow: MIR);
1992, Sliding Modes in Optimization and Control Problems (New York: Springer-Ver-
lag).

Younc, K. K. D., (editor), 1993, Variable Structure Control for Robotics and Aerospace
Applications (Amsterdam: Elsevier Science).

ZINOBER, A. S. L, (editor), 1990, Deterministic Control of Uncertain Systems (London: Peter
Peregrinus).



