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TRAPEZOIDAL PULSE-WIDTH-
MODULATION CONTROL OF
NONLINEAR MECHANI-
CAL SYSTEMS®

H. Sira-RAMIREZ! AND O. LLANES.-SANTIAGO?

Abstract. A pulsed feedback control strategy is proposed for the robust stabili-
zation of a class of multivariable mechanical systems in which rate constrained an-
gular, or linear, velocity variables are regarded as control inputs. The trapezoidal
character of the pulsed-width regulation policy complies with the physical limita-
tion of having corresponding acceleration variables; i.e., applied torques, or forces,
of bounded magnitude. This practical limitation would be clearly violated in the
traditional mathematical formulation of (discontinuous) pulse-width-modulation
control schemes using rectangular (velocity) control input pulses. The proposed ap-
proach is used in the approximate feedback control regulation of both a multivari-
able differentially flat system and also of a high frequency controlled non-differen-
tially flat system.

Key Words-- Trapezoidal pulse-width-modulation, differentially flat systems.
1. Introduction

Pulse-Width-Modulation (PWM) control of dynamical systems has been the
subject of sustained theoretical and practical developments due to its inherent
simplicity, robustness and widespread possibilities for inexpensive hardware
implementation. Early work, in connection with the regulation of linear systems,
is due to Nelson (1960), Kadota and Bourne (1961), Polak (1961), Skoog and
Blankenship (1970), Tsypkin (1984) and LaCava et al. (1984). Developments cast-
ing PWM as a robust feedback control technique for nonlinear systems may be
found in the work of Kuntsevich and Cherkhovoi (1971), Sira-Ramirez (1989;
1991; 1992), Sira-Ramirez and Lischinsky-Arenas (1990), Sira-Ramirez et al.
(1993) and Taylor (1992). The technique has traditionally enjoyed a ubiquitous
presence in applications to Power Electronics and Communication Systems (see
Kassakian et al.,, 1991). The prevailing characteristic of such a control policy is
the discontinuity of the applied feedback control input signal, constituted by
pulses of varying width. As a consequence, the time derivatives of such a train
of width-varying pulses, exhibit infinite magnitudes.

For a large class of mechanical systems, such as nonholonomically velocity
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constrained systems, velocity variables (whether angular or linear velocities) are
sometimes considered as control inputs (see Bloch et al, 1992; Murray and
Sastry, 1993). In the smooth feedback control case, this procedure not only sim-
plifies the algebraic manipulations involved in the controller design, but it also
results in a clear assessment of the fundamental structural obstructions to
decouplability and feedback linearization. Computation of the required torques,
or forces, is then carried out, if necessary, by means of straightforward differen-
tiation and simple algebraic manipulations. This procedure, however, is not suit-
able for discontinuous feedback control techniques, such as sliding mode control
and pulse-width-modulation (PWM), since the obtained feedback control expres-
sions imply sudden changes, or steplike discontinuities, in the velocity variables.
As a consequence, infinite applied forces or torques are required as ultimate con-
trol actions. In order to circumvent this difficulty, one may resort to an alterna-
tive procedure which still regards the velocity variables as control inputs but is
now considering magnitude constraints on the accelerations. The rate of change
of the involved velocity variables is thus purposefully limited. For the class of
systems here treated, the proposed approach bestows physical realizability on
the velocity control actions while retaining the essential simplicity of the tradi-
tional PWM control design procedure. This achievement, however, pays the cost
of obtaining only stable convergence to the regulation objectives, rather than as-
ymptotically stable behavior. From a practical viewpoint, the performance is,
nevertheless, quite satisfactory.

In this article, a robust frapezoidal pulse-width-modulation scheme (TPWM)
is proposed for the stabilization of a class of mechanical systems in which veloc-
ity variables are taken as control inputs for controller design purposes. The
physical impossibility of having discontinuous velocity variables is thus over-
come while allowing for physically meaningful feedback synthesized pulsed ac-
celerations, i.e., applied torques, or forces.

Section 2 presents a fundamental stability result regarding a simple integra-
tor system feedback regulated by means of a TPWM strategy. This development
is later shown to be essential for the decoupled stabilization of multivariable
nonlinear systems. Section 3 is devoted to treating two TPWM controller design
examples. The first one is represented by a nonholonomically constrained sys-
tem constituted by a “hopping robot.” The regulation tasks are those of driving
the length of the leg, and its angular position, to desired values while the robot
is in the mid-air phase. This system has been shown to be differentially flat (see
Fliess et al., 1992 a; b; 1993 a; b); i.e., it is linearizable by means of dynamical
endogenous feedback. This fact is shown to facilitate greatly the TPWM control-
ler design task. The second example deals with a single input non-differentially
flat system constituted by a mass, sliding without friction, on an inverted pendu-
lum. The suitable combination of high-frequency oscillatory control, already pro-
posed in Fliess et al. (1993 a; b), and a TPWM strategy, results, respectively, in a
differentially flat two-input system on which the link’s angular velocity variable
is physically synthesizable as a linearizing feedback policy. A stabilizing TPWM
feedback controller is synthesized and regulates the mass position on the link
towards a pre-specified small vicinity of the desired position. The performances
of the proposed multivariable TPWM feedback controllers are evaluated when
the systems are subject to unmodeled bounded stochastic disturbances. Section 4
contains the conclusions of the article.
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2. Fundamental Background Results

In this section, we present several seemingly unrelated developments. In the
first part, we study a simple scalar system regulated to the origin of the state
space by means of a TPWM feedback strategy. The fundamental stability fea-
tures of such a closed loop system are proved by using standard stability argu-
ments on the exactly discretized system. The second part of the section revisits
multivariable differentially flai systems. The problem of TPWM controller design
for such class of systems is addressed, and it is readily acknowledged that such
a design problem requires the concepts of row relative degree and essential or-
ders. These concepts are also briefly revisited, and the connection of these tools
with static, or dynamic, input-output decouplability of the given differentially
flat system is addressed. Finally, resorting to the suitable definition of a set of
scalar auxiliary output functions, on the decoupled multivariable flat system, it
is shown that one can reduce the multivariable TPWM control design problem to
a set of scalar TPWM controller design problems, precisely of the same type
already treated at the beginning of this section.

2.1 Trapezoidal pulse-width-modulation control of a simple scalar
system  Consider the following scalar closed loop system characterized by a
state variable s:

s=v
}, (2.1)
v =— WTPWM(s)
TPWM (s)
Sels(ir (T siens(t)  for f =t <ty + prls()T,
signs(t,) for t, + pt[s(t)]1T st <t, + t[s(4)1T[1 - p],
= 1 _
~els(tyg1 ¢ T B T FLs(EIT)signs ()
for f +T[s(t)]T[1 - pl=t <t +1[s(t)]T,
0 for L +7[s(t)T=<t<t,+T,

ty + T =t for k=0,1,2,---, where the function 7(s) represents the duty »a-
tio function. Its sampled values, at every instant of time #,, determines the width
of the trapezoidal pulse for the current inter-sampling interval (see Fig. 1). The
trapezoidal pulse width is determined at each sampling period as t[s(#)]T,
where T denotes the sampling interval, or duty cycle, considered here to be con-
stant (see also Sira-Ramirez et al. (1993) for pulse-frequency-modulation results).
The duty ratio function is necessarily bounded by the closed interval [0, 1].
However, in order to avoid infinite slopes in the signal s, we need to hypothesize
a minimum positive value, or constant lower bound, for the duty ratio function.
Such a value will be denoted by the constant, ;. We also let the maximum
control input rate to be specified by the constant, A,,,. The scalar p is then a
positive real number defining the fraction of the pulse width 7[s(%)]7T, on
which the signal v is allowed either to grow from zero to W, or to decrease from
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Fig. 1. Trapezoidal pulse-width modulated control signal.

Fig. 2. Duty ratio function for scalar TPWM feedback strategy.

W to zero. This number p, evidently, must also be bounded away from 1. The
minimum allowable value of the duty ratio function, T, is evidently related to
b, to the sampling interval T and to the gain W by the relation

4
pfminT
The positive constant gain W is a design parameter representing the maximum
amplitude, in absolute value, of the control input signal .
The duty ratio function, 7(s), is synthesized as a feedback function as fol-
lows (see Fig. 2):

"< Apax - (2.2)

1
1 for s|l=—,
s B
t(s)=1Bls|  for -mn <|gj<L (2.3)
B B’ '
1 .
Trin for Isls—’g—"-.
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We remark that contrary to traditional PWM control schemes, we do not allow
the duty ratio function to converge to zero, since this would imply an infinite
slope for the velocity control variable ». This control input limitation in turn
results only in a stable behavior of the controlled variable s around the value
zero. For the above reason, the minimum value of the duty ratio function T,
must be specified in such a manner that the regulated trajectories for s stay in a
small vicinity of zero while still complying with the limitation of the acceleration
variable. The next paragraphs describes the stable features of the approach
along with an amplitude estimate of the underlying /imit cycle behavior exhib-
ited by s.

Proposition 2.1.  The closed loop system (2.1) is stable. Moreover, the trajec-
tories of s are ultimately bounded by a vicinity of the origin given by

|s<t>|slfg“-,
provided
(1-p)pWT < 1. (2.4)

Proof  The proof of stability is quite straightforward by simply adopting the
function

V(s)=éﬂs2

as a Lyapunov function candidate. According to (2.1), one has, along its solu-
tions,

V=3s=0.

Moreover, as long as s # 0, the sets where V = 0 do not constitute trajectories
of the system for an indefinite period of time. The system is, therefore, stable.
Consider now an exact discretization of the closed loop system (2.1),

$(fe+1) = (&) — (1 = p)t[s(4)IWT sign(s(£)). (2.5)
Note that the quantity (1 — p)t[s(¢,)]WT represents, in absolute value, the
magnitude of the steps undergone by the sampled scalar state s(¢,). We denote
by As(f,) such stepsizes; i.e.,

As(ty) = |s(tp1) — s(tp)l.

Assume now that condition (2.4) holds valid. Three situations are then possible:
1. For |s(4,)] > 1/8, the discretized system (2.5) is described by

$(te41) = () — (1 — p)WT sign(s(2)). (2.6)

Since (1-— p)BWT <1, it follows that As(f,)=(1-p)WT <1/B. As a
consequence, the sampled values of s are guaranteed to reach the interval
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Ig =[-1/B,1/B] in a finite number of steps. Any closed loop trajectory of
s, starting on the region |s(#,)| > 1/B, is, thus, eventually bounded by the
interval Iy =[-1/B,1/B]. If the first sampled value of s, say s(ty), be-
longing to the interval Ig, is also found in the smaller interval I,
A= Twin/B, Tmin/B], then, the third situation described below applies.
Otherwise, if s(¢y) € I but s(ty) & I, , the consideration that follows is
valid.

2. Within the interval 7n,,/B <|s|<1/8, the closed loop trajectory of s is
regulated by

s(te) =[1= (1= p)BWT1s(&), k=N. (2.7)

Since condition (2.4) is valid, the only eigenvalue of (2.7) is strictly positive
and smaller than 1. The scalar state s(#,), k= N further decreases, in ab-
solute value, without changing its sign. It follows that in a finite amount of
steps, the sampled value of s, say s(t,) for some M > N, will be found
within the interval I .

3. The discretized system, governing the evolution of the sampled values, s{f;)
of s on the interval I, , is given by

s(tre1) = s(t) — (1= P)Tain WTsign(s(4)), k=M. (2.8)

The stepsize A(s(f,)) = (1— p)TmnWT becomes constant in the interval
I . . Moreover, condition (2.4) implies that

A(s(t)) = (1 = P)BTain WT < T, Ve>M;

in other words, the exhibited stepsize of the discretized system is strictly
bounded by one-half of the width of the interval /;_;1ie,

(1= )ty WT < =5
As a consequence, the sampled values s(f,) of s(¢) become indefinitely con-
fined to the interval I, for k> M.

2.2 Trapezoidal pulse-width-modulation control of multivariable
nonlinear systems

2.2.1 Differentially flat systems In this section, we indicate how to uti-
lize the basic result of Proposition 2.1 in TPWM feedback controller design for a
class of multivariable nonlinear mechanical systems in which the velocity vari-
ables are assumed to act as control inputs to the system. For this class of sys-
tems, evidently, traditional PWM feedback control is not feasible, since it would
imply infinite input accelerations, or forces. Hence, the need for TPWM control-
lers. The class of mechanical systems to be treated in Sec. 3 corresponds to
those linearizable, by means of endogenous feedback, to decoupled controllable
systems in Brunovsky’s canonical form. This class of systems, addressed as dif-
ferentially flat systems, constitutes the simplest extension, to the nonlinear case
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of the class of controllable linear systems. The fundamental characterization of
this appealing class of systems has been the subject of extensive research car-
ried out by Professor M. Fliess and his co-workers in Fliess et al. (1992 a; b;
1993 a; b).

A fundamental property of multivariable differentially flat systems resides in
the existence of a so-called, set of linearizing outputs, or set of flat oulputs,
equal in number to the set of control inputs. This variables are such that every
other variable in the system, such as states, regulated outputs and even input
variables, are expressible as differential functions of such a set of linearizing
outputs; i.e., they are all functions of the linearizing outputs and a finite number
of their time derivatives.

The developments presented in the following paragraphs are taken from
Martin (1992).

Consider the n-dimensional multi-input system with s inputs and an m-di-
mensional vector z of regulated outputs; i.e., the input-output system is square,

¢ = ,u), € R", e R"
I O " } (2.9)

z=h(x), z€ R"

Suppose that a regular, i.e., invertible, dynamic compensator can be designed for
system (2.9), which is given by

0=al(x,6,v)

. (2.10)
u=>b(x,0,v), 6€ R vER"’}

Assume, furthermore, that an invertible state coordinate transformation ex-
1sts, of the form

§=0¢(x,0), (2.11)
such that the composite feedback system (2.9), (2.10),

= f(x,b(x,6,0v))
6= a(x,06,v) (2.12)

z=h(x)=h(x, 8)

is transformed into the following decoupled set of controllable linear systems,
expressed in Brunovsky’s canonical form:

é{ = Cn

) (2.13)
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where ¥,, i=1,,m are the Brunovsky controllability indices of the dynami-
cally feedback compensated system. They satisfy Z,m:] y,=n+tq.lt should now
be evident that the set of linearizing outputs, or flat outputs, are constituted by
the quantities y. = Cn’ i=1,--, m. Indeed, from the invertibility of the com-
posite state coordinates transformation (2.11), one obtains,

(x,0)= ¢‘_1(C) = ¢—1(§11> Ty C]yl»"': le’ T Cmym)
= ¢_1(y1) Ty y§YI_1)7 H ymv Ty yi,),/”’—l))y (214)

i.e., all the components of the augmented sate vector describing the dynamically
compensated system (2.12) are expressible as differential functions of the linear-
izing outputs y,, -+, ¥, .

By virtue of the last fact, each and every one of the regulated outputs z are
also differential functions of the linearizing outputs y. Indeed, in general terms,
one has

Z= h(x) = l:l(x, 9) = ﬁ[¢#l(é‘11’ MY CIYI’ T le’ Ty Cmym)]

il o~ (7,1 _
-:h[(p l(yl’,..’ylyl ),...’ym’...,yi’);m 1))]
()’1‘1) 000

:W(yl’“.’yl ’ vymr'”yyigm—l))' (215)

Each one of the new control inputs o;, i =1,--, m is also expressible as the
highest time derivative of the corresponding linearizing output y,, i.e, v; = éiY,
= yl(.y"), i=1,-,m. It then easily follows, by virtue of (2.10), that the control
input # can be expressed as

> = b(dfl(Cn’ ..."gm, SNSRI gmym), C'ly‘,..., émrm)

_ -1 _
= 507 (3, BT ey e, BT, T Y (2.16)

w=20(y, -,y

) Ty, y;Vz’, SRR yLle). (2.17)
The endogenous character of the dynamical feedback is equivalent to the fact
that the set of linearizing outputs y,, 1 =1,---, m, are, in turn, differential func-
tions of the state and input vector components; i.e., if and only if there exists a
real analytic function, ¥, of (x, «), and a finite number of their time derivatives,
such that

y=¥(x, u b, ul). (2.18)

Suppose one is particularly interested in obtaining a multivariable feedback con-
trol strategy, possibly of the TPWM type, such that the components of the m-
dimensional output vector z are driven in a stable manner towards compatible
pre-specified equilibrium values, represented by the constant vector Z. The
underlying input-output decoupled linearization problem requires, in general,
an interplay between two fundamental concepts known as row relative degree,
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introduced in Isidori (1989) and the concept of essential orders, developed in
Glumineau and Moog (1989). In certain cases, one may, however, utilize to advan-
tage the differential flatness associated with the system in order to obtain a
decoupled feedback linearizing design. We briefly explain the involved concepts
and the associated design procedure in the following paragraphs.

2.2.2 Row relative degree, essential orders and decouplability We
say that the component z; = h;(x) of the output vector of the system (2.9) has
row relative degree equal to the integer 7, whenever the 7 th time derivative of
2; explicitely depends upon any, or several, of the components of the control
input vector u. The vector formed with the row relative degrees (ry, -+, 7,) is
briefly addressed as the structure at infinity of the underlying multivariable non-
linear system. The rank of the matrix relating the #th time derivatives of the
output components z; to the control input vector u contains the essential infor-
mation that allows us to know whether or not the system is decouplable by
means of static state feedback in a certain region, or in all of state space of the
system. Such a matrix, addressed as the decoupling matrix, is obtained as

(n)

s |4

— - . 2.19

| () .
z'ﬂ

If the decoupling matrix (2.19) is globally (resp. locally) full rank m, the system
is said to be globally (resp. locally) input-output decouplable by means of static
state feedback. In such a case, we say that the structure at infinity coincides
with the essential structure at infinity. In other words, the essential structure is
nothing else but the structure at infinity of the decoupled system. The two con-
cepts are equivalent only for the particular case of statically decouplable sys-
tems.

Suppose, however, that the decoupling matrix (2.19) is not full rank. This
means that dynamical input extensions (i.e., adding integration elements in front
of some input channels) are necessary in order to obtain the decouplability rank
condition of the matrix relating the differentials of the output vector components
with the newly defined (extended) inputs. When a suitable extension of some of
the input components results in the (static) decouplability of the extended sys-
tem, the original system is said to be decouplable by means of dynamical feed-
back. Tt is clear that, in such a case, the new structure at infinity of the extended
system no longer coincides with the structure at infinity of the original system.
The essential structure is, however, still defined as the structure at infinity of
the decouplable extended system and, therefore, it measures the structural ob-
structions, present in the original system, for achieving static input-output
decouplability. The following result, taken from Glumineau and Moog (1989),
summarizes the above discussion in general terms.

Theorem 2.2. (Glumineau and Moog, 1989) If there exists a static or dy-
namic state feedback solving the decoupling problem, then, for each one of the
outputs of the system, it is verified that its (decoupled) relative degree is not
inferior to its essential order. Moreover, there exists a (possibly extended)
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decoupled system, deduced from the original system, for which the essential or-
ders coincide with the decoupled relative degrees.

2.2.3 Differential flatness and input-output decouplability It should
be stressed that the differential flatness of a given system is not affected by the
process of inducing dynamical extensions on some, or all, of the control input
components. Therefore, if the system is differentially flat but not input-output
decouplable by static state feedback, the decouplable extended system still re-
mains differentially flat.

The simplest possible cases are represented by those systems in which the
regulated outputs of the system z;, i =1, -, m, entirely coincide with the set of
linearizing, or flat, outputs, y,, i=1,--,m. In this case, the system is natu-
rally input-output decouplable by endogenous (static or dynamical) linearizing
feedback. In such a particular case, the essential structure at infinity of the
regulated outputs of the differentially flat system is easily assessed from the
highest values of the orders of the time derivatives of the different linearizing
output components over all the differential expressions defining the control input
components.

Consider, then, that z =y, i=1,---,m. The TPWM feedback controller
design problem is then reduced to obtain a set of scalar (i.e., decoupled) TPWM
feedback control laws achieving the stabilization, to desired equilibrium values
Z; =Y, for the following linear controllable subsystems, obtained by regular
dynamical feedback and diffeomorphic (composite) state coordinates transforma-
tion

. (2.20)
gz'y‘ =
ylz Cll’ Z.= 1)...’ m

To these design effects, consider the error variables s; =y —Y;, =¢, =Y
i=1,.,m, with ¥; being the desired constant equilibrium value for the ith
linearizing output y,. Consider, also, the associated auxiliary error variables, o;,
defined by

= g (r,—2)
g; = /L»lsi + /1525,- + oo+ }ti(yl_l)s,-

=2A1(8,) — V) + Ay + o+ Aigy,-1yGiy, -1y F Gy, (2.21)

b

where for each 7, the set of constant coefficients, {41, Aiz, =+, Ai(y -1, 1}, consti-
tutes a set of Hurwitz coefficients; i.e., the roots of the associated characteris-
tic polynomial g;(p), in the complex variable p,

(D)= Ait + App+ -+ Ay )y pTTA P (2.22)
are all located in the open left portion of the complex plane.

Imposing on each of the auxiliary error variables, g;, 1 =1, ---, m, the scalar
TPWM dynamics,
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6; = —-W; TPWMo;, i=1,--,m (2.23)

with W; >0, Vi, one guarantees, by virtue of the fundamental result presented
in Sec. 2.1, that the TPWM regulated trajectories of the linearizing output vector
components converge to an arbitrary small vicinity of the prescribed equilibrium
points Y;, i=1,:--, m.

Substitution of the auxiliary output error expressions on the imposed dynam-
ics (2.23) results in the following TPWM feedback control policy in terms of the
linearizing coordinates and their time derivatives,

v == A8, — Ay = = Aigy, -8y, — Wi TPWM((, — T7)
=—And; —An¥, — ‘li(y,-nyf-y’—l) - W, TPWM(y, - Y)),
i1=1,2,--,m. (2.24)

Evidently, the TPWM controller expression (2.24), is placeable in terms of the
composite state of the dynamically compensated system. In general, a dynamical
endogenous TPWM feedback controller is obtained. The second example in Sec.
3 corresponds to the situation here described.

In the general case, however, the regulated output vector z does not coincide
with the linearizing output vector ¥, but each and every one of its components
are, nevertheless, differential functions of such a set of linearizing outputs. This
is, precisely, the advantageous feature of exploiting the differential flatness prop-
erty of the system in the process of designing multivariable TPWM feedback
control policies, or any other kinds of feedback control policies. Although the
general theoretical developments will not be presented here in detail, they can be
easily inferred from the first example of Sec. 3. The fundamental assumption is
referred to the possibilities of proposing, for each component of the vector of
regulated outputs 2, a suitable linear (Hurwitz) combination of the particular out-
put error variable and its time derivatives. These auxiliary error functions must
be such that the imposition of a set of first order scalar decoupled TPWM closed
loop dynamics, of the form (2.23), yields an (invertible) multivariable relation
with the highest order time derivatives of the set of linearizing output coordi-
nates. From the obtained expressions, one then solves for the required dynami-
cally, or statically, generated control inputs (for more details, in connection with
the closedly related area of sliding mode controller design, the reader is referred
to Sira-Ramirez (1994)).

3. Trapezoidal Pulse-Width-Modulation Control
of Some Mechanical Systems

3.1 The hopping robot  Consider the dynamics of a hopping robot in flight
phase (see Murray and Sastry, 1993). Let the state variables be defined as the
length / of the leg and the angular position coordinates y and 6, respectively, of
the unit mass body and of the leg with respect to the horizontal axis. The leg of
the robot, of mass #;, can rotate with respect to its attachment to the body. The
total angular momentum is, however, conserved during such motions (such is the
nature of the nonholonomic constraint). During the flight phase, the leg is also
capable of extending and contracting within a given range, taken here, for
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simplicity, between 1 and 1+ L (see Fig. 3). The control inputs v; and v, are
constituted, respectively, by the angular velocity of the leg’s rotation and the rate
of change of the length of the leg. The equations describing the dynamics are
given by
V=10
=2 . (3.1)
my(1+ 1)
= =TTy
14+m(1+1)

The following state coordinate transformation:

and the redefinition of the input variables,
m=n
4y = __2m4D)_ (3.3)

(14 my(1+ 1))

takes the system (3.1) into a 2-input, 1-chain, single generator chained system
form (see Murray and Sastry, 1993),

H=w, ZX=wu, I3=04. (3.4)

The system is evidently differentially flat, since all variables in the transformed
system can be expressed as a differential function of the linearizing outputs

m

Fig. 3. A hopping robot.
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= x and y, = x3 (i.e., as a function of the leg and the body angular position
coordinates and a finite number of its time derivatives). Indeed,

Xy = yl

.
X = ‘.2

3!
X3 = y2 5 (35)
U = yl

$y3, = 3,9
uy = 2220 72N

J1

It is easy to see that the row relative degrees (see Isidori, 1989) of y, and y, are
both equal to 1, while the essential orders (see Glumineau and Moog, 1989) are
both equal to 2. The system is not decouplable by means of static state feed-
back, and a dynamic extension of order 1 is required on the transformed control
input #, in order to make the structure at infinity of the extended system coin-
cide with the essential structure. This extension is thus necessary for the appro-
priate definition of a dynamical feedback law which achieves decoupling of the
system.
The dynamically extended version of the transformed system, which is now
suitable for static linearly decoupling feedback, is given by
£ =u, X =u
1 1 2 2 } (3.6)

m =V, X3=xu

where v; = 1%, is a new control input to the system and the variable #, is just
an additional state variable for the extended system. The extended control in-
puts, as differential functions of the linearizing outputs, are simply given by

B nh

Vi :yl’ Up = yz (37)
1

Suppose it is desired to have the linearizing coordinate y, =6, adopt the
constant value ©, at the end of the flying phase, while the length / is driven to a
constant value, say L/3. Appropriate error functions s; and s; may be defined
as

§§ =x3-60=y,~-06
_m1(1+”LL3)274:&+_m,(1+]:/3)2 : (3.8)

Sp = Xo + 5 N 2
14+ m(1+ L/3) yoo 14+m(1+L/3)

While the first choice is clear, it is also easy to realize, from Eq. (3.8), that the
only physically meaningful solution for /, from the condition s, = 0, is given by
[ = L/3. Note that the first regulated output 2 = y, =6 coincides with a lin-
earizing, or flat, output y, of the system, while the second regulated output,
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2y = x5, is a differential function of the flat output. In the extended system, the
regulated output 2z has relative degree two, while the regulated output z; has
only relative degree 1. Thus, an imposed second order dynamics on 2; and an
imposed first order dynamics on 2z, already contain expressions involving the
highest order time derivatives of the linearizing outputs y, and y,. As it will be
seen, such time derivatives of the flat outputs are solvable from these imposed
relations.

In accordance with the particular form of the proposed regulated error func-
tions, a second-order closed loop TPWM dynamics will be proposed for s;. This
is achieved by imposing a first-order TPWM dynamics on a (Hurwitz) linear
combination of s§; and §;. A first-order closed loop TPWM controlled dynamics
suffices for the error coordinate s,.

Define, then, the auxiliary error coordinates o7 and o,, as

01=$1+lsl, A>0
. (3.9)

Oy = 8

A decoupled set of closed loop TPWM dynamics guarantees desirable stabil-
ity features, for s; and s, after the auxiliary error functions o7 and o, are
approximately driven to zero, in finite time. Such imposed TPWM dynamics are
given by

6 = - W, 1TPWMo,, W1>0} (3.10)

6, = — WyTPWMo,, W, > 0

The preceeding closed loop dynamics lead to error dynamics governed by

glz,lgl_ngPW(éﬁlsl)} (3.11)

$ = — W, TPWMs,

After small amplitude stable oscillations occur around the zero level set of the
auxiliary error functions oy = 0 and o, = 0, the 5, and s, coordinates will ap-
proximately satisfy the following equations:

s'1=—/'lsl} (3 12)
32=0 ‘ .

One may conclude that the proposed scheme guarantees a stable convergence of
5; and s, to a small vicinity of zero. This accomplishes, in an approximate, but
efficient manner, the proposed control objectives. The leg’s angular coordinate 6
is seen to converge towards the vicinity of the prescribed value ©, while also
closely achieving the required length [/ = L/3 for the rotating leg.

By virtue of the differential flatness of the system, the regulated dynamics
(3.10) can be immediately translated into required autonomous dynamics for the
linearizing outputs y, = x; and ¥, = x3. Indeed, in terms of y, and y, the Eq.
(3.10) result in the following nonlinear set of differential equations with right-
hand sides specified by TPWM feedback policies:
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1 . ; '
e 72.{[_“2 ~ W, TPWM (3, + A (3, — ©)13,

‘ 2 . (3.13)
+y’?WzTPWM(—y72- g LIS )}
3 14 my(1+L/3)

J, = — A3, — W TPWM[ 3, + A(y, — ©)]

Using the highest order derivatives j and J, obtained from the previous
set of differential equations, on the expressions for the (extended) control inputs
given in Eq. (3.7), one immediately obtains, in transformed coordinates, the re-
quired extended control input v; as v; = = J, and the (static) control input
Uy as

= _‘_1 '{[AXZ - VVzTPWM(xZ +

X2

—@(1+L/3)2ﬁﬂu
1+ m,(1+ L3P /)

-+-WlTPWM[x2u1+)t(x3—9)]} . (3.14)

I

Uz

2
= WzTPWM(xz R L/I“L?)
1+ my(1+ LI3Y

The multivariable TPWM controller thus includes a first order dynamical
TPWM compensator for the control input # controlling the leg’s angle and a
static feedback TPWM regulator for the control input #, regulating the leg’s
length. The dynamical and statical controllers can also be expressed in the origi-
nal system coordinates as

2 2
5y = -1l H){ (AJ"’Q”) , WZTPWMog>vl

my(1+ 1) 1+ my(1+1)

—W]TPWMGl] (3.15)
o QD
2= T o1+ 1) 2

with

2
o = — (~m’9+” ~)vl +A(6-0)

2
1+m(1+1) (3.16)

my(1+ 1) my(1+ L/3)

Oy =——" s T o

1+m(1+1) 1+my(1+L/3)

3.2 Simulation Results Computer simulations were carried out for the
system and the designed dynamical TPWM control policy. In order to test the
robustness of the proposed controller, an (unmodeled) computer generated sto-
chastic perturbation signal n was added to the hopping robot plant model. The
perturbed model used for the simulations was then take to be
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V=1,

[:U2+r],

. my(1+ 1)
9—_’_ Ul"l‘n,

1+m,(1+l)2.

where 1) is the hypothesized zero-mean pseudo white noise.

The required leg’s angular position was set to be @ = — 2x/3 [rad] = — 2.095
[rad]. The leg’s length was taken as L = 1[mt], so that the desired final length
was L/3 = 0.333 [mt]. The controller constants were chosen as

A=5[s""], W, =8[rad/s®], W, =02 B, =14[s/rad], B, =60,
Toing = 005, Tz =005, 7 =01]s].

The value of p was set to be p=1/6 for both TPWM signals. Figure 4 shows
the TPWM controlled trajectory of the perturbed evolution of the angle 6 and
the leg’s length I These variables are seen to approach the prescribed equilib-
rium values, respectively, in a stable manner and achieving the desired perform-
ance in finite time. The original control input signals v, and v, are also shown
in this figure. The control v, is the output of a dynamical TPWM compensator
and, therefore, exhibits a “smoother” behavior than the control signal v,, which
is the output of a static feedback controller. The signal vy thus exhibits a char-
acteristic pulsed behavior.

The body angle v is seen to exhibit a stable response towards an arbitrary
equilibrium point. Figure 4 also shows a sample of the perturbation signal n.
The peak-to-peak amplitude bound for this signal was allowed to be 5.

3.3 Regulation of a sliding mass position on an inverted pendulum

The example presented in this section is treated also in Fliess et al. (1993 b),
where classical linear controllers of the proportional and proportional derivative
type are proposed.

Consider a rectilinear link, free to rotate on a vertical plane around a fixed
point, on which a known mass M slides without friction. The distance from the
mass position on the link to the center of rotation of the link is denoted by g, the
angular position of the link is # measured with respect to the vertical (see Fig.
5). Tt is desired to regulate the position of the sliding mass to a constant value L.
The control input is assumed to be the angular velocity variable v = #.

A model for the system (see Fliess et al, 1993 b; Bressan and Rampazzo,
1993) is given by

g=p
p= —cos(u)+q? ¢, (3.17)
u=v

where it is assumed that the values of the mass M and of the gravity accelera-
tion have been normalized to unit values. System (3.1) is not a differentially flat
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706 H. SIRA-RAMIREZ AND O. LLANES-SANTIAGO

Gravity
force

Fig. 5. Sliding mass on inverted pendulum.

system. However, as it has been already shown in Fliess et al. (1993 b), the high-
frequency vibratory control input defined by

v=02+vlsin<%>, (3.18)

where € is a small real number, yields an average description of the system,
given by

g=p
§=—cos(ﬁ)+q<v%+%v§) . (3.19)
1;2112

The average system (3.19) is now a multivariable nonlinear system, which is also
differentially flat. Indeed, if one sets as linearizing output coordinates the aver-
age values of the mass position and the angular link position ( Y ¥,) = (g, @),
then, all variables in the average system are expressible as differential functions
of these coordinates. Indeed, '

p=3
V2= . (3.20)

N

The essential order of the linearizing output y, is 2, while that of the linearizing
output y, is just one. The essential orders thus coincide with the row relative
degrees. The system is, therefore, decouplable and linearizable by means of en-
dogenous static state feedback.

The desired equilibrium point for the average system (3.19) is given by

g=1L1, p=0, 0v,=0, v1=\/EC02(U)-,
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where U is an arbitrarily desired angular position for the link.

The regulated outputs 2z and z, are here taken to coincide with the lineariz-
ing outputs ¥, and y,. In order to obtain a TPWM feedback control strategy for
the auxiliary control inputs v; and v, one defines the error coordinates s; and
s, as ;=2 —L=y ~L and s;=2-U=y,-U. The auxiliary error
variables 0, and o, are defined, in this case, as o) = §; + 45, and oy = $.
One then imposes on these auxiliary variables the following scalar TPWM
closed loop dynamics:

(5'1 =—VV1TPWMO'1} (321)

6'2 = _I/Vz TPWMO'Z

The TPWM regulated trajectories of the auxiliary error coordinates, o, and
o,, are thus guaranteed to be stabilized to an arbitrary small neighborhood of
zero, where they exhibit a stable oscillatory behavior whose amplitudes are in-
versely related to the magnitude limitations imposed on the rates of the velocity
control variables v; and v,.

In terms of the error variables, the imposed multivariable closed loop dynam-
ics are given by

(3.22)

§1 = ’2.16“1 - VV]TPWM(SI +A.151)
§o = —WL TPWM (s5) ’

The TPWM feedback control laws v, and v, are then immediately obtained

~ALy, — W, TPWM[ 9, + A, (v, — L)} +cos(y,) -
by = H_gl A [LML,)]jcis(?i_[%TPWM(yz_U)]z} 325

gl

vy = W, TPWM (3, — 0)

In terms of the average state coordinates of the system, the required TPWM
feedback is then given by

-Mp-WTPWM[p+ A (g—-L)]+ 7] _
vy =H“p ALY L )]cos(u)—[%TPWM(ﬁ—U)]Z} (3.24)

q
vy = —Wo TPWM (- U)

3.4 Simulation results The performance of the average feedback control-
ler, given by Eq. (3.24) was tested on a perturbed version of the given system
(3.17). The perturbed model was taken to be

g=p
p=—cos(u)+q?+nr, (3.25)
u=v

where n was synthesized as a computer generated pseudo white noise process.
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The TPWM feedback control policy (3.24) was implemented by directly feed-
ing back the actual state variables ¢, p and « rather than the averaged variables.

The desired equilibrium value for the mass position was set to be L =1, and
the desired link angular position U = 1. The design values of the constant pa-
rameters specifying the static TPWM control laws were chosen as

W, =03, W,=03, p,=20, A=083 B,=100,
Toinl = 006,  Tpime = 006, T =01.

The value of p was chosen, for both controllers, as p = 1/6.

In Fig. 6, the feedback regulated mass position ¢, its linear velocity p, and
the link angular position trajectories « are shown to converge to a small vicinity
of their respective pre-specified equilibrium values. The high frequency control
input v, including TPWM components, is also shown in this figure along with a
sample trajectory of the perturbation signal 1. This computer generated signal
was specified with a peak-to-peak amplitude bound of 2 units.

4. Conclusions

In this article, a new class of pulsed feedback control strategies, without
steplike discontinuities, has been proposed for the regulation of nonlinear multi-
variable systems. The feedback technique, addressed as “trapezoidal pulse width
modulation” control, has been shown to be suitable for the regulation of a large
class of nonlinear multivariable systems with limited control input rates.

A fundamental result on the stability features of the trapezoidal pulsed regu-
lation, of a single integrator scalar system, provides the basis for suitable error
stabilization in more complex systems, such as multivariable nonlinear systems.

The proposed scheme is specially suitable for the solution of stabilization
and tracking, problems defined on nonlinear mechanical systems in which angu-
lar, or linear, velocity variables are naturally regarded as control input variables
to the system. The limited slope assumption on the generated feedback input
signals corresponds to magnitude acceleration constraints and, hence, it also
naturally handles realistic torque, or force, magnitude limitations. The proposed
pulsed feedback controller also represents a “smoothed” approximation strategy
for traditional pulse-width modulation feedback schemes of discontinuous na-
ture.

Due to the lack of asymptotic stability features of the fundamental scheme,
feedback TPWM regulation can only achieve regulation, to arbitrarily small
neighborhoods of pre-specified constant equilibrium points. From a practical
viewpoint, however, the precision features of the corresponding regulated posi-
tion variables are, not surprisingly, quite satisfactory. This is basically due to
the averaging effects of the integration of the induced small-amplitude velocity
limit cycles.

Two application examples of physical flavor were presented, along with en-
couraging computer simulations. These included unmodeled digitally generated
stochastic perturbation signals.

The important issue of TPWM controller design for parameter uncertain,
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Fig. 6. TPWM regulated trajectories, control input signal and perturbation
noises for the sliding mass stabilization problem.
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multivariable, flat systems requires the development of suitable adaptive feed-
back control techniques. This area requires further developments, and it cer-
tainly constitutes an interesting topic for further research.

References

Bloch, A.M., M. Reyhanoglu and N.H. McClamroch (1992). Control and stabilization of
nonholonomic dynamic systems. IEEE Trans. Automatic Control, AC-37, 11, 1746
1757.

Bressan, A. and F. Rampazzo (1993). On differential systems with quadratic impulses
and their application to lagrangian mechanics. SIAM J. Control and Optimization, 31,
5, 1205-1220.

Fliess, M., J. Lévine, P. Martin and P. Rouchon (1992 a). Sur les systémes nonlinéaires
différentiellement plats. CR. Acad. Sci. Paris, 315, Serie 1, 619-624.

Fliess, M. ]. Lévine, P. Martin and P. Rouchon (1992 b). On differentially flat nonlinear
systems. Proc. of the IFAC Symposium NOLCOS’92, Bordeaux, 408-412.

Fliess, M., ]. Lévine, P. Martin and P. Rouchon (1993 a). Défaut d’un systéme non linéaire
et commande haute fréquence. CR. Acad. Sci. Paris, 316, Serie I, 513-518.

Fliess, M., ]J. Lévine, P. Martin and P. Rouchon (1993 b). Differential flatness and defect:
An overview. Workshop Geometry in Nonlinear Control, Banach Center Publications,
Warsaw.

Glumineau, A. and C.H. Moog (1989). The essential orders and nonlinear decoupling. Int.
J. Control, 50, 5, 1825-1834.

Isidori, A. (1989). Nonlinear Control Systems. 2nd Edition, Springer-Verlag, N.Y.

Kadota, T.T. and H.C. Bourne (1961). Stability conditions of pulse-width-modulated sys-
tems through the second method of Lyapunov. Institute of Radio Engineers Transac-
tions on Automatic Control, AC-6, 266-276.

Kassakian, J.G., M.F. Schlecht and G.C. Verghese (1991). Principles of Power Electronics.
Addison-Wesley Publishing, Reading, MA.

Kuntsevich, V.M. and Yu.N. Cherkhovoi (1971). Fundamentals of nonlinear control sys-
tems with pulse-frequency and pulse-width modulation. Automatica, 7, 73-81.

LaCava, M., G. Paletta and C. Piccardi (1984). Stability analysis of PWM control systems
with PID regulators. Int. | Control, 39, 5, 987-1005.

Martin, P. (1992). Contribution & I'étude des systémes différentiellement plats. Doctoral
thesis, Ecole des Mines de Paris.

Murray, R.M. and S.S. Sastry (1993). Nonholonomic motion planning: Steering using si-
nusoids. [EEE Trans. Automatic Control, AC-38, 5, 700-716.

Nelson, W.L. (1960). Pulse width relay control in sampling systems. ASME Paper, 60-
JAC4.

Polak, E. (1961). Stability and graphical analysis of first-order pulse-width-modulated
sampled-data regulator systems. Institute of Radio Engineers Trans. Automatic Con-
trol, AC-6, 276-282.

Sira-Ramirez, H. (1989). A geometric approach to pulse-width-modulated control in non-
linear dynamical systems. IEEE Trans. Automatic Control, AC-34, 2, 184-187.

Sira-Ramirez, H. (1991). Nonlinear dynamical discontinuous feedback controlled descent
on a non atmosphere-free planet: A differential algebraic approach. Control-Theory
and Advanced Technology (C-TAT), 7, 2, 301-320.

Sira-Ramirez, H. (1992). Dynamical pulse-width-modulation control of nonlinear systems.
Systems and Control Letters, 18, 2, 223-231.

Sira-Ramirez, H. (1994). On the sliding mode control of multivariable nonlinear systems.
submitted to Int. J Control.

Sira-Ramirez, H. and P. Lischinsky-Arenas (1990). Dynamical discontinuous feedback
control of nonlinear systems. IEEE Trans. Automatic Control, AC-35, 12, 1373-1378.



Trapezoidal PWM control of nonlinear mechanical systems 711

Sira-Ramirez, H., P. Lischinsky-Arenas and O. Llanes-Santiago (1993). Dynamic compen-
sator design in nonlinear aerospace systems. IEEE Trans. Aerospace and Electronics
Systems, AES-29, 2, 364-379.

Skoog, R.A. and G. Blankenship (1970). Generalized pulse-modulated feedback systems:
Norms, gains, Lipschitz constants and stability. IEEE Trans. Automatic Control, AC-
15, 3, 300--315.

Taylor, D.G. (1992). Pulse-width modulated control of electromechanical systems. IEEE
Trans. Automatic Control, AC-37, 4, 524-528.

Tsypkin, Y.Z. (1984). Relay Control Systems. Cambridge University Press, Cambridge.

P U A SO S S T T T 1)

Hebertt Sira-Ramirez obtained the de-
gree of Ingeniero Electricista from the
Universidad de Los Andes in Meérida-
Venezuela in 1970. He pursued graduate
studies at the Massachusetts Institute of ' E
Technology (MIT), Cambridge, MA, where : - §
he obtained the degree of Master of Science e
in Electrical Engineering (MSEE), the de-
gree of Electrical Engineer (EE) and the
Ph.D. in Electrical Engineering in 1977. He
is currently a Full Professor in the Control
Systems Department of the Systems Engi-
neering School of the Universidad de Los
Andes, where he has also held the positions
of Head of the Control Systems Department
and Vice-president of the University. He
was appointed Head of the Graduate School
in Control Engineering in 1992. Dr. Sira-Ramirez is a Senior Member of the
Institute of Electrical and Electronics Engineers (IEEE), where he serves as a
member of the IEEE International Committee. He is also a member of the Inter-
national Federation of Automatic Control (IFAC), the Society of Industrial and
Applied Mathematics (SIAM), the American Mathematical Society (AMS),
Sigma Xi, the Planetary Society and of the Venezuelan College of Engineers
(CIV).

He has held numerous visiting positions at places which include the Coordi-
nated Science Laboratory of the University of Illinois (Urbana-Champaign, IL,
U.S.A ), the Department of Aeronautical and Astronautical Engineering and the
Department Electrical Engineering of the same University, the School of Elec-
trical Engineering of Purdue University (West Laffayette, IN, US.A), the
Laboratoire de Signaux et Systémes (LSS) of the Centre National de la
Recherche Scientifique (CNRS) (Plateau du Moulon, France), the University of
Sheffield (Sheffield, England) and the Institut National des Sciences Appliquées
(INSA) (Toulouse, France).

Dr. Sira-Ramirez is an IEEE Distinguished Lecturer for 1993-1996. He re-
ceived the National CONICIT Award for Best Scientific Work during 1993 and
the Venezuelan College of Engineers Award for Scientific Research in 1987, as
well as the “Senior Researcher Scholarship Award” from the Venezuelan Na-
tional Council for Scientific and Technological Research (CONICIT) in 1990.

Dr. Sira-Ramirez is interested in the theory and applications of discontinu-
ous feedback control strategies for nonlinear dynamic systems.

)
I
i
N ——————

i e



712

H. SIRA-RAMIREZ AND O. LLANES-SANTIAGO

Orestes Llanes-Santiago received the
degree of Ingeniero Electricista from the
Instituto Superior Politécnico “José Antonio
Echeverria” in 1981. He obtained the M.S.
degree in automatic control engineering
in 1991 from the Universidad de Los
Andes, Mérida, Venezuela, where he is cur-
rently working toward the Ph.D. degree in
automatic control engineering. Mr. Llanes-
Santiago is currently an Assistant Pro-
fessor in the Automatic Department of the
Electric Faculty of the Instituto Superior
Politécnico “José Antonio Echeverria.”

He is a student member of the Institute
of Electrical and Electronics Engineers
(IEEE). He is interested in the theory and
applications of discontinuous control strat-
egies for nonlinear dynamic systems.



