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Sliding Mode Control of dc-to-dc Power

Converters via Extended Linearization

Hebertt Sira-Ramirez Senior Member, IEEE, and Miguel Rios-Bolivar

Abstract—The method of Extended Linearization is proposed
for the systematic solution of sliding mode controller design in
de-to-dc Power Converters of the Boost and the Buck-Boost type.
A nonlinear sliding surface with suitable stabilizing properties is
synthesized on the basis of the extension of a linear sliding design
carried out for the parametrized average linear incremental
model of the converter. The obtained feedback strategies lead
to asymptotically stable sliding modes with remarkable self-
scheduling properties. Simulation examples are presented for
illustrative purposes.

I. INTRODUCTION

N this article, a new method is proposed for the synthesis of

stabilizing sliding mode controllers (Utkin {1]) in bilinear
switch-regulated dc-to-dc Power Supplies. The method of
Extended Linearization, developed by W. Rugh and his co-
workers (Rugh [2], Baumann and Rugh [3], and Wang and
Rugh [4]) is used for the specification of the nonlinear sliding
surface. In general terms, the design technique, primarily,
entitles resorting to parametrized approximate linearization,
about a general constant equilibrium point, of a suitably
defined average system model. Using linear sliding-mode
design results [1], a traditional stabilizing sliding hyperplane
design is carried out on the basis of the family of parametrized
linear systems. A most convenient framework for this purpose
consists in placing the average incremental (i.e., linearized)
model in standard controllable canonical form by means of an
invertible linear state coordinates transformation. The linear
design is led by imposing, on the resulting ideal sliding
dynamics, a set of stable closed loop eigenvalues, chosen
independently of the constant operating point. The core of the
proposed method consists in specifying a suitable ‘‘extension”
of the sliding hyperplane design which results in a nonlinear
switching manifold. The designed surface, which is tangent to
the prescribed hyperplane, contains the equilibrium point and it
is parametrizable in terms of the nominal operating conditions.
A conceptual advantage of this procedure is that the resulting
ideal sliding dynamics can also be made locally linear (modulo
a suitable local diffeomorphic state coordinate transformation
directly derivable from the lincarized system model). Non-
linear switching manifolds, which are only required to be
tangent to the prescribed linear hyperplane, may be, generally
speaking, nonuniquely defined. A direct integration procedure,
carried out on the synthesized incremental sliding hyperplane,
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is then proposed as a systematic procedure for the synthesis of
nonlinear sliding surfaces and their associated discontinuous
feedback controllers. The nonlinear sliding mode switching
logic is directly synthesized on the basis of the obtained
nonlinear sliding surface coordinate function. The region  of
existence of a stabilizing sliding regime is easily assessed from
knowledge of the parametrized equivalent control.

The proposed sliding mode controller exhibits 2 most im-
portant property, aside from those already mentioned, related
to adaptability to sudden changes in the nominal operating
conditions. Thus, if a desirable, or accidental, change of the
nominal operating conditions of the converter takes place, the
proposed discontinuous control scheme automatically creates
a sliding regime which stabilizes the converters trajectories to
the new equilibrium point, located on a new corresponding
sliding surface. This last property results in no need for
a "scheduling" process of the sliding manifold and of the
switching "gains". Similar features are known to be ‘‘char-
acteristic" of standard extension schemes commonly used in
nonlinear controller design techniques based on the Extended
Linearization approach [2]-[4]. Sliding regimes, based on
Extended Linearization, have been also recently proposed by
the authors for a variety of aerospace control problems (see
Sira-Ramirez and Rios-Bolivar {5], [6]).

Section 2 of this article presents a general procedure for
synthesizing stable nonlinear sliding manifolds, for a large
class of switched controlled systems, via Extended Lineariza-
tion. Section 3 is devoted to apply the proposed controller
design procedure to the Boost Converter and the Buck-Boost
Converter models. The performances of the obtained sliding
mode controllers are assessed by means of computer simu-
lations. Section 4 summarizes the conclusions and presents
some suggestions for further work.

II. AN EXTENDED LINEARIZATION SYNTHESIS
PROCEDURE FOR SLIDING MODE CONTROLLERS
IN NONLINEAR SWITCHING SYSTEMS

A. Problem Formulation

Consider the n-dimensional switched controlled dynamical
nonlinear system:

&= f(z) +ug(z)+n M
where f(-) and g(-) are smooth vector fields defined on an
open set of R™. and 7 is a constant vector. The control input
function wu takes values on the binary discrete set {0, 1}. This
general formulation corresponds to the typical situation in
bilinear switched controlled circuits as well as in the most
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common category of switch-mode controlled dc-to-dc power
converters (see Sira-Ramirez [7])

Associated to (1), and under the assumption of fast switch-
ings, we define an Average Model by formally replacing
the discontinuous control function  in (1) by a continuous
piecewise smooth function u (see also Sira-Ramirez, [8])

2= f(z)+ pg(z) +n @
where the state vector is now denoted by z, just to differentiate
it from the actual state z.

One of the main difficulties in attempting to use
anylinearization method in the controller specification
for a switching system, of the form (1), lies in the fact
that (1) cannot be linearized due the discrete nature of u
and the high frequency control discontinuities associated
with the operation of such class of systems. However, in two
important discontinuous feedback control schemes represented
by: 1) sliding mode controlled systems, and 2) Pulse Width
Modulation (PWM) control strategies, an infinite switching
frequency average model of system (1) may be obtained,
precisely, in the form of (2). In both cases the, so called, ideal
sliding dynamics, or the average PWM model, are equally
obtained by substitution of the discontinuous control function
u by the piecewise smooth equivalent control, or by the
piecewise smooth duty ratio function. In any of the two above
cases, the average control function u takes values in the
closed interval [0, 1]. Notice that a linearization procedure is
then entirely feasible, possibly in a local fashion, on average
models of the form (2). This reasoning justifies our use of
the extended linearization technique in switching systems
(see also Sira-Ramirez [9])

The average controlled system (2) is assumed to have a
continuous family of constant state equilibrium points, Z(U),
corresponding to average constant inputs, 4 = U, which are
neither O nor 1,i.e.,0 < U < 1. The equilibrium points satisfy:

f(Z2U) +Ug(Z(U)) +n=0.

The pair of linearized maps, given by:
of 99
S (2W) +UZL(2(U), 9(2(U))

is assumed to be controllable.

1t is desired to locally maintain, in a stable fashion, the
trajectories of the nonlinear system (1) in the vicinity of
the constant nominal average equilibrium trajectory, z =
X(U) := Z(U), by means of a sliding motion, suitably
induced on a manifold S which contains such an equilibrium
point z = X (U). In other words, it is required to synthesize

1) A nonlinear sliding surface S, parametrized by the

nominal average control input U, of the form:

S = {z € R*|s(z,U) = 0} 3)
such that s(X(U),U) = 0, and
2) An associated variable structure control law:

_J1 for s(z,U)>0
u(z’U)_{O for s(z,U) <0

which automatically forces every small state deviation,

@

from the nominal operating conditions, to zero, via the

local creation of a stable sliding regime, taking place

on 8, and leading the state trajectory to X(U). This

stabilization is to be accomplished, of course, modulo

small chattering around the prescribed equilibrium point.

In order to specify such a sliding manifold we propose to

resort to the method of Extended Linearization ([2)-[4]) as
indicated in the following paragraphs.

B. A Nonlinear Sliding Mode Controller Design
Based on Extended Linearization

1) Linearize the average dynamical system (2) about each
point in the family of average constant operating trajec-
tories, [Z(U), U], obtaining the following parametrized
family of linear systems:

zs = A(U)zs +b(U)ps (&)
where, for fixed U, the input and state perturbation
variables are defined, respectively, as: ps = u(t) — U,
25(t) = 2(t)— Z(U) , while the n x n matrix A(U) and
the n-vector b(U) are defined as:
=9 of .
A@V) = ZH2) +UZ2W)
bU) =g(2(V)) (6

Since the pair [A(U),b(U)] is assumed to be control-
lable, a similarity transformation exists of the form:

G = P(U)zs = [1(U), p2(U), -, pa(U)] 25 (D)

such that (5) may be represented as a controllable
canonical realization. The nonsingular matrix P(U) is
obtained from the well known expression:

PYU) = [b(U), AUIBU), . .., A" (U)B(U)]| M(V)

er(U)  a2(U) -+ 1
o2(U)  a3(U) -+ 0
MU)= g - ®
a,._,(U) 1
1 0 -0

where:

det [M — A(U)] = A + a1 (U)A"1
+0n_ oA 2 + .+ ao(U).

2) Obtain the transformed system in controllable canonical
form as:
16 = Cos
Go5 = (35
Cin-1)6 = Cns
Cns = —an—l(U)CnS - an-2(U)
Cn-1ys — - — ao(U)C1s + s
9
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3) Use_as a sliding surface the linear manifold:

4)

5

~

I = {C& €R™Mos(Cs) = cils=0 ; cn= 1}

=1 (10)
and choose the coefficients c;, independently of the
operating point [Z(U), U], such that the roots of the
characteristic polynomial:

Z ATl =0 an
=1

for the (reduced) linear ideal sliding dynamics are spec-
ified at convenient locations in the open left half of the
complex plane. i.e., so that the autonomous ideal sliding
mode dynamical system:

i = Cos
26 = (35
: 12)
C(n=1)6 = —Cn-1{(n—-1)6 — Cn~2((n~2)s — - — €1(15

is asymptotically stable toward the origin of transformed
coordinates.
Obtain, on the basis of the previously described design
steps, the parametrized sliding hyperplane specification
in terms of the average perturbed state coordinates zg,
as follows:

Sé = {25 € 'R"|35(25,U)
= 05(P(U)z) = cTP(U)zs = 0} (13)

Obtain a nonlinear sliding manifold S, characterized by
the parametrized surface coordinate function s(z,U) =
0 such that its corresponding linearization about the
operating point [Z(U), U], yields back the sliding hy-
perplane (13). In other words, find a nonlinear switching
surface, in average state coordinates z, which is tangent
to the sliding hyperplane (13) at the equilibrium point.
This sliding manifold can be immediately expressed in
actual state coordinates z as s(z,U) = 0

e  Sliding Manifold. We must, thus, find a nonlin-
ear sliding surface coordinate function s(z,U),
parametrized by the constant operating point U,
such that the following relations are satisfied:

9s(z,U)
= le=xy= T P(U)

= ["p(U), T pa(U), ..., cTpa(U)] (14
or, componentwise:

ds(z,U)
~ o le=x@y =T pa(U) ;

1=12,...,n (15)

with the additional (boundary) condition:
s(X(U),U) = 0, with X(U) = Z(U).

Remark In general, there are infinitely many
parametrized sliding surface coordinate functions,

s(z,U), which satisfy relations (14) and the
boundary condition. Such a lack of uniqueness
of solution may not be totally inconvenient.
However, the following direct integration
procedure, inspired by the results in [2], allows
one to obtain a nonlinear sliding manifold in a
systematic manner:

a) Assume, without loss of generality, that the
first component X;(U) of the vector X(U)
is invertible, i.e., let there exist a unique
solution, X7 (z;), for U in the equation
rn = X 1 (U )

b) It can be verified, after partial differentiation
with respect to the components of the vector
z and substitution of the equilibrium point,
that the following manifold is one possible
solution for the required parametrized non-
linear sliding manifold:

S={$€R" | s(z,U)

X7 =)
=L cTP(V)d—);(}V)- dv
+ > (X7 (z1)) [=5 — X;
i=2

(X7 H(z1))] =0} (16)

0

*  Equivalent Control Once the nonlinear sliding
surface coordinate function s(z,U) is known,
computation of the equivalent control follows by
imposing the well known (ideal) invariance con-
ditions, which make of the switching manifold a
local integral manifold of the constrained system
(ideally) smoothly controlled by the equivalent
control policy:

d
s(z,U)=0 ; &s(x,U)=0 an

e  Sliding Mode Switching Logic. A nonlinear slid-
ing mode switching strategy is usually synthesized
such that the sliding mode existence conditions
([1)) are satisfied, at least, in a local fashion. Such
well known conditions are given by:

lim —=--"~ < 0; lim ds(=,U)

3—0+ $5—0- 4

> 0
g

It has been shown that, for nonlinear systems which are linear
in the scalar control input, a necessary and sufficient conditions
for the local existence of a sliding mode is that the equiv-
alent control locally exhibits values which are intermediate
between the extreme numerical values representing the switch
position values (ie., 0 < ugg(z,U) < 1). The region of
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existence of such a sliding regime coincides, precisely, with
the region where such an intermediacy condition is satisfied
by the equivalent control. One may, therefore, synthesize the
nonlinear sliding mode switching logic from knowledge of the
sliding manifold coordinate function, s(z,U), as follows:

u(z,U) = %[1 + sign s(x, U)] (19
In more general cases, where there is no special input structure
to the system, the above switching logic, or any one satisfying
the equivalent control intermediacy condition, may still locally
create a sliding regime provided the system exhibits a control
foliation property (See Sira-Ramirez [10]). For the class of
examples that we will be presenting in the next section, a
switching control law of the form (19) suffices.

Notice that due to the discrete nature of the control input
set, the equivalent control function is necessarily limited to the
closed interval [0, 1]. Thus, the region of existence of a sliding
mode, on the switching manifold, may not be global in the
state space of the system. A necessary and sufficient condition
for assessing the region of existence of sliding regimes in the
above class of variable structure systems was given by Sira-
Ramirez in (11]. Such a region of existence is simply defined,
for the class of switch-regulated systems given by (1), by:

{zeR*|0 < ugg(z,U) < 1} (20)
Let Lys(z,U) denote the the directional, or Lie derivative,
of the sliding manifold coordinate function s(z,U) along the
smooth vector field ¢(x). It is easy to show that for a system
of the form (1), with sliding surface given by S = {z €
R™ | s(z,U) = 0}, the equivalent control, readily obtained
from the condition $(z,U) = 0, is given by

— Lf+'73_("fv U)
upq(z,U) = Los(z.0) [03))
The region of existance (20) is therefore given by (see [11]):
Lf+fl's(x7 U)
his = - & 22
{IER |0 < ugo(z,U) 1,5z, U) < 1p (22)

which, in local coordinates, is simply expressed as:

[0s(z,U)/8z)(f() +m)

{””ER"'““ [Bs(z, U)/62]g(z) '<1} @)

In all of the examples treated in the next section such a
region of existence is explicitly computed. In the presented
simulations, the behavior of the discontinuously controlled
trajectories, around the prescribed switching manifold, are
clearly shown, both, outside and inside such a region.

III. SLIDING MODE CONTROLLER DESIGN FOR
BILINEAR SWITCHED-CONTROLLED CONVERTERS

In this section we use the extended linearization-based
sliding mode control synthesis procedure, developed in Section
2, for the specification of discontinuous feedback regulation
schemes in typical bilinear switch-mode controlled dc-to-dc
power converters.

— E

I -

Fig. 1. The Boost converter.

A. Boost Converter

Consider the Boost converter model shown in Fig. 1. This
converter is described by the following bilinear system of
controlled differential equations:

1 = —woZTy + uwoezz +b

:i;z = WoZT] — WiT2 = UWeT) (24)

where, z; = T VL, 23 = VVC represent normalized input
current and normalized output voltage variables, respectively.
The quantity b = E/VL is the normalized external input
voltage and , wo = 1/vLC and wy = 1/RC are, respectively,
the LC (input) circuit natural oscillating frequency and the
RC (output) circuit time constant. The variable u denotes the
switch position function, acting as a control input, and taking
values in the discrete set {0,1}. System (24) is of the same
form as (1), with p = [b 0]’. We now summarize, according
to the theory presented in the previous section, the formulae
leading to a nonlinear sliding mode controller design for the
average model of (24) using extended linearization.
Average Boost converter model

3 = —wpze + pwoza + b

Z2 = Wp21 — W122 ~ HWe21 (25)

Constant parametrized operating equilibrium points
bw1 A _ 7 é‘ 7‘ )
P 2U) = wo(1—-U)
(26)
Parametrized family of linearized systems about the
constant operating points

o] I AR ]

u=U ; Z1(U)='ujg(’i_v')2‘

"y
iy
[216]+[ LU _] b QD
26 T Wo(1-UY
with:

zis(t) = z:(t) — Zi(U);5=1,2 ; ps(t) = u(t) - U.

Transformation of linearized family of systems to con-
trollable canonical form
Gs| o wi-U)?
Gs | 22w} +wi(1-U))
- bwy o __ b
[w,,(l-v)2 wo(1-U) ] [216] ©8)

—2bwy
b oy J 1728
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Prametrized family of linearizations in controllable
canonical form

16 = Cos
Cos = —wia(1 — U)%C1s — wiCos + pis

Linear sliding surface and ideal sliding dynamics in
transforimed state coordinates

05(¢s) = Cas + €115

29

(30)
Gis=-c1lis 5 @ > 0 31
Linear sliding surface in original (average) state coor-
dinates
ab-2bun]
] 216 + [wo(l —U)] 26 =0
(32)

Nonlinear sliding surface, equivalent control and sliding
mode controller

s(2,U) = blzy — Z1(U)] + %cl [22 - Z3()]

cbw
ss(zs) = [b"’ E{‘,’(i _';’j)z

+4 T22’”i- 2~ Z2(U)] =0 (33)
b(b+ c1z1) ~ wiley - 2wy )xd
upg(z,U) =1 - — 1 —700 s - (34
£Q( ) wo(b + ¢121) ~ wo(c1 — 2w )12 4
1 .
u= 5[1 + sign s(z, U)) (35)

The region of existence of a sliding mode on the switching
manifold, according to (20), is given by the zone bounded
between the following two curves in the z; — zo coordinate
plane (see Fig. 3).

2 € R?lugq(s,U) = 0} =
b(b + e121) — wi(er ~ 215_1_)1:3

(@122 | —wdo(b'*' c1z1) ;wo(cl - 2w1)1112; =1}
(36)

{z ERzluEQ(I,U) =1} =
{(z1,22) | b(b + c121) — wi(e1 — 2w1)x§ =0}
(37

A local diffeomorphic state coordinate transformation,
which can be inferred from the linearized transformation (28)
takes the average ideal sliding dynamics into an autonomous
stable linear system.

1
G=c(22+23) 5 &o=bny ~w2} (38)

2
This transformation coincides with the diffeomorphism achiev-
ing exact linearization found in Sira-Ramirez and llic [12] and,
not surprisingly, it is the same found by Pseudo-linearization
techniques (see Sira-Ramirez [13]). The interpretation of (38),
in terms of total average energy and average consumed power,
can be found in [12].

In the new coordinates (38), the ideal sliding dynamics is
given by:
: Xi+ X3
b=-a (51 - —‘-2-4)

bX, ~ sz)

fr=—c (fz S =-a&  (39)

which is evidently linear, as claimed from the outset.

B. A Simulation Example

A Boost converter circuit with parameter vatues: R = 3012,
C = 20uF, L = 20mH and E = 15V was considered for
sliding mode controller design based on nonlinear switching
manifolds computed via extended linearization. The constant
operating value of p was chosen to be U = 0.1619 while the
corresponding desirable normalized constant output voltage
turned out to be Z»(0.1619) = 0.08. The equilibrium value of
the average normalized input current is 2;(0.1619) = 0.1007.

Fig. 2 shows several state trajectories corresponding to dif-
ferent initial conditions set on the ideal Boost converter model
feedback regulated by means of a sliding mode controller of
the form (3.10)-(3.12). The average controlied state variables,
z; and 2z, are shown to converge towards the desirable
equilibrium point, (0.1007,0.0800). The region of existence
of a sliding regime is bounded by the curves upg(z,U) =
ugQ(z,0.1619) = 0 (actually shown in the figure) and
upg(z,U) = upg(z,0.1619) = 1 (not shown in the figure).
Outside the region of existence of a sliding regime, the
trajectories are clearly seen not to create a sliding regime on
the manifold, s(z,U) = s(z,0.1619) = 0.

Fig. 3 clearly shows the extent of the region of existence of
a sliding motion by depicting the boundary lines (36) given
by {z € R? | upg(z,U) = 0} and the boundary line (37),
given by {z € R? | ugo(z,U) = 1}. The first boundary line
corresponds to an hyperbola which exhibits intersection with
the sliding manifold, s(z,U) = 0, only on one of its branches
located in the first quadrant, z; > 0, z; > 0. The boundary
line (37) ‘corresponds to a parabola confined to the second
and third quadrants. The intersection of the second branch
of the hyperbola with the parabola clearly corresponds to a
nonphysical situation whereby the equivalent control adopts,
both, the value 1 and 0. The region of existence of a sliding
regime is thus located above the first branch of the hyperbola
located in the first quadrant and, theoretically speaking, it
extends towards the infinity. This fact precisely corresponds
with the (ideal) output voltage ‘‘amplification” capabilities
of the Boost converter. Such a magnification even extends
towards infinite values, as the equilibrium value of the duty
ratio, u = U, approaches 1 ( see (26)).

Fig. 4 shows the effect of a sudden step change in the desired
average equilibrium value of the converter output voltage
z9 = Z2(U) from 0.0800 to 0.2000. This change causes a
comresponding change in the operating equilibrium point of
the duty ratio, 4, as well as the consideration of a new sliding
surface S». The equilibrium value of the duty ratio is seen to
change from the value p = U; = 0.1619 to a new value of
p = U; = 0.6646.
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T2
0.4 s(z,U)=0
0 < ueq(=,U) < 1
0.05
ugg(z,U) =0

0]

zy .

-0.05 T T T T T :

0.06 0.08 0.1 0.42 0.144

Fig. 2. Sliding mode controlled trajectories for the Boost converter.

Ci 0 < weola.l) < 1

ugolr Uy =1

upolx.U) =0

ugolz, 1) =0 H{r.l)=0

z

-0.2.

T )
0.1 0.2

Fig. 3. Boundary lines of the region of existence of a sliding regime.

Fig. 5 depicts the original sliding surface, §;
{z|s1(z,U1) = s1(z,0.1619) = 0}, and the sliding surface
corresponding to the new equilibrium point (0.6286,0.2000),
expressed as, Sz = {z|sz(z,Us) = s2(z, 0.6646) = 0}. This
figure also shows the controlled nommalized state trajectory
leaving the original equilibrium point, located on the original
sliding surface $; = {z|s1(z,0.1619) = 0}, and reaching the
new equilibrium point (0.6286,0.2000) located on the sliding
surface S = {z}s2(z,0.6646) = 0}.

C. Buck-Boost Converter

Consider the Buck-Boost converter model (see Fig. 6). This
device is described by the following bilinear state equation
model:

I1 = w2 — uweTs + ub

&g = —wpT) — W1Ty + UWOT1 (40)

where, z; = [ VL ,zo = vVC represent normalized input
current and output voltage variables respectively, b = E VL
is the normalized external input voltage and it is here assumed
to be a negative quantity (i.e., reversed polarity) while, wo =
1/ VLC and w; = 1/RC are, respectively, the LC (input)
circuit natural oscillating frequency and the RC (output)
circuit time constant. The switch position function, acting as a
control input, is denoted by u and takes values in the discrete
set {0,1}. System (3.17) is of the same form as (2.1) , with
n=0and g = [~woz2 + b woz1]’. We now summarize the
formulae leading to a nonlinear sliding mode controller design
for the Buck-Boost model (40).
Average Buck-Boost converter model

21 = wozp ~— pwoze + pb

2y = —wpz, — W2 + Pwe21 (41
Constant equilibrium points
- Ww
u=U; ZU)= 5y gy
U
Zo(U) = —— 2 @2
W =-Zi vy P

Parametrized family of linearized systems about the
constant operating points

i 216 | _ 0 wﬂ(l*U)}
dt |22 | ~ [~wo(1-U) —wi
b
[z“]+[ LY ]ua 3)
226 T (1-U)E
with:

zis(t) = z(t) = Zi(U) 5 i=1,2. 5 ps(t)=p()-U.



658 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 41, NO. 10, OCTOBER 1994

zy(t)
0.4
time [ms]
o T T -
5 10 15
- zo(t)
0.2
0.4
0 time [ms]
T T 1
] 10 15
Fig. 4. State variables responses due to a sudden change in the operating point (Boost converter).
I +

Fig. 5. Effect of a sudden change in the operating point in the state space
( Boost converter).

Transformation of linearized family of systems to con-
trollable canonical form .

C16 - _ wﬁ(} - U)3 )
26 B2(wiU(1+U) +wd(1-U)?2)
buyU =~ __ b
.[Tv?m—v)2 wu(u—U)] [zm}
bw, (14U
. o) |l
Prametrized family of linearizations in controliable
canonical forin
15 = Cos
Cos = —wd(1 — U)%C1s ~ wilos + ps

44

é5)

= E
+T L -

Fig. 6. The Buck-Boost converter.

Linear sliding surface and ideal sliding dynamics in
transformed state coordinates

05(Cs) = Cas + 115 (46)

Gs=—aCis 3 @ >0 @7

Linear sliding surface in original (average) state coor-
dinates

- R bn(+U)-ab]
o= o+ G50 O] e [0 2™ e

Nonlinear sliding surface, equivalent control and sliding
mode controller

s(z,U) = blzy — Z1(U)]
+ 2~ 23] + 27 - )]

- Ebo-(cl - wl)[a;z - Zz(U)] =0 (49)
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ugg(z,U) =
| bunlh 4+ s25) ~ wrwoles — 2n)ak + b - wr )
wob(b + w1z1) ~ w3 (b + 2wy 21 )22
(50)

uz-;-[l-'rsign s(z,U)) (51

Bounding curves for the region of existence of a sliding
mode

See (52) and (53) at the bottom of this page.

Linearizing local diffeomorphic state coordinate trans-
formation for average ideal sliding dynamics

1 b\? b
212'*(22—1‘”—0')} ; §2=b21‘w122<22—w~0>

&= 3
€0
Ideal sliding dynamics in transformed coordinates

2
a=-q&-f“(§‘%)

b=-ab (55)

D. A Simulation Example

A Buck-Boost converter circuit, with the same parameter
values as in the previous example, was considered for non-
linear sliding mode controller design. The constant operating
value of i was chosen to be U = 0.6508. The corresponding
desirable average normalized constant output voltage turned
out to be Z5(0.6508) = —0.125 while the corresponding
average input current was Z, (0.6508) = 0.3774. Fig. 7 shows
several state trajectories corresponding to different initial con-
ditions set on the buck-boost converter model controlled by
the sliding mode based regulator of the form (49)-(51). The
average controlled state variables, z; and z,, are shown to
converge towards the desirable equilibrium point represented
by Z,(U) = 0.3773 and Z2(U) = -0.125. The region
of existence of a sliding regime is bounded by the curves
upq(z,U) = upo(z,0.6508) = 0 (actually shown in the
figure) and upg(z,U) = ugg(z,0.6508) = 1 (not shown in
the figure). Outside the region of existence of a sliding regime,
the trajectories are clearly seen not to create a sliding regime
on the manifold s(z,U) = s(z,0.6508) = 0.

{z e 'R2|uEQ(z, U)= 0} =
{(z1,22)

{o € R¥upq(z,U) = 1} =

{(z1,22) | bwo(b + c121) — wrwo(c1 — 2w1)x§ + bwi(c1 ~ wr)z2 = 0}

bun(b + e171) ~ wywo(er = 2w1) + bwi(e - wi)ry _
wob(b + wiz1) — wg(b + 2wizy)z2

0.2, s(x,U) =0
0.1
uge(z,U)=0
) . TTYTT T T

0 < ugelz,U) <1

£

-0.2 : T
¢.3 0.32 0.34

Fig. 7. Sliding mode controlled trajectories for the Buck-Boost converter.

T T 1
0.36 0.38 0.4

Fig. 8 clearly shows the extent of the region of existence
of a sliding motion by depicting the boundary line (52), given
by: {z € R? | ugq(z,U) = 0}, and the boundary line (53),
given by {z € R? | ugo(z,U) = 1}. The first boundary line
corresponds to an hyperbola which exhibits intersection with
the sliding manifold, s(z, U') = 0, only on one of its branches.
Roughly speaking with the one located on the fourth quadrant,
T3 > 0 29 < 0. The boundary line (53) corresponds to a
parabola confined to the second and third quadrants. As before,
the intersection of the second branch of the hyperbola with the
parabola corresponds to a nonphysical situation. The region of
existence of a sliding regime is thus located below the first
branch of the hyperbola, located in the fourth quadrant, and,
theoretically speaking, it extends towards the infinity. This fact
precisely corresponds with the (ideal) ‘‘negative amplification”
capabilities of the Buck-Boost converter. Such magnification
ideally reaches infinite values as the equilibrium value of the
duty ratio, u = U, approaches 1 (see (42)).

Fig. 9 shows the effect of a sudden step change in the
average equilibdum value of the converter output voltage,
z9 = Z2(U), from -0.1250 to -0.0500. This change causes
a corresponding change in the operating equilibrium value
of the duty ratio p, as well as the consideration of a new
sliding surface S,, containing the new equilibrium point
(0.0920, —0.0500). The equilibrium value of the duty ratio
is seen to change from the value p = U = 0.6508, to a new
value of = U, = 0.4271.

(53)
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s(z,U) =0

upg(z,V)=0

ugg(z,U) =10

uge(z,U) =1

0 < uge(z,U) < 1

-0.2

T T T T —
-0.2 ] 0.2 0.4 0.8

Fig. 8. Boundary lines of the region of existence of a sliding regime.

1(t)

0.4
0.2
time [ms]
c El L 1 A
4 8 10 12
o, 22(t)
-0.14
-0.2
time [ms)
T = T T 1
4 ] 8 10 12

Fig. 9. State variables responses due to a sudden change in the operating
point (Buck-Boost converter).

Fig. 10 depicts the original sliding surface S; =
{zls1(z,U1) = 81(,0.6508) = 0} and the sliding
surface corresponding to the new equilibium point
S = {z[so(z,Us) = s2(2,0.4271) = 0}. The figure
also shows the controlled normalized state trajectory leaving
the original equilibium point, (0.3774,~0.125), located
on the original sliding surface S;, and reaching the new
equilibrium point (0.0920, —0.0500), located on the sliding
surface Ss.

IV. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

A systematic approach has been proposed for the synthesis
of families of nonlinear sliding surfaces, parametrized by
constant equilibrium points, defining sliding-mode regulators
for dc-to-dc power converters. The method entitles the use

z2

T T T T
0.1 0.2 0.3 : 0.4
Fig. 10. Effect of a sudden change in the operating point in the state space
( Buck-Boost converter).

of the extended linearization technique for the specification
of the nonlinear switching manifold. On the basis of the
proposed parametrized nonlinear manifold, one specifies—in
a standard fashion—the associated equivalent control, the
required switching strategy and the sliding mode existence
region. One of the main advantages of the proposed regulator
design scheme resides in the ‘‘self-scheduling” properties of
the synthesized controller.

The proposed design scheme exhibits the following features:

1) The approach benefits from an extensive list of well
known theoretical contributions for design of linear
sliding modes, including efficient computer packages
already developed for such design tasks.

The possibilities of nontrivial applications can be greatly
enhanced, and carried out, by means of existing algebraic
manipulation systems.

The method naturally enjoys rather useful self-
scheduling properties when nominal operating
conditions are abruptly changed. This is particularly
important in the field of control of mechanical
manipulators, aerospace systems and other practical
nonlinear control application areas.

4) The method developed in this article also constitutes
an alternative approach, for approximate linearization of
nonlinear systems, to the method developed by Bartolini
and Zolezzi in [14].

As a topic for future work, practical implementation of the
switching regulators can bc attempted on a real converter.
Also, automation of the design process via computational al-
gebra packages, such as MACSYMA, REDUCE, or MAPLE,
is strongly encouraged.

Chattering alleviation is a topic of general prevailing interest
in discontinuous feedback control of dynamical systems (see
Fliess and Messager [15], Zhou and Fisher [16] and others). A
topic that deserves some attention is represented by the need of
devising chattering-free dc-to-dc power conversion schemes.
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