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Abstract: The restrictive character of well-known structural
constraints, related to the matching conditions, for the sliding
mode feedforward state reconstruction problem in linear, time-
invariant, perturbed systems is critically reexamined from a new
perspective. It is shown that, in generalized state space coordin-
ates, a matched canonical state space realization exists which
always allows discontinuous asymptotic stabilization of the ob-
servation error dynamics. The well-known structural conditions
thus become largely irrelevant and robust asymptotic state es-
timation is shown to be feasible, for any perturbed observable
system, by means of sliding mode observers.
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1. Introduction

Sliding mode observation schemes for both
linear and nonlinear systems have been of consider-
able interest in recent times. Discontinuous non-
linear observation schemes based on sliding modes
share some of the fundamental robustness and in-
sensitivity properties of sliding mode controllers
(see [1]). A fundamental limitation found in the
possibilities of sliding mode feedforward regulation
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of the observation error dynamics is represented by
the necessity of satisfying some structural condi-
tions of the ‘matching’ type. These conditions have
been recognized in the work of Utkin [8], Walcott
and Zak [9] and Dorling and Zinober [2]. Such
structural constraints on the system and the ob-
server have also been linked to strictly positive real
conditions in [9] and in the work of Watanabe
et al. [10]. More recently, a complete Lyapunov
stability standpoint for the design of sliding
observers, where the mentioned limitations are
also apparent, was presented by Edwards and
Spurgeon [3].

In this article we take a generalized state space
approach to the problem of state reconstruction for
any observable, perturbed, linear system. For the
sake of simplicity, we constrain ourselves to scalar
single output perturbed plants, but our results
can easily be generalized to multivariable linear
systems.

Using a generalized controller canonical form,
similar to those developed by Fliess [5], we find
that the structure of the perturbation input chan-
nels is largely irrelevant. It is shown that the influ-
ence of the external perturbations can always be
conveniently placed in the range of the discontinu-
ous feedforward output error injection signals and
so asymptotic stability of the sliding mode feed-
forward-regulated observation error trajectories
can be guaranteed.

In Section 2 we examine, from a classical state
space representation viewpoint, the role of the
matching conditions in sliding mode observer de-
sign. This section addresses the rather restrictive
character of the structural conditions that guaran-
tee the robust reconstruction of the system state
vector components. In essence, these conditions
imply that the perturbation input distribution map
must be in the range of the feedforward output
error injection map of the observer. Thus, the free-
dom in choosing the stability features of the sliding
reconstruction error is severely curtailed. If the
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matching condition is not satisfied then the obser-
vation error is dependent upon the external per-
turbations and accurate state reconstruction is
unfeasible.

In Section 3, using a matched generalized ob-
server canonical form, based on the input-output
description of the given system, we show that the
matching conditions can always be satisfied while
placing no restrictions on the stabilizability of the
feedforward regulated error dynamics. The class of
perturbed, time-invariant, linear systems whose
state may be asymptotically estimated, in a robust
fashion, by means of discontinuous feedforward
injection is enlarged to include the whole class of
observable linear systems. This result constitutes
the ‘dual’, in a certain sense, to that recently pub-
lished by Fliess and Messager [6], regarding sliding
mode controllers for linear, time-invariant systems.
Section 4 contains conclusions and suggestions for
further research.

2. The role of matching conditions in sliding mode
observers

Here we briefly present the classical approach to
sliding mode observer design using the traditional
Kalman state variable representation of linear,
time-invariant systems. Within this constrained for-
mulation robust observation schemes, using sliding
mode observers, are feasible if and only if certain
structural conditions are satisfied. The structural
conditions restrict the systems input distribution
map to be in the range of the observers feedforward
output error injection map.

Consider an observable n-dimensional linear
system of the form

X = Ax + bu + y¢&, 21)

y=cx,

where u and & are, respectively, the scalar control
input signal and the (bounded) external perturba-
tion input signal. The output y is also assumed to
be a scalar quantity. All matrices have the appro-
priate dimensions. The column vector y is referred
to as the perturbation input distribution map.

An asymptotic observer for system (2.1), includ-
ing an external feedforward compensation signal v,
may be proposed as follows:

=A%+ bu+h(y — 9)+ v,
9 =cX.

22

The vector h is addressed as the vector of observer
gains and the column vector A is the feedforward
injection map.

The state reconstruction error, defined as
e = x — X, obeys the following dynamical behavi-
our, obtained from equations (2.1) and (2.2):

é=(A— hc)e + y¢ — v, 23)

e, = ce.

The signal e, = y — J is the output reconstruction
error.

Due to the observability assumption on the
system, there always exist a gain vector h which
assigns any arbitrary, prespecified, real-line sym-
metric set of n complex eigenvalues to the matrix
(A — ho).

The robust sliding mode observer design prob-
lem consists in specifying a vector of observer gains
h, a feedforward injection map 4 and a discontinu-
ous feedforward injection policy v, based solely on
output reconstruction error measurements ey, such
that the reconstruction error dynamics (2.3) is
guaranteed to exhibit asymptotically stable behavi-
our to zero, inspite of all possible bounded values of
the external perturbation input signal &.

Consider the time derivative of the output recon-
struction error signal

é,=c(A — hc)e + cyé — chv
= cAe — che, + cy¢ — chv. (2.4)

We assume, without loss of generality, that the
quantity c4 is nonzero and positive.

Let the perturbation input & be bounded in abso-
lute value by a constant M > 0. Let also W be
a positive scalar constant. Then a discontinuous
feedforward input v of the form

v = Wsigne, 2.5

is seen to create a sliding regime on a bounded
region of the reconstruction error space. Such a
region would be, necessarily, contained in the
hyperplane e, = 0.

As may be easily verified, on the region charac-
terized by e, =0 and |cAe| + [cy&| < (cA)W, the
above choice of the feedforward signal v results in
the sliding condition e, é, < 0 (see [8]). Using the
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known bound M on the signal &, such a region is
simply expressed as

|cAe| < (AW — |cy| M.

Thus, the discontinuous feedforward policy (2.5)
drives the output observation error e, to zero in
finite time, irrespective of both the initial conditions
for e and the values of the perturbation input &.

The ideal sliding behaviour (see [8]) of the state
reconstruction error signal e is obtained from the
following invariance conditions:

é,=0. 2.6)

Conditions (2.6) imply a ‘virtual’ perturbation-
dependent value of the output error feedforward
injection signal v, which is addressed as the equiva-
lent feedforward signal, and henceforth denoted by
eq. This ‘virtual’ feedforward signal is useful in
describing the average behaviour of the error sys-
tem (2.3) when regulated by the feedforward signal
v. Using (2.6) and (2.4) one readily obtains:

e, =0,

_cAe ¢y
=t a

Substituting the equivalent feedforward signal
expression in (2.7) into the error equation (2.3), one
obtains the following (redundant) ideal sliding error
dynamics, taking place on a bounded region of
e, =0:

. Ac Ac
é= (I - a)Ae + <I - a—)y?j. (2.8)

Note that the matrix S = [I —(dc)/(cA)] is a
projection operator along the range space of A
onto the null space of c.

Thus, in general, the ideal sliding error dynamics
will be dependent upon the perturbation signal &.
However, under a structural constraint on the dis-
tributions maps y and A, known as the matching
conditions it is possible to obtain an ideal sliding
error dynamics (2.8) which is free of the influence of
the perturbation signal £. One may establish that
the ideal sliding error dynamics (2.8) are indepen-
dent of ¢ if and only if

y = pd (29)

for some constant scalar u. In other words, the
sliding error dynamics is independent of ¢ if
and only if the range spaces of the maps y and
A coincide.

¢, 2.7

The proof of this result is as follows. If the
matrix feeding the perturbations ¢ into the (aver-
age) sliding error equations (2.8) is identically
zero, then no perturbations are ever present in the
error system. This would require the following
identity to hold:

Ac
(1 _ a)y —o, (2.10)

which simply means that y may be expressed as
y = ud, where g = (cy)/(cA). On the other hand, if
y is a column vector of the form y = pA then

Ac Ac

If the matching condition (2.9) is satisfied then the
reconstruction error dynamics is specified by the
following constrained dynamics:

é= (1 - V—"i)Ae,
ey

e,=ce=0.

@.11)

The resulting reduced-order unforced error dy-
namics obtained from (2.11) must be asymptoticaily
stable. As may be easily seen, such a stability prop-
erty is a structural property linked to the particular
form of the maps A, ¢ and y. It can be shown that
the asymptotic stability of (2.11) can be guaranteed
if a strictly positive real condition, associated to the
constrained system, is satisfied (see also [9]).

3. A generalized matched canonical form for
perturbed linear systems

Suppose a linear system of the form (2.1) is given
such that the matching condition discussed in the
previous section does not yield an asymptotically
stable reduced error system (2.11). By resorting to
an input-output description of the perturbed
system, one can find a canonical state space realiz-
ation, in generalized state coordinates, which
always satisfies the matching condition of the form
(2.9) while producing a prespecified asymptotically
stable constrained error dynamics. The state of the
matched canonical realization can, therefore, be
always robustly estimated.

By means of straightforward state vector elim-
ination, the input-output representation of the
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linear, time-invariant, perturbed system (2.1) can be
written in the form

y(rl) + k"y('l—l) NP +k2)‘1 + kly
= Bou + Buti + - + Bpu™
+70E + 1+ +7,E9, (3.1

where & represents the bounded external perturba-
tion signal and the integer q satisfies, without loss of
generality, g < n — 1.

The generalized matched observer canonical form
(GOCEF) of the above system is given by the follow-
ing generalized state representation model (see

(5D:
H1= —Kixa+ Pott + Puit + - + fu™ + Ayn,

X2 = X1 —kadn + Aom,

X‘n—l =An-2 "'kn‘an + "~n—1'7,
X.n=Xn—1 _ann+’1,
Y = Xns

where 7 is an ‘auxiliary’ perturbation signal, model-
ling the influence of the external signal ¢ on every
equation of the proposed system realization.

The relation existing between the signal # and its
generating signal &, is obtained by computing the
input-output description of system (3.2) in terms of
the perturbation input ». The input-output de-
scription of the hypothesized model (3.2) is then
compared with that obtained for the original sys-
tem (3.1). This procedure results in a scalar linear,
time-invariant, differential equation for n which
accepts as an input the signal &.

The models presented below constitute realiz-
ations of such an input--output description, accord-
ing to the order g of the differential polynomial for
& in (3.1).

For g < n — 1, the perturbation input # is ob-
tained as the output of the following dynamical
system:

2y =2z,,
2, =123,

(3.3)
Ipoy=—Mzy —Ayzy = = Aoy Ze-y + &,

n=7YoZ1 + V122 + '+ Vg-124-

For ¢ = n — 1 the state space realization corres-
ponding to (3.3) simply reads

3y =1,,
2y =123,

(3.4)
Gney = —Azy —Ayzy — = AemyZy—y + &,

=00~ Ya-141)21 + (1 ~ Yu-142)22
+ 0+ (yn-l - yn‘l)"nal)znAI + yn—lé'

Assumption 2.1. Suppose the components of the
auxiliary perturbation distribution channel map
Ats. .., An—q, in equation (3.2), are such that the
following polynomial in the complex variable s is
Hurwitz:

Po(S) = 8"+ AyoyS" 4 Aps + AL (3.5)

Equivalently, Assumption 2.1 implies that the
output # of system (3.3) generating the auxiliary
perturbation #, or, alternatively, that associated to
system (3.4), is a bounded signal for every bounded
external perturbation signal & If, for instance,
& satisfies | £| < N. Then, given N, the signal # satis-
fies |#] < M for some positive constant M. An easy
to compute, although conservative, estimate for
M is given by M =sup,.(o, o) G(jw)|N, where
G(s) is the Laplace transfer function relating # to
¢ in the complex frequency domain.

Remark. It should be stressed that the purpose of
having a state space model for the auxiliary per-
turbation signal #, accepting as a forcing input the
signal £, is the estimation, through #, of the influ-
ence of ¢ on the proposed state realization (3.2) of
the original system (2.1).

An observer for the system realization (3.2) is
proposed as follows:

f1= — kyfw + Bot + Byt 4 - + Bpu™
+ h(y — 9) + Ao,
f2= = koflu + f1 + ha(y — 9) + Ao,

: (3.6)
fnet = —knorfn+ Znez oot (y = 9) + Ao,
fn= = kufn + fu-1 + haly — 9) + 0,
=1
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Note that we have purposefully chosen exactly
the same output error feedforward distribution
map for the signal v, as that corresponding to the
auxiliary perturbation input signal n in (3.2). As
a consequence, our proposed canonical form (3.2)
for the system is always matched to the observer.
The crucial point is that the matched error feed-
forward distribution map can always be conveni-
ently chosen to guarantee asymptotic stability of
the ideal sliding error dynamics.

Use of (3.6) results in the following feedforward
regulated reconstruction error dynamics:

& = —(ky + hy)e, + 4,(n — v),

& =¢; — (ks + h2)es + A2(n — v),

3.7)
én—l =&p-2 (kn—l + hn—l)an + 1:-—1(’7 - U),

by =Ep-1 — (kn + h,,)E,, + ('] - v)a
&y = &,

where ¢; represents the state estimation error com-
ponents y; — f; fori=1,...,n.

In order to have a reconstruction error transient
response associated to a preselected nth order char-
acteristic polynomial, such as

ps) =s"4a,s" L+t +ay, (3.8)

the gains h;, i = 1,. . .,n, should be appropriately
chosen as h; =a; — k;,i=1,...,n

The feedforward output error injection signal v is
chosen as a discontinuous regulation policy:

v = Wsigneg, = Wsigne,, (3.9

where W is a positive constant. From the last equa-
tion in (3.7), we see that, for a sufficiently large gain
W, the proposed choice of the feedforward signal
v results in a sliding regime on a region properly
contained in the set expressed by

e, =0, |g,-1|<W-—-M. (3.10)

The equivalent feedforward signal v, is obtained
from the invariance conditions (see also [1])

g =0, £, =0. (3.11)
One obtains from (3.11) and the last of (3.7),

Vg =1 +En-1. (3.12)

The equivalent feedforward signal is, generally
speaking, dependent upon the perturbation signal 7.
It should be remembered that the equivalent fecdfor-
ward signal v, is a virtual feedforward action that
need not be synthesized in practice, but one which
helps to establish the salient features of the average
behaviour of the sliding mode regulated observer.

The resulting dynamics governing the evolution
of the error system on the sliding region is then
ideally described by

& = — dign-1,
£y = 81— Ara-1,

(3.13)
by 1 = Bn-2 — Au-1En—1,

& =6 =0.

The resulting ideal sliding error dynamics ex-
hibits, in a natural manner, a feedforward error
injection structure of the ‘auxiliary output error’
signal ¢,_, through the design gains 4,,...,4,-;.
As a result, the roots of the characteristic poly-
nomial in equation (3.5) determining the behaviour
of the homogeneous, reduced-order, system (3.13),
are completely determined from a suitable choice
of the components of the feedforward vector,
/11,. . ”j'n—l'

An asymptotically stable behaviour to zero of the
estimation error components &, . . .,&,-1 is there-
fore achievable as the output observation error ¢,
undergoes a sliding regime on the relevant portion
of the ‘sliding surface’ ¢, = 0. The states of the
estimator (3.6) are then seen to converge asymp-
totically towards the corresponding components of
the state vector of the system realization (3.2).

The characteristic polynomial (3.5) of the re-
duced-order observation error dynamics (3.13) en-
tirely coincides with that of the transfer function
relating the auxiliary perturbation model signal
7 to the actual perturbation input . Hence, appro-
priate choice of the design parameters 4,, . ..,4,-;
not only guarantees asymptotic stability of the slid-
ing error dynamics, but also ensures boundedness
of the auxiliary perturbation signal #, for any given
bounded external perturbation &.

Remark. In general, the observed states of the
matched realization are different from those of
the particular realization (2.1), originally given for



14 H. Sira-Ramirez, S.K. Spurgeon | Robust design of sliding observers for linear systems

the system. The state y in (3.2) may even be devoid
of any physical meaning. A linear relationship can
always be established between the originally given
state vector x of system (2.1) and the state y, recon-
structed from the canonical form (3.2). However,
generally speaking, such a relationship entitles
a perturbation-dependent state coordinate trans-
formation and cannot be used in practice. Never-
theless, it should be emphatically stressed that the
observer state vector §, which asymptotically con-
verges to the state vector y of the matched canoni-
cal realization, is as good as any other state vector
for the purposes of any kind of feedback control.

4. Conclusions

In this article we have shown that by using gener-
alized state space representations of linear systems,
in observer canonical form, the methodology to be
used for asymptotic state reconstruction via the use
of sliding observers becomes particularly clear.

The adopted approach also allows us to establish
that structural conditions of the matching type,
relating the perturbation input distribution channel
and the feedforward injection map, are largely irrel-
evant for robust state reconstruction using sliding
observers. In other words, the class of linear sys-
tems for which robust sliding mode state recon-
struction can be obtained, independently of any
matching conditions, comprises the entire class of
observable linear systems. This remark is of par-
ticular practical interest when the designer has the
freedom of proposing a convenient state space rep-
resentation for an unmatched system. This is in
total agreement with the corresponding result
found in [6], regarding the robustness of the sliding
mode control of perturbed controllable linear
systems expressed in generalized observability
canonical form.

Sliding mode observer theory for linear systems
may also be examined from an algebraic viewpoint
using module theory (see [4]). The conceptual ad-
vantages of using a module theoretic approach to

sliding mode control were recently addressed
by Fliess and Sira-Ramirez [7]. The module
theoretic approach can give further generalizations
and insights related to the results presented in
this article.
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