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Dynamical Discontinuous Feedback Strategies in
the Regulation of Nonlinear Chemical Processes

Hebertt Sira-Ramirez and Orestes Llanes-Santiago

Abstract—In this article, a unified approach is proposed for
the design of dynamical discontinuous feedback controllers lead-
ing to the chattering-free stabilization of nonlinear single input
single output systems describing chemical processes. The adopted
framework is that of a Generalized State Representation form
of the given nonlinear plant. Use is made of the assoclated
Generalized Observability Canonical Form of such representa-
tion. Unification of discontinuous feedback policies is achieved
by zeroing of an input-dependent auxiliary output function us-
ing simple discontinuous feedback control paradigms of various
kinds. The zeroing of such scalar stabilizing function induces
asymptotically stable controlled dynamics on the given nonlin-
ear minimum-phase plant. Pulse-Frequency-Modulation, Pulse-
Width-Modulation and Sampled Sliding Mode control strategies
are considered from this unified viewpoint. Examples are pro-
vided including simulations.
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I. INTRODUCTION
ECENTLY, RESULTS FROM THE difterential algebraic

approach to control theory,pioneered by Prof. M. Fliess -

(1], [2] have greatly improved the applicability of discon-
tinuous feedback strategies, especially those of the sliding
mode (SM) type, leading to asymptotic stabilization, and
tracking, in nonlinear systems (see Sira-Ramirez [3] and Sira-
Ramfrez et al [4] for applications to mechanical and electro-
mechanical systems). Some of the traditional disadvantages
of sliding and sampled sliding mode control policies are
fundamentally related to the ‘‘bang-bang" character of the
input signals and the associated ‘‘chattering” of output and
state variables response signals (Utkin [5]). These difficulties
are circumvented via dynamical sliding mode controllers while
retaining the outstanding robustness, and simplicity, of this
class of feedback control schemes.

In this article, Fliess’s Generalized Observability Canonical
Form (GOCF)is shown to naturally allow for dynamical feed-
back controller design based on Pulse-Frequency Modulation
(PFM) strategies, Pulse-Width-Modulation (PWM) policies
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and Sampled Sliding Modes (SSM). The obtained control
input signals are substantially smoothed with respect to their
corresponding static alternative and, hence, chattering-free dis-
continuously controlled responses are generated. The obtained
PFM and PWM controller designs do not resort to tradi-
tional approximation schemes, based on (infinite frequency)
average models of the discontinuously controlled systems
(Sira-Ramfrez [6]). These features are particularly important
in chemical process control tasks in which discontinuities, or
‘‘jumps”, cannot be simply allowed on the actuator behaviour,
and where fast vibrations of the regulated variables are usually
not tolerated, due to their negative effect on the quality speci-
fications of the final product. A sufficiently ‘‘smooth” control
policy is, therefore, usually desirable while a need, definitely,
exists for certain degree of robustness, and precision, of the
proposed feedback control scheme.

The synthesis of several dynamical discontinuous regulators,
here proposed,is based on Fliess’s GOCF for nonlinear single-
input single-output systems ([1]). In section II of this article,
we briefly address the dynamical Sliding Mode (SM) control
solution of the output stabilization problem and present the
PFM, PWM and SSM controller design schemes. In section
111, we present some illustrative examples, along with encour-
aging simulations. The first example, taken from Kravaris
and Palanki (7], is concerned with the regulation of total
concentration control in an isothermal Continuously Stirred
Tank Reactor (CSTR). In the second example, a discontinuous
feedback control regulator is designed for the stabilization
of the output concentration of a certain chemical agent, in a
Double Effect Evaporator (DEE) system, extensively used in
the Food and Paper industries among others. In both examples,
simulations are provided which depict the advantageous fea-
tures of dynamical discontinuous controls. Concluding remarks
are collected at the end of the article.

II. DYNAMICAL DISCONTINOUS FEEDBACK
CONTROL OF NONLINEAR SYSTEMS
The results of this section may be extended to tracking
problems([3], [4] ) and to multivariable cases (see Sira-
Ramfrez and Llanes-Santiago [8]).

Fliess's Generalized Observability Canonical Form

Let u() stand for the i-th time derivative of theinput
function u(t). We denote u(® simply by u, while the first time
derivative of u(t) is indistinctively represented by o or u.

1063-6536/94804.00 © 1994 IEEE
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It has been shown in [1] (see also Conte et al [9])that
a nonlinear, single-input single-output n-dimensional analytic
system of the form:

i = f(z,u) ey
y = h(z)
can be locally transformed, via an input-dependent state coor-
dinate transformation of the form

z=0(z,u,1,...,ue D) )
with z € R™, into an n-dimensional system of the form
2 =z (3)
?:'2 =23
Zn = c(z,u,1%,... ,u("))
y=2
provided the following observability matrix of the system
Oh(=z)
onl5(z)
Tow @)

R au,ul D)
8z

is full rank n, where A stands for the total i-th time
derivative of the output function h(z(t)). We also used h for
h(©) and ) for the first time derivative of h(x(t)). In (3), the
integer « is assumed to be a strictly positive integer, i.e, the
system is not necessarily relative degree n, and therefore it is
not exactly linearizable by means of static state feedback (see
Isidori {10]). Extension of the results presented here to systems
of this class is found in Sira-Ramfrez and Llanes-Santiago [11].
It should be remarked, however, that, in general, (3) is
not,necessarily, n-dimensional. Our assumption, thus, corre-
sponds to one of a minimal realization on (1).
The state coordinate transformation (2) is evidently given
by thelocal diffeomorphism:

h(z)

(1)
z=®(z,u,4,...,u@ D) = e (x)
RO (2,4, ... ule—D)

5

Suppose u = U, z = X(U) describe a constant equilibrium
point for the original system (1), such that A(X(U)) is zero.
Then, z = 0 is an equilibrium point for (3). The autonomous
dynamics described by:

o(0,u,4,...,u) =0 ©)

is the zero dynamics (see Fliess [12]). The stability nature of
an equilibrium point u = U of (6) determines the minimum
or nonminimum phase character of the system (1). The equi-
librium point for (1) entitles a constant input signal v given
by, u = U, while the corresponding equilibrium value of the
state vector, z, is denoted by z(U) = X (U) and the resulting
output signal y is assumed to have a constant equilibrium value

equals to zero, i.e. y(U) = Y(U) = 0. We briefly denote the
constant equilibrium point for system (1) (X (U), U, Y (U)) as
(X(U),U,0).

A GOCF Approach to Dynamical Discontinuous
FeedbackController Design for Nonlinear Systems

Consider the following auxiliary output function ¢ : " —
R,defined in terms of the transformed variable z,

n—1
s(2) = (Z Y Zi) + zn

i=1

O]

such that the following corresponding polynomial in the com-
plex variable A is Hurwitz:

n-1 .
(E vi /\z—l) +/\n—-l

i=1

®

Suppose that the system is locally minimum phase around
(X(U),U,0). It is easy to see that if (7) is forcefully con-
strained to zero (whether in finite time, or in an asymptotically
stable fashion) by means of appropriate control actions (
possibly of discontinuous nature ), the resulting controlled
dynamics locally evolves in accordance with:

21 = 22 (9)

22223

n—1
. “
Zn-1 = “24’71‘ 2i
i=1
y=2

which is asymptotically stable to zero.

Two of the dynamical discontinuous fecdback controller
design schemes,here proposed, rely on inducing on (3) an
asymptotically stable linear time invariant controlled dynamics
such as (9), with eigenvalues placeable at will. This is done by
driving the proposed auxiliary output function s(z) to zero. As
it will be shown, SM controllers can always accomplish such
a task in finite time, PFM and PWM controllers, on the other
hand, can only accomplish this task in an asymptotically stable
fashion, while SSM control can only do it approximately.
Dynamical Sliding Mode Control of Nonlinear Systems

proposition 2.1 Let W be a strictly positive scalar quan-
tity, and let “‘sign"stand for the signum function. The one-
dimensional discontinuous system:

ds

dt
globally exhibits a sliding regime on s = 0. Furthermore,
anytrajectory starting on the value s = s(0), at time 0,
reaches,the condition s = 0 in finite time T, given by
T = W1 |5(0)).

Proof: Immediate upon checking that globally
sds/dt < 0, which is a well known condition for sliding
mode existence [5). The second part follows trivially from
the fact that

[s(t) = =W t+]s(0)] for 0 < t < W~ ]s(0)]

=38=-Wsigns (109)
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Proposition 2.2 A minimum phase nonlinear system of the
form (1) is locallyasymptotically stabilizable to the equilibrium
point (X(U),U,0) if the control action u is specified as
a dynamical SM control policy given by the solution of
the following implicit, time-varying, nonlinear discontinuous
differential equation:

c(z,u,8,...,u%) =

n n—-1
- E’y.- 2z — W sign [(27; zi) +Zn] an
=1

i=1

where vy = 0.
Proof: Tmmediate upon imposing on the auxiliary output
functions(z), defined in (7), the dynamics defined by (10).

Due to the implicit character of the differential equation
definingu in (11), singularities, known as impasse poins, may
locally arise in those regions where «(*) cannot be explicitly
solved for. We, therefore, assume, according to the Implicit
Function Theorem (see [10]) that in (11) the quantity c/8u(®)
is locally nonzero and, hence, a unique solution exists for
the highest control input derivative u(® from (11). Under
such circumstances, no such singularities need be considered.
For more details on ways to avoid such singularities through
suitable discontinuities, the reader is referred to Abu el Ata-
Dos et al [13).

The controller (11) is easily represented in terms of theo-
riginal state space coordinates = by using the input-dependent
state coordinate transformation (5).

Dynamical PFM Control of Nonlinear Systems Consider
the scalar PFM controlled dynamical system, in which the
constantsr; , r2, r3 and W, are all strictly positive quantities.

§=-Wv

v= PFMT,T(S(t))
sign s(tx)  for tp < t < te+7{s(ts)] Tls(te)]

) { for *% 7(s(te)] Tls(te)]

12)

’ <t <tk Tlo(te)]
[ for @] > &
ls(t)} = {n |s()] for |s(t)] < i
Trm'n'*'—"a"‘;L
r3—r3 fOl"—l— < 1s(8)] < 1
{Toae = Toin (s - £) 75 <! 0l < %
Tnin for |s(t)] < :13_
k=0,1,2,... ; tiy1 =te+Tls(ts)]

where it is assumed that , < 11 < r3. The &'s
represent irregularly spaced sampling instants, determined by
the sampled values of the duty cycle function, denoted by
T[s(tx)]- The duty cycle function , T'(s(s)], takes values on
the closed interval [Tinin, Tmaz] and it varies linearly with
respect to s(t) in the region 1/r3 <: [8] < 1/rz. The duty
cycle, or sampling period, saturates to Tma for large values

()

S Towr
\ Toa /
t.
PR WIS
[STRESTS vy Im

Fig. 1. Duty cycle function for scalar PFM controlled system.

U

Fig. 2. Duty ratio function for scalar PFM controtled system.

of s, and remains fixed at the constant lower bound Ty, for
small values of s (sec fig. 1). At each sampling instant, {x, the
width of the sign-modulated, unit amplitude, control pulse is
determined by the value of the duty ratio function, represented
by 7[s(tx)]- The duty ratio function is such that the width of
the pulse saturates to 100% of the sampling interval when the
absolute value of the variable s exceeds some threshold value
given by 1/r;. Below such a threshold value, the width of the
pulses decrease towards zero linearly with respect to s (see
fig. 2). The duty cycle and the duty ratio functions may be
quite independent of each other. The function “‘sign”, in (12),
stands, again, for the signum function.

The following proposition establishes a sufficient condition
for theasymptotic stability to zero of the PFM controlled
system (12).

Proposition 2.3 The PFM controlled system (12) is asymp-
totically stable tog = 0, if

0 < r3WTlhne < 2 13)

Proof: Due to the piecewise nature of the control inputs
and thelinearity of the continuous system, it suffices to study
the stability of the discretized version of (12) at the sampling
instants. An exact discretization of the PFM controlled system
(12) yields:

s(te +T) = s(tx) — W sign [s(ti)] Tls(te)] Tls(te)] (14)

The stability of (13) follows easily from Lyapunov type
of arguments as applied to each one of the possible regions
involved in (12). Condition (12) is easily seen to be sufficient
to guarantee, both, the uniform decrease of s(tx) and the
absence of limit cycles in the underlying sampled system.
For more details of the proof of this proposition the reader
is referred to Sira-Ramirez [14] and Sira-Ramfrez and Llanes-
Santiago [15].

Proposition 2.4 A minimum phase nonlinear system of the
form (1) is locallyasymptotically stabilizable to the equilibrium
point (X(U),U,0) if the control action u is specified as
a dynamical PFM control policy given by the solution of
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the following implicit, time-varying, nonlinear discontinuous

differential equation :
n-1
[(2: Yi Zi) + Zn]
=1

(15)

elz, 0, ..., ul®)

n
== %-17~WPFM.z

i=1

where v = 0.

Proof: Immediate upon imposing on the auxiliary output
functions(z) in (7) the asymptotically stable discontinuous
PFM dynamics defined in (12).

Dynamical PWM Control of Nonlinear Systems Consider
the scalar PWM controlled system, in which » > 0 andW > 0

s=-Wu (16)
v =PWM-,(s(t))
_ {sign s(ty)  for tx <t < tp+T{s(t)] T
R for tk—I-T[s(tk)]T <t < tpe+T
1 for [s(t)] > &
i) = {r ls(t)]  for LEJ} <1
k=0,1,2,... ; trmr =t +7

It is easy to see that (15) is just a particulacr case of the
PFMCcontrolled system (12) in which the duty cycle function
T[s(tx)] is now taken as a constant of value 7' for all values of
s(tx). The following result follows immediately form this fact,

Proposition 2.5 The PWM controlled system (15) is
asymptotically stable tos = 0 if, and only if, :

0 < TWT <2 a7

Proof: Sufficiency is clear form the preceeding proposi-
tion. Necessity followsfrom the fact that for convergence of
the trajectories of system (15) to zero, and in order to avoid
a possible limit cycle, there must exist an instant of time tr
such that, independently of the initial condition, 8(tx) lies in
the region |s(ix)] < 1/r. In this region, the PWM controlled
dynamics adopts the form s(tx41) = (1 — TWT)s(tx). The
result follows (see also Sira-Ramirez [16]).

Proposition 2.6 A minimum phase nonlinear system of the
form (1) is locallyasymptotically stabilizable to the equilibrium
point (X (U),U,0) if the control action wu is specified as
a dynamical PWM control policy given by the solution of
the following implicit, time-varying, nonlinear discontinuous

differential equation
n—1
5
[( E Yi z,-) +zn}
i=1

(18)

o(z,u,4,...,u®)

i=

==Y %-12 - WPWM,
1

where y9 = 0.

Proof: Tmmediate upon imposing on the auxiliary output
function s(z) in(7) the asymptotically stable discontinuous
dynamics defined in (15).

Dynamical SSM Control of Nonlinear Systems
Proposition 2.7 Consider the following one-dimensional
SSM controlled system:

§=-Wv (19)
v =8SM(s(t)) =sign s(tx) for & < t < tp+T
k=0,1,2,... ; 1 =t + T

Then, given an ¢ > 0, there exists a sampling interval
T(e) = ¢/W for which the trajectories of (17) satisfy the
condition

s < 26 ¥ ¢ > W ia() = D jo(0)

Proof: The proof is immediate from the exact discretiza-
tion of (17):

s(tx + T) = s(tx) — W T sign [s(t)]
hence,
s(te + T) = s(te)| = WT

The first part follows by letting W1’ = ¢. The second part is
immediate from the linearity of the system and the fact that
for all t > 0, |[ds/dt| = W.

Chattering of s around the value s = 0, can bc made
ofarbitrarily small amplitude according to the width of the
sampling interval T'(¢). As T'(¢) — 0, the response to a SSM
strategy asymptotically converges to the response of a SM
policy.

Proposition 2.8 A minimum phase nonlinear system of the
form (1) is locallystabilizable around the equilibrium point
(X(U),U,0), modulo a small chattering, if the control action
u is specified as a dynamical SSM control policy given by
the solution of the following implicit, time-varying, nonlinear

discontinuous differential equation:
n—1
Y
i=1

20

c(z,u, d,...,u("))

= —-i:’y,'_l Z,“WSSM

i=1

Proof: Immediate upon imposing on the auxiliary output
function s(z)in (7) the discontinuous dynamics defined by
an.

A SSM control policy may also be viewed as a particu-
larcase of a PWM control policy in which the pulse width
7{s(tx)] T is saturated to the constant value of the sampling
interval T ( i.e. the duty ratio, 7[s(¢)], is equal to 1 for all
values of s(t;)).

IIl. SOME APPLICATION EXAMPLES

Dynamical PFM, PWM and SSM Control for Regulation
ofTotal Concentration in a Continuously Stirred Tank Reactor

Consider the following simple nonlinear dynamical model
of a controlledCSTR in which an isothermal, liquid-phase,
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multi-component chemical reaction takes place (see [7]):
&1 =—(14 Dgy)z1+u @n
£y = Da1¥) — 73 — Doz}

y=z1+22-C

where z; represents the normalized (dimensionless) concen-
tration Cp/Cpp of a certain species P in the reactor, with
C = Cpq being the desired total concentration of the species P
and Q measured in mol.m ™. The state variable x, represents
the normalized concentration Cg/CPO of specied Q. The
control variable » is defined as the ratio of the per-unit
volumetric molar feed rate of species P, denoted by Npp, and
the desired concentration Cpy, i.e. u = Npp/(FCpo) where
F is the volumetric feed rate in m3sec™!. The constants D,
and D,; are respectively defined as k,V/F and k2VCpo/F
with V being the volume of the reactor in m3, and k; and k,
are first order rate constants expressed in sec™!.

It is assumed that the spccies Q is highly acidic while
the reactantspecies R is neutral. In order to avoid corrosion
problems in the downstream equipment, it is desired to regulate
the total concentration error y towards zero, so that the total
concentration value z, -z converges to a prescribed set-point
value, specified by the constant C. It is also assumed that the
control variable u is naturally bounded in the closed interval
[0, Upiaz] reflecting the bounded (physical) limits of the molar
feed rate of the species I>. The numerical value of U,,4; is a
given process parameter whose knowledge is considered to be
critical, even if not violated by the resuiting numerical values
of the computed control input strategy.

It is easy to verify that for the given system (19), the rankof
the fotlowing 2 by 2 matrix:

dy
oz 1 1

gi -1 —(1 +2Da2:1:2)

is everywhere equals to 2, except on the line x5 = 0, which
is devoid of practical significance.

A stable constant equilibrium point for this system is given
by:

S= (22)

u=U (23)
U
.’L‘1(U) = X](U) = (—1 + Dal).
1 4Dy Dl
z2(U) = X3(U) = 2D.s [—~1 + \/:+ a _: D:’l)~ ]

The following input-dependent state coordinate transforma-
tion:

n=y=z1+22-C 24)

29 =9 = ~21 — T3 — Doz} +u

allows one to obtain a GOCF for the system in the form

given by (3). The inverse of this transformation is obtained
by solving (22) with respect to z; and z2. One obtains:

T, =21+ (= \/i__ (Zl..+,z2 + q)
Da2

14—(z1+;2+C)
Ty = [—- - Ds

Note that from (22), it follows that the quantity inside the
square root in (23) equals, precisely, the quantity D,ypz% and,
hence, it is never smaller than zero.

Using (22) and (23) one obtains z; in terms of thetrans-
formed coordinates. The transfomled system equations are
then given by:

(25)

(26)

H=2
2= ~2(1+ Da1)(z1 + C) = 3+ 2Day)z

‘2Da1Da2(Zl+C)\/‘ (z1+zz+C')

u
+ 21332\/Z—

y=2

which is in GOCF.
The zero dynamics associated to the output nulling in (24)
isgiven, according to (5), by:

i+ 2(1 + Day)(u - C)

u—C u-C 3
— 2D,1 Da2C \/: -t 2Da2? (_, )
' 2 Da? \/> Dag

=0

- (zlg'z2 JC'C)') +2(1+ Dayju+ 4
a2

@7

The equilibrium points of the zero dynamics are obtained from
the solutions of the following algebraic equation, obtained
directly from (25) by simply letting % = 0:

-C
21+ Da1)(t ~ C) ~ 2Dy DarC \/ED_ C

a2
2 u—-C
+ 2Da2 ”( D,,z) =0

Clearly v = C is an equilibrium point for (25). It may
be shown that such an equilibrium point corresponds to an
unstable, i.e. nonminimum phase, equilibrium point. On the
other hand, it may be verified, after tedious but straightforward
algebraic manipulations, that the constant equilibrium point
w = U, yU) = Y(U) = 0, corresponding to X,(U) +
Xo(U) = C, as computed from (21), is an asymptotically
stable equilibrium point. The system is, hence, minimum phase
around this equilibrium point.
Consider the following auxiliary output function, with v; >
0:
8 =22+ Y121 (28)

Note that if s is zeroed, by means of a discontinuous control
strategy, then, it follows, from the first of (24) and (26), that
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the time response of the controlled output function y = 2;
is ideally governed by the asymptotically stable linear time-
invariant dynamics:
21 = —m2 29)
Dynamical PFM Controller Design Imposing on s the
asymptotically stable discontinuous dynamics (12) one obtains,
after reverting to original state coordinates z; and zo, the
following expression for the dynamical PFM controller:

o= ~(1 — 71)(u +x + 1‘2)
+ 2Da1 Dazz172 — (3 — 71)Da2}
~2D2,23 -~ W PFM, 1 [~ (21 + z2)
~Dazz} + u+m(21 + 32 — O)) G0
Dynamical PWM Controller Design Following the same
procedure outlined for obtaining the dynamical PFM con-
troller, one obtains a dynamical PWM controller. The resulting
expression has, precisely, the same form as that of (28) except
for the fact that a PWM control function is used

= —(1 - m)(u+z1+32)
+ 2Dq1 Dazz132 — (3 — 71) D223
- 2D?,23 - W PWM, [—(z; + 23)
—Da2x§+u+’71($1+12—0)] (€2))
-Dynamical SSM Controller Design Imposing on s the
asymptotically stable discontinuous dynamics (17) one readily
obtains the following stabilizing dynamical sampled sliding
mode controller in original coordinates:

U= —(1-y){u+z1+=)
+2D,1Daz2153 — (3 — 71) Da2a3
~2D2%,33 — W SSM [—(z1 + z2)
—Dagitg +u+ Y1 (Il + I — C)] (32)

Simulation Results Simulations were performed for a reac-
tor characterized by the followingparameters:

Dy =10 ; Depr=10

The simulated control task considered the problem of stabi-
lizing the output y to zero. This task is equivalent to having
the total concentration variable converging to the prespecified
constant reference value C = 3. In other words, the total
normalized concentration z; + x5 in the system (19) is to be
driven to C by asymptotically driving the concentration error
y = &1 + z3 — C to zero.

Fig. 3 portrays the time response of the dynamical PFM-
controlled output y, the smoothed input signal u and the
corresponding controlled state trajectories. As before, these
variables are seen to converge to their respective equilibrium
values. Fig. 4, shows the evolution of the auxiliary output
function s, with defining parameter v; = 1.0, and the time
response of the duty cycle function 7(s(t)], as well as the
duty ratio function 7{s(t)].

5 -, - S —

s 10

Fig. 3. Output, states and input variables trajectories ofdynamical PFM
controlled CSTR.

time

i
Fig. 4. Evolution of auxiliary output function, duty cycle andduty ratio
functions for dynamical PFM controlled CSTR.

The dynamical PFM controller parameters were set, in
accordance with condition (12) to

W=1; re = 0.5 ;
r3 =15 5 jwmaa: = 0.6 ;Tmin =0.2

r=1;

Fig. 5 depicts the time responses of the output, statesand
(smoothed) input variables for the dynamical PWM controlied
system. Fig. 6 shows the evolution of the auxiliary output
function s, with y; = 1.0, and the time response of the
duty ratio function 7(s(t)]. The dynamical PWM controller
parameters were set, in accordance with (15),toW =1,r =1,
and sampling period 7' = 0.5.

Fig. 7 portrays the time responses of dynamical SSM-
controlled output y, the input signal u, exhibiting a small
chattering, as generated by the dynamical SSM controller (30),
and the corresponding controlled state trajectories x; and z».
These variables are seen to converge in an asymptotically
stable fashion towards their equilibrium values: y = Y(U) =
0,u=U =4, z; = X;(4) = 2 and z3 = X(4) = 1. Fig. 8
shows the evolution of the sliding surface coordinate function
s. The parameter v, was set to 1.0.

The dynamical variable structure controller parameters in
(I1l)were settobe W =1, T = 0.2.

In order to test the performance of the proposed dynamical
PWM controllerwe induced a temporary plant parameter per-
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time
= - .- G .

a4
4 3 ] 0

Fig. 5. Output, states and input variables trajectories ofdy 1 PWM

time

T I e q 1
2 4 6 (] 10

Fig. 8. Sampled slliding surface coordinate evolution fordynamical SSM
controlled CSTR.

controlled CSTR.

o = =0
:H:ﬂcm_’ ™
-

s(t)

_ time

H o
Fig. 6. Evolution of auxiliary output function and duty ratiofunction for
dynamical PWM controlled CSTR.

uw(t)

T I T o
Fig. 7. Output, states and input variables trajectories ofdynamical SSM

controtled CSTR.

turbation of about one second in duration for both D,, and
D, on different time intervals. The parameters D,y and D,»
were allowed to take the value of 1.5 (which represents a 50 %
variation from their nominal value of 1.0) on the time intervals
[10sec, 11sec] and [15sec, 16sec], respectively. Fig. 9 shows
the time responses of the control perturbed state trajectories,
the corresponding output and the smoothed control input. The
proposed controller is seen to quickly recover the desired
stabilization features for the system. Fig. 10 depicts the corre-

xi(1)

x2(1)

R tinle.
0 0
-
2
o B Y
f N B

time

10 20

Fig. 9. Time responses of PWM controlled perturbed statestrajectories and
the corresponding input and output signals.

sponding duty ratio function, the auxiliary output function and
the PWM signal. Simlar responses to parametric perturbations
were obtained for the PFM and the SSM controllers

Dynamical PFM, PWM and SSM Control
of a Double EffectEvaporator

The Double Effect Evaporator Model The following DEE
model is taken fromMontano and Silva [17].

Iy = 6, Fo(co — x1) + baz1u (33)

&g = 63Fy(x1 — z2) + (baxy + Bsx2)u

where 1 represents the product concentration in the first stage
of the evaporator, while x stands for the output concentration
of the product at the second stage. The control input u is a
positive quantity representing the stcam flow generated by a
boiler. The output variable of the system is the concentration
error y = Tz — T24, With Za4 being the required constant value
of the output product concentration. The rest of the parameters
in (31) are assumed to be known positive constants, except for
64 which is negative. We summarize below the necessary steps
to obtain dynamical PFM, PWM and SSM regulators for the
given system.
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(1)

PWM

E0)

time
SR 1 SaE sy
10 2 )

Fig. 10. Evolution of auxiliary output function, duty ratiofunction and PWM
signal for parametrically pertarbed PWMcontrolied CSTR.

Fig. 11. Phase diagram for zero dynamics of DEE system.

Remark 3.1 A more realistic sixth order model of the
DEEwas presented in Andre and Ritter [18]. The reduced
second order model (31) has been extensively validated, from
an experimental viewpoint, in Newell and Fisher [19], while
further evaluations and comparisons were carried out in [17).
Our purposes, in using such a simplified model, are to illus-
trate the proposed dynamical controller designs and test the
features, and possible advantages, of using such dynamical
discontinuous feedback controllers.
Design of a Dynamical Discontinuous FeedbackRegulator for
Concentration Control in a DEE In this section we let *‘DDC"
(for Dynamical Discontinuous Control)stand for any of the
three proposed discontinuous feedback control alternatives
presented in this article. Namely,“DDC" stands for the PFM,
PWM and SSM control options.

Rank condition on the output

8
8

det = det [

0 1
83Fo + bqu  —83Fy + 55“}

= —(63F0 + 6411,) (34)

The rank condition can only be violated by a (positive)
constant value of thecontrol input u given by u = ~§3F5/64.
It is easy to sec, from the second equation in (31) that this
equilibrium value for the control input u has no physical
significance since it implies that the product concentration
in the first stage of the evaporator z; has no influence,
whatsoever, on the product concentration z, at the second
stage of the evaporator.

) x2(t) R

xi(t)

0.0,

0.04]

0.02}

time

L . S
0 100 150

BEed -

Fig. 12. Dynamical PFM controlled states responses fora DEE system.

1o

u(t)

‘4 ) . time \
1%

Fig. 13. Control input signal for dynamical PFM regulatedDEE system.

. -
» 100

Input-dependent State Coordinate Transformation for the
GOCF

21 =Y =Ty = Tad;
22 = = 83Fo(x1 — 22) + (041 + b5z2) u
oy = 22~ (80— 85F0)(a1 + 22a)

63Fp + 84u ’

Tg =23+ Taq 35)

Generalized Observability Canonical Form for the Plant

Z'1=22

29 = (85u — 83Fp) 22 + @F9(63,+615'F)‘(()z:- ;42”),“*;&‘%@ )
(6au — 5:1F0)[(83Fp — 85u)(21 + T2q) + 22))]
+ 0061F0(63F0 + 6411)

y=2 (36)

Zero Dynamics
83Fo(64 + 85)z24

63Fo + b4u
+ 6061F0(63F0 + 6411.) =0

u+ (6211, - 61F0)[(63F() - 65u)z2,1]
37

The equilibrium points of the zero dynamics are given by
the realsolutions of the following quadratic algebraic equation:

(6211 o 61F0)[(63F0 - 651[)1‘2,1] + 0061F0(63F() + 641[) =0



SIRA-RAMIREZ AND LLANES-SANTIAGO: DYNAMICAL DISCONTINUOUS STRATEGIES IN THE REGULATION OF NONLINEAR CHEMICAL PROCESSES 19

j ‘11(01 o -
LAy -

Fig. 14. Evolution of auxiliary output function, duty cycle andduty ratio
functions for dynamical PFM controlled DEE system.
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Fig. 15. Dynamical PWM controlled states trajectories forDEE system.

Fig. 11 shows that one of the solutions of thequadratic
algebraic equation (36) represents a stable (minimum phase)
equilibrium point for the zero dynamics (35), while the second
solution represents an unstable (non-minimum phase) equilib-
rium point for such a zero dynamics.

Auxiliary Output Function in Transformed and Original
Coordinates

5(z) = 24+ man (3%
S(I) = 63F0($1 - 12) + [641‘1 + 65$2] u+t+ ’71(I2 = .’I)zd)

Dynamical Discontinuous Controller (DDC) in Original Co-
ordinates
1
= - [~ (63Fp + 85u) (81 Fp + bau
u 64z1+65x2[ (83Fp + 84u) (61 Fo + 84u)
. [51F()(C() - I]) + 62x1u]
—(6511, = 63F0)[63F0(.’I:1 - .'132) + (6411 + 65.’1:2)1!]
—mbsFo(x) — 72) + (6471 + 8572) u]
- W DDC (53Fg(1‘1 S 1‘2) + [641‘1 + 55.’122] u
+71(z2 — x24))] (39
In all three cases, impasse points for the dynamical con-
trolleroccur on the line §;7; + 8522 = 0, which, from the
second equation in (31), is seen to represent a region of
uncontrollability of the product concentration on the second

g - =y - e
» 100 150

Fig. 16. Control input signal for dynamical PWM controlledDEE system.

o

PWM

e

I

i
©

Y % S 0
Fig. 17. Evolution of auxiliary output function and dutyratio function for
dynamical PWM controlled DEE system.

stage of the evaporator. This condition is entirely possible
due to the negative value of the parameter 64 and the posi-
tive values of the concentration variables and the parameter
65. Results are, therefore, valid away from this singularity
condition. We must emphasize that singularity avoidance has
been extensively treated, in a related but somewhat different
context, in [13].
Simulation Results
The following parameter values were used in the simula-
tions:
Fy = 2.525[Kg/min] , ¢ = 0.04,
§, = 0.00105 , 5, = 8.509 x 1073
63 =9.523x 1073, 8, = —7.699 x 1073,
85 = 10.304 x 107°

With these parameter values, the physically meaningful
equilibriumpoint is found to be 2, = 0.7 and z3 = x2¢ =
0.0939.

According with the condition (12) of Proposition3, the PFM
controller parameters were set 10 be:

W=8x10"%; r, =250, ry = 300,
r3 = 400 ; Tyer = 2[min]

Tmin = 1[min] ; 1 = 0.1[min™}

Figs. 12, 15 and 18 show thestate responses of the dynamical
PFM, PWM and SSM controlled systems, asymptotically
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Dynamical SSM controlled states responses for aDEE system.

Fig. 18.
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Fig. 19. Control input signal of dynamical SSM controlledDEE system.

converging toward the desired equilibrium point given by
Z24 = 0.0939 while the concentration z; converges to its equi-
librium value 0.07. Figs. 13, 16 and 19 depict the smoothed
control input trajectories for dynamical PFM, PWM and SSM
controlled systems respectively. Fig. 14 depicts the evolution
of the auxiliary output function s, the time response of the
duty cycle function T'[s(t)], and the duty ratio function 7[s(t)]
of the dynamical PFM controlled system. Fig. 17 portrays the
evolution of the auxiliary output function s, the PWM signal
and the duty ratio function 7[s(t)] for the PWM controlled
system. Fig. 20 shows the auxiliary output function s for the
SSM controlled system.

Set point changes, of about 30 % value, were provoked
in thedesired output value of the dynamical PFM controlled
system (from z33 = 0.0939 to z94 = 0.12 ). Fig. 21
depicts the state response of the closed-loop PFM system,
under such a setpoint change. The dynamical PFM controlled
state responses are jointly shown with the corresponding
closed-loop state responses of a well tunned proportional-
integra-derivative (PID) controller, designed on the basis of the
linearized system trajectories. The PID controller parameters,
taken from [17], were set so as to obtain a 5% overshoot
and rise time of 110 min ( K, = 28.067 , T; = 137.64
and T; = 20.83). The performance of the dynamical PFM
controller, for such large setpoint changes is seen to be vastly
superior to that of the designed PID controller, as far as
ovefshoot and settling times are concered.

time
- o - I T T
0 tJ 130

Fig. 20. Sampled sliding surface coordinate evolution fordynamical SSM
controlled DEE system. .
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Fig. 21. Dynamical PFM controlled states resp andcorresponding PID

control responses for aset-point change in a DEE system.

Similar results were obtained for the performances of the
PWM andSSM controllers when compared to those of the
traditional PID controller.

IV. CONCLUSIONS

The feasibility of chattering-free discontinuous feedback
controllershas been demonstrated via dynamical feedback
strategies based on stabilization of suitably specified auxiliary
output functions defined on the basis of Fliess’s GOCF. In
all cases the discontinuities are relegated to the controller's
state space. Therefore, the hardware implementation is
quite feasible using present day switching and electronics
techniques. Stabilizing PFM, PWM and SSM controller design
procedures for nonlinear plants are unified via this approach
which is derived from basic facts of the Differential Algebraic
viewpoint in systems dynamics [2]. It is necessary to remark
that the benefits and robustness of these controllers has been
studied, from a general viewpoint, in Sira-Ramfrez {[20],
and from the adaptive control viewpoint in Sira-Ramfrez and
Zribi [21]. In this study we have also tested the performance
of some of the proposed dynamical discontinuous feedback
controllers, in typical chemical process examples, with respect
to plant parameter variations and with respect to large set
point changes. The obtained results and comparisons with
traditional PID regulator performances, are quite encouraging,
from a simulations viewpoint. The results here presented are
also extendable to multivariable nonlinear plants.
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