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A Sliding Mode Strategy for
Adaptive Learning in Adalines

Hebertt Sira-Ramirez, Senior Member, IEEE, and Eliezer Colina-Morles

Abstract—A dynamical sliding mode control approach is pro-
posed for robust adaptive learning in analog Adaptive Lin-
ear Elements (Adalines), constituting basic building blocks for
perceptron-based feedforward neural networks. The zero level
set of the learning error variable is regarded as a sliding surface
in the space of learning parameters. A sliding mode trajec-
tory can then be induced, in finite time, on such a desired
sliding manifold. Neuron weights adaptation trajectories are
shown to be of continuous nature, thus avoiding bang-bang
weight adaptation procedures. Sliding mode invariance condi-
tions determine a least squares characterization of the adaptive
weights average dynamics whose stability features may be studied
using standard time-varying linear systems results. Robustness
of the adaptative learning algorithm, with respect to bounded
external perturbation signals, and measurement noises, is also
demonstrated. The article presents some simulation examples
dealing with applications of the proposed algorithm to forward
and inverse plant dynamics identification.

I. INTRODUCTION

HE adjustment of learning parameters in perceptron based

feedforward neural networks has been mainly explored
form a discrete-time viewpoint. The celebrated Widrow-Hoff
Delta Rule [10] constitutes a least mean square learning
error minimization algorithm by which an asymptotically
stable linear convergence dynamics is imposed on the un-
derlying discrete-time error dynamics. Using quasi-sliding
mode control ideas [7] a modification of the Delta Rule
was proposed by Sira-Ramirez and Zak in [8] and in [11],
whereby a switching weight adaptation strategy is shown
to also impose a discrete-time asymptotically stable linear
learning error dynamics. This algorithm is at the basis of
recently proposed identification and control schemes, based
on feedforward neural networks (1], [4]. To our knowledge,
design of leamning strategies in adaptive perceptrons, from the
viewpoint of sliding mode control in continuous time, has
not been addressed in the existing literature. However, the
relevance of ordinary differential equations with discontinuous
right hand sides was analyzed in the work of Li et al., in [5],
in the context of Analog Neural Networks of the Hopfield type
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with infinite gain nonlinearities. In that work, it is established
under what circumstances sliding mode trajectories do not
appear in such a class of neurons.

In this paper, a continuous time sliding mode control
approach is proposed for the robust adaptation of variable
weights in Adalines, so that its scalar output variable tracks
a bounded reference signal with a bounded first order time
derivative. The zero level set of the learning error variable is
regarded as the sliding surface coordinate function and a dis-
continuous law of adaptive weight variation is proposed which
induces, in finite time, a sliding motion which robustly sustains
the zero error condition. The sliding mode controlled weight
adaptation trajectories are shown to be continuous, rather than
bang-bang signals. The ideal sliding mode behavior, provides
with a least squares characterization of the dynamical features
of the average evolution of the vector of adaptive weights. The
requirements for the stability of the average weight dynamics
establishes essential connections with adaptive control issues,
such as the persistency of excitation conditions.

A unique feature of the sliding mode approach lies in the
enhanced insensitivity of the proposed adaptative learning al-
gorithm, with respect to bounded external perturbation signals
and measurement noises. For the case of performance under
the influence of neuron input, and output, measurment noises,
some of the geometric features of the proposed sliding mode
algorithm are shown to be naturally linked to the well-known
matching conditions.

Section II contains some definitions, assumptions and
derivations of the main charcteristics of a sliding mode control

- approach to weight adaptation in Adalines. In this section, the

robustness of the algorithm, with respect to bounded external
perturbation inputs, and bounded measurement noises, is also
demonstrated along with a derivation of the required matching
condition. Section III contains some basic examples of relevant
significance in the potential applications of the proposed
adaptive learning strategy in automatic control applications.
The examples include, both, identification of forward and
inverse dynamics of unknown, externally perturbed, nonlinear
plants. Section IV contains the conclusions.

II. A SLIDING MODE CONTROL APPROACH
TO WEIGHT ADAPTATION IN ADALINES
Definitions and Basic Assumptions

Consider the perceptron model depicted in Fig. 1 where
z(t) = (z1(t),...,z.(t)) represents a vector of bounded
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Fig. 1. Adaptive linear element.

time-varying inputs, assumed also to exhibit bounded time
derivatives, i.e.,

I8 = 23O +... + O < Ve v

Il 2@) || = 4/23() + ... +24()) S Ve Vi t))
where V, and V; are known positive constants.

We denote by Z(t) the vector of augmented inputs, which
includes a constant input of value B > 1, affecting the bias,
or threshold weight wy,+; in the perceptron model, i.e.,

&(t) = col(z1(t), ..., 2n(t), B) = col(z(t), B). ()
B? +

Remark 2.1: The scalar groduct (i) =
is bounded away from zero

aT(t)z(t) = B* + || z(t)
for all times.

The vector w(t) = col(wi(t),...,wn(t)) represents the
set of time-varying weights. It will be assumed that, due
to physical constraints, the magnitude of the vector w(t) is
bounded || w(t) |< W Vt, for some constant W. We also
define the vector of augmented weights by including the bias
weight component

(t) = col(wi(t), . .., wn(t), wns1(t))

= col(w(t), wns1(t)). )

Similarly, &(t) is assumed to be bounded at each instant of
time t by means of

15) 1= (e + -+ B0 + iy S WY @

for some copstant W.

The scalar signal y4(t) represents the time-varying desired
output of the perceptron. It will be assumed that y4(¢) and
44(t) are also bounded signals, i..,

la(®) IS VYt | 9at) ISV Ve 5)
The output signal y(t) is a scalar quantity defined as:
y(t) = Y wilt)zi(t) + wara (t)

i=1

= wT(1)2(t) + wnsa(t) B=0T(HF(t).  (6)
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We define the learning error e(t) as the scalar quantity
obtained from

e(t) = y(t) — ya(?)- )]

Problem Formulation and Main Results

Using the theory of Sliding Mode Control of Variable
Structure Systems (see [9]) we propose to consider the zero
value of the learning error coordinate e(t) as a time-varying
sliding surface, i.e., ’

s(e(t)) = e(t) = 0. ®

Condition (8) guarantees that the perceptron output y(t)
coincides with the desired output signal ya(t) for all time
t > t, where ty is addressed as the hitting time.

Definition 2.2: A sliding motion is said to exist on a sliding
surface s(e(t)) = e(t) = 0, after time t;, if the condition
3(£)3(t) = e(t)é(t) < O is satisfied for all ¢ in some nontrivial
semiopen subinterval of time of the form {t,2s) C (—00,%4)-

Basic Problem Formulation

It is desired to devise a dypamical feedback adaptation
mechanism, or adaptation law, for the augmented vector of
variable weights &(t) such that the sliding mode condition of
definition 1 is enforced.

Zero Adaptive Leamning Error in Finite Time: Let
“sign e(t)” stand for the signum function, defined as

+1 fore(t)>0
signe=¢ 0 fore(t)=0 %)
~1 fore(t)<0

We then have the following result.
Theorem 2.3: If the adaptation law for the augmented
weight vector &(t) is chosen as

bty = - (?%g%)(T)) k sign e(t)
M

B+ 27 ()alD) e

k sign e(t)

with k being a sufficiently large positive design constant
satisfying
E>WVi+V 1

then, given an arbitrary initial condition e(0), the learning error
e(t) converges to zero in finite time ¢, estimated by

0
s — O (12)
k-WV; -V,
and a sliding motion is sustained on e = 0 for all £ > ¢4.
Proof: See the Appendix.
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Remark 2.4: Note that the proposed dynamical feedback
adaptation law for the vector of weights in (10) results in
a continuous regulated evolution of the vector of variable
weights @(t). The discontinuous feedback strategy (10) ac-
tually represents a least squares solution, with respect to & (t)
of the following linear time-varying equation

& (52(t) = — sign [y(t) - va(t)] a3
which yields the following suggestive regulated dynamics for
the perceptron output signal y(t)

§ =T (D) ~ ksign (4(t) —va(t)  (19)
where the signal &7 (t)E(t) acts as a bounded perturbation
signal.

Note that if the quantity Z(t) is measurable, one can obtain a
more relaxed variable structure feedback control strategy than
the one obtained in (10). Generally speaking, such an adaptive
feedback strategy for the variable weights requires smaller
design gains k to obtain a corresponding sliding motion. Since
such a case is of some practical importance, we summarize its
details in the following theorem.

Theorem 2.5: If the adaptation law for the augmented
weight vector w(t) is chosen as

2T
z _ i(t):i (t) -
0= (H(t)ﬁ(t) &0
£(t) .
| = | k
(i) oot
with k being a positive design constant satisfying k& > V},
then, given an arbitrary initial condition e(0), the learning error
e(t) converges to zero in finite time t; satisfying

|¢(0)|
eV,

(15)

tp <

(16)

and a sliding motion is sustained on e = 0 for all ¢ > ¢5.
Proof: See the Appendix.

Remark 2.6: As before, the proposed dynamical feedback
adaptation law for the vector of weights in (15) results in a
continuous weight evolution. Such a law of variation actually
represents a minimum square error solution, with respect to
&(t) of the following linear time-varying equation

g =& (B)F() + &7 (£)F(2)

= —k sign [y(t) - ya(t)]. an

The proposed solution for &(t) in (17) is, necessarily,
aligned with the augmented vector of inputs Z(t). Fig. 2
depicts the (instantaneous) geometric features at the basis of
the proposed algorithms. The total disregard for the effect
of the scalar signal 34(t) in the above adaptation schemes,
(10) and (15), arises from the implicit assumption that such a
signal is not, generally speaking, measurable in practice. On
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Fig. 2. Geometric interpretation of sliding mode learning algorithm.

the contrary, it will be shown in the next section that there
is a large class of problems for which Z(t) may be assumed
to be measurable.

Average Features of the Proposed Adaptation Mechanisms

We proceed, as it is customary in sliding mode control
theory, to investigate the average behavior of the involved con-
trolled variables. Such an analysis involves the consideration
of the following invariance conditions

e(t) =0;é(t) =0 (18)

which are ideally satisfied after the sliding motion starts
on the sliding surface and is indefinitely sustained thereon.
Consideration of such invariance conditions naturally leads
to propose the substitution of the discontinuous (bang-bang)
input signals by a smooth input signal, known as the equivalent
control input. This method has been rigorously validated in [9]
as the Method of the Equivalent Control.

Consider the adaptation law (10) and the associated
error equation (62) and substitute the discontinuous signal
k sign e(t) by its smooth equivalent value veq(2).

&(t) = —veq(t) + ST (B)Z(E) — Jal?)- (19
The second condition in (18) implies that
Veg(t) = GT (R)E(E) — §a(E)V £ > th. 20)

Upon use of (20), a virtual or equivalent variable weight
adaptation law can also be associated with the actual discon-
tinuous (bang-bang) policy described by (10). We denote such
an equivalent adaptive weight vector by &e,(t). One obtains,
for all t > i3,

T
g _ _[Z#BT ()Y .
weq(t) - (fiT(t)i(t) ‘Ueq(t)

Z(t) .
. t
+ (artot) 0

i.e., the average variable weight vector trajectory satisfies a

linear time-varying vector differential equation with forcing

function represented by the bounded function g4(t). Note that

@eq(t) itself does not, necessarily, lie in the range of Z(t). The

obtained expression (21) describes the projection, along the

range of the vector of augmented inputs Z(t), of the derivative
of the average regulated evolution of @(t). We formalize this

2n
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t in the following paragraphs after the following related
irk.

'mark 2.7: The first invariance condition e(t) =
NE(t) — ya(t) = O also leads to some minimum norm
jon for the weight adaptation trajectory &(t). Such a
ion is given by

5(t)

Ueq(t) = (030 ya(?). (22

solution (22) is, evidently, aligned with Z(¢) for all ¢.
easy to verify that, in general, the time varying vector
£) of (22) is not a solution of the linear time—varying
«d differential equation (21), but only its instantaneous
xction onto the range of Z(t).
efinition 2.8: A matrix M(t) is said to be a time-varying
:ction operator, along the range space V(t) of a nonzero
or function v(t), onto its (instantaneuous) perpendicular
rplane, if M(t) satisfies

M(#)z(t) = 0V 2(t) € V(t)

M()(2) = ¢(t) Y C(8) st vT(£)(t) = 0
roposition 2.9: Let X(t) denote the, 1-D time-varying
e space of the vector function Z(t). The matrix

E(t)Z7 (t)
Mt)y= I~ = %
®= (1~ Foe @
time-varying projection operator along X(t) onto its
intaneous orthogonal hyperplane.
he proof of this proposition is immediate upon verification

1e two given conditions given in definition 2 for v(t) =

roposition 2.10: The projection of the vector cf),q(t), onto
hyperplane representing the ideal sliding condition e(t) =
; zero, i.e., the projection of the vector &(t), onto such a
-varying hyperplane, remains constant.

Proof: See the Appendix.

he same proposition holds valid for the actual (discontin-
5) sliding mode controlled trajectories of the adaptation
zhts, given by (10) and (15).

ccording to the results of proposition 2, the equivalent
zht adaptation velocity vector satisfies the property : oft) €
). This is in fult accordance with the form of the proposed
al discontinuous adaptation law represented by (10) and
. This result has an important bearing on the stability
ures of the adaptive algorithm. Namely, the boundedness
he vector of variable weights, after sliding occurs, is
usively dependent upon the variations of the input vector
| and those. of the desired output signal y4(t).

he following proposition follows readily from the fact that
the discontinuous strategy (21), the equivalent input v, is
rined from the invariance condition &(¢) = 0, and the error
ation (A.8), as

&(t) = —veq(t) — 9a(t) 24)
Yt > i

Veg(t) = —da(t). 25)

Proposition 2.11: The equivalent adaptation law corre-
sponding to the discontinuous strategy (15) results in the
same expression as in (21).

Requirements for the Stability of the Average
Controlled Weights Dynamics

Definition 2.12: (see [2]) Denote by F(t) the time varying
matrix

EQEN0

F(t) = ~==~=3¢- 26

® = =3 @) @)

The differential equation Geq(t) = F(£) Geq(t) is said to be

uniformly stable if there exists a positive constant -y such that,

for all ¢, and all ¢ > to, the state transition matrix ®(t,to),
corresponding to the matrix F(t), satisfies

It @t to) Il < -

This definition allows us to formulate the following pro-
postion

Proposition 2.13: Suppose the system Weq(t) = F(t)@eq(t)
is uniformly stable and let §4(t) be absoultely integrable. Then,
the solutions of (21) are bounded

Proof: See the Appendix.

Definition 2.14: The system Geg(t) = F(t)deq(t), is ex-
ponentially stable if there exists positive constants y and A
such that, for all ¢t > tg, the state transition matrix ®(2,%0),
associated with F(t), satisfies

| 8(t, to) || < ye 20

Proposition 2.15: The matrix F(t) is bounded if E(t) is

bounded
Proof: Sec the Appendix.

It is well known [2] that if the matrix F{t)is bounded, then
exponential stability is equivalent to the uniform integrability,
over arbitrary intervals of time, of the norm of the corre-
sponding transition matrix. The following theorem is proved
in [2].

Theorem 2.16: Let &(t) be bounded on (—o0, +0c) and let
M be a constant, independent of o and #;, then, the system
Geq(t) = F(t)eq(t) is exponentially stable if and only if

¢2))

(28

1
/ 18t to) dt < MYty > to. (29

to

The next result touches upon a special form of the well
knwon condition of persistency of excitation, of common
occurrence in linear and nonlinear adaptive control schemes
[6l. )

Theorem 2.17: Let Z(t) be bounded on (—0o0, +00), more-
over, assume that the following form of the persistency of
excitation condition holds uniformly in ¢.

There exists positive constants § and ¢, such that the
following matrix condition is satisfied

e _E0)ET(9) 16T oV do >
/t Q(t’a)[(i’r(a)i(a)f]@ (t,0)do > eIVt > to.
(30)
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Then, the equivalent adaptation law (21) uniformly yields a
bounded trajectory for the vector of weights @e,(t), for every
bounded signal gq(t), if, and only if, the autonomous system
Weq(t) = F(t)weq(t) is exponentially stable.
Proof: See the Appendix.
Condition (30) admits the following scalar form ([6])

t+6
2T (¢, ( ) (U) :|<I> ,0) zdo
[ e [( 0o L
_ [ (o) i(0) ,
‘/, “# (o)) | ¢

2> e\'/t>to,,,|z||_ (31)
which is a condition on the energy, averaged over all directions
of a unit sphere, of the nonsingularly transformed input vector,

X(7) = &(r,t) £(t)/ (T (t)&(t)).. This means that the vector
function x(7) is quite an “active” time—-varying vector, so
that the integral of the matrix ¥(¢)%7 () is uniformly positive
definite over any interval of finite length 6.

Robustness Features with Respect to External Perturbations

Inputs with bounded additive noise: Consider a vector-
valued norm-bounded external perturbation input, denoted
by &(¢) = (é1(¢),...,&(t)), which additively affects the
values of the input vector z(t) to the perceptron. It is assumed
that the perturbation input £(t) is not “larger” than the input
z(t), ie.,

@) = VEO +...+ O < Ve < Vo

The time derivatives of the components of £(t) are assumed
to be also bounded

(32)

1 I= VE® +...+ &) < v v

We define the augmented external perturbation input vector
as

(33)

é(t) = (gl(t)v s

This means that it is implicitly assumed that the constant input
B to the bias weight wn41(t) is a fixed value which does not
contain the influence of perturbation signals.

The perturbed learning error é(t) = -y(t) — ya(t) is now
given by

1€n(t),0). 34

&(t) = [8(t) + £ a(t) - ya(2).

Note that, in spite of the fact that the perturbed input
signal Z(t) + £(t) is actually available for measurement, its
time derivative Z(t) + £(t) is not. This means that such time
derivatives can not be used in the weight adaptation law.
Hence, only an adaptation law of the type proposed in (10)
can be actually devised for sliding mode creation on the zero
learning error hyperplane.

(3%
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By virtue of the above considerations, we shall center our
attention on the perturbed adaptation law:

50 = _( 3(0) + &(t)
[2() + €7 Ia(0) + (0]

The weight adaptation law (36) results, as it is easily
verified, in the following discontinuous perturbed learning
error dynamics

&(t) = —k sign &(t) + ST BE() + E(t)] ~ valt).

The robustness result is summarized in the following theorem
whose proof is rather similar to that of Theorem 1.

Theorem 2.18: Consider the sliding mode creation problem
on the zero learning error hypersurface of an adaline including
a perturbed input vector. If the adaptation law for the aug-
mented weight vector &(t) is chosen as in (36) with k being
a positive constant satisfying

k>W(Vi+V)+V
then, given an arbitrary initial condition €(0), the perturbed

leaming error é(t) converges to zero in finite time £5,, estimated
by

) k sign &(t). (36)

D)

(38)

e L@l

k-W(Va+ V) - Vg 69

in spite of all possible assumed (bounded) values of the
perturbation inputs and its time derivatives. Moreover a sliding
motion is sustained on é(t) = 0 for all ¢ > #,.

The equivalent input v,,(t) is now defined, from (37) as

veg(t) = D7 (2) [3(e) + £(8)] - 5(0)-

The equivalent fecdback adaptation law is obtained by sub-
stituting the discontinuous term in the adaptation law (36)
by ve(t). The obtained average adaptation law is mow a
perturbation—dependent feedback adaptation law given by

é}e (t) = (-— S (jl+ é-gl,;a>
! [3(8) + E)]T2(2) + &)

- [850 Go +€@) - 5]
) ( [8() + EENIIEE) + é‘(_t)]?) o
[#(2) +E@O)T [2(t) +é) )
3. +&) .
* ({z(t) +EOF 120) + z(t)]) wlt)
Enforcing the invariance condition, corresponding to zero

perturbed learning error é(¢) = 0 on (42), one obains, after
some algebraic manipulations, the following expression

(, _ B +E@liae) + f(f)]T) burtt) =
[2(2) + E@ITLa() + €00 )
According to the results of proposition 1, the matrix mul-

tiplying weq(t) in (42) is a time-varying projection operator.
Hence, (42) implies that {(t) lies in the range space of the

(40

“1

42)
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perturbed input vector, #(¢)-+-£(t) and has zero projection onto
the zero perturbed learning error hyperplane. The adaptation
mechanism for the perturbed input case has similar geometric
features as the unperturbed case.

Noisy Measurements of the Unperturbed
Inputs and Neuron Output

. Consider now the case in which the measurements of the
unperturbed input vector z(t) are corrupted by some unknown
but bounded noise signal, which we still denote by £(t),
satisfying the assumptions of the previous subsection. The
measured vector is denoted by z,,(f) = =z(t) + £(t). We
also assume that the bounded measurement noise component
€n+1(t) distorts the measured vatue of the constant bias input
to the threshold element, assumed to be nominally equals to
B. However, the noise component £,41(t) should satisfy the
restriction | wny1(t) | € Vg,,, < B. The measured input
vector function £,,,(t) = £(£) + £(t) has the obvious meaning.
Its constitutive parts are defined as before and they satisfy
the same assumptions. In particular The assumption V; < V,
clearly implies that the vector function £(2) is never orthogonal
to the extended measured input vector function Z,(t), i.e.,

& (1) (t) = [#(2) + €))7 #(2) # 0. 3)
Additionally, the measured perceptron output y,(t) =
y(t) + ¢(t) is assumed to be corrupted by some additive
noise signal, {(t), which has a bounded time derivative, i.c.,
ICIERAL
It is assumed that the time derivative of the perturbed
measured input vector &, (t) = Z(¢)+£(t) is not synthesizable
in practice. The perturbed adaptation law, proposed for this
case, is of the same form as that in (36). The perturbed learning
error dynamics is now obtained as

. T £ T~
ét)= - (T [x(t). +—£T€t2]»—z(?l. — | k sign é(t)
[Z() + E@)T[2() + €]
+&T ()3 + {(t) ~ Ja(t). (44)
To guarantee the existence of a sliding regime on the
hyperplane é(t) = 0, the smallest possible value of the product
of the switch gain factor k, and the time varying scalar
quantity modulating its value, has to be sufficiently large as
to overcome the unknown but bounded values of the term
a7 (£)2(t) + () — 94(t) in the error dynamics (44).
Note that
ECORTO) O
[Z() + EDNT[2(2) + £(2)]
| O+ B (B +an()
[2() + DT () + ED + (B + énsa(£))?
B~ (Vat Vo) Ve~ BVeuyy _
T (Ve + Ve + (B4 Ve, )
We assume also that n > 0 The preceeding developments,
and arguments similar to those already used in the proof of

45)
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theorem 1, establish the basis for the proof of the following
theorem which summarizes the robustness result for this case.

Theorem 2.19: Consider the problem of a sliding mode cre-
ation in a neuron with noisy measurements of the unperturbed
input vector Z(t) and output signal y(t). If the adaptation law
for the augmented weight vector &(¢) is chosen as in (36) with
k being a positive constant satisfying

. Wi+ Va4 Y
B+ V) Ve - BV,
(Ve + Vo) + (B + Ve )] (46)

then, given an arbitrary initial condition é(0), the perturbed
learning error &(t) converges to zero in finite time 5, estimated
by

2 fe@|
th £ s
k- W(V:+V) -V -V
in spite of all possible assumed (bounded) values of the input
measurement noise. Moreover a sliding motion is sustained
on é&(t) = O for all t > 5.
We use again the method of the equivalent control on the
basis of the emor dynamics equation (44).

@é4n

ER0)E®)
T ZL(t)Em(t)
+€(8) — galt) = 0.

veq(t) + &7 (£)2(2)

Note that no singularity is present in the definition of the
equivalent input ve,(t) since the product 7, (t)(t) is never
zero, as remarked before.

The ideal sliding dynamics, obtained from the invariance
condition é(t) = 0, yields, in this case, the following descrip-
tion of the equivalent adaptation law for the vector of variable
weights

zL(02(1)

+(z2l05) i -d0]. @

. T
Beglt) = - (i’i‘)’ »@) Beglt)

In accordance with the invariance condition &(t) = O one
substitutes g4(t) by () in the preceeding equation. After
some simple algebraic manipulations the following expression
is obtained
En(O)ET @) -
- I =0 4
(- S ) &0 @

which clearly indicates that the velocity vector for the weight
evolution belongs to the range space of the vector £, (t) and
has zero projection onto its normal hyperplane. Once sliding
occurs, the vector of variable weights is attached to a fixed
point of a hyperplane normal to £,,(t). However, the zero error
learning hyperplane is skewed with respect to this hyperplane
and the weight vector evolution is no longer attached to a fixed,
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but a variable, point on the zero learning error hyperplane. We
say that an unmatched evolution is obtained for the vector of
adaptive weights.

The projection onto the normal hyperplane to Z(t), of the
velocity vector of the weight adaptation trajectory, éeq(t), now
exhibits a nonzero component. This means that the projection
of the vector of weights does move relative to the error
hyperplane é(¢t) = O in a sliding fashion. Moreover, since
the velocity vector of @eq(t) is no longer orthogonal to the
zero learning error hyperplane, the adopted weight evolution
law does ‘not guarantec the fastest approach to the zero
learning error condition and boundedness of @, (t) becomes
highly dependent upon the nature of the noise signal £(t).
The following result establishes structural condition which
guarantees the fastest rate of approach of the vector of adaptive
weights to satisfy the zero learning error condition.

Theorem 2.20: Let X(t) denote the 1-D range space, at
time ¢, of the vector Z(t), then the equivalent feedback
adaptation laws, given by (48), satisfies

Deg(t) € XMWV E (50)

if, and only if,
£(t) € X(2).

Proof: See the Appendix.

Condition (51) is the well-known matching condition which
is to be satisfied by the structure of the input measurement
perturbation noise. This matching condition means that all
effects of the measurement perturbations will be confined
to the time varying subspace X(t) where the discontinuous
feedback actions will overcome them. The boundedness of
the pertarbation signals implies furthermore that the regulated
motions of the adaptive weights vector will be robustly brought
to the zero learning error hyperplane.

51

M. APPLICATIONS TO INVERSE AND
DIRECT DYNAMICS IDENTIFICATION

In discrete-time feedforward neural metworks, the basic
building block unit connecting physically available input vari-
ables to the neurons, or Adalines, is constituted by a transversal
filter consisting of an ideal sampler and a string of pure delay
elements in a “ladder” array (see [4]). This unit is uvsually
addressed as the IS/F~module (for Ideal Sampler-Filter). The
output of each pure delay unit constitutes a component of the
discrete-time state vector of the ladder filter. These states are
provided, as input signals, to the neuron module.

In continuous time (i.e., analog) neuron units, the IS/F-
module must be replaced by a string of integrators, which
is the dynamical continuous-time “equivalent” of the pure
delay element. However, such an arrangement is inherently
unstable and some internal feedback must be devised so that
the resulting unit provides stable, i.e., bounded, signals as
inputs to the neuron unit. We thus propose the use of a stable
filter, i.e., a stable time-invariant linear dynamical system
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Fig. 3. Schematic representation of the stable filter module and Adaline.

whose (available) states will be used as inputs to the neuron
unit. The scalar input function u(t) is the input to the filter and
represents the physically available signal to be processed by
the neuron ( usually a plant input, or output). Fig. 3 depicts
a schematic representation of the Stable Filter (SF) module
connected to the Adaline module.

Let A denote the constant matrix representing the internal,
time invariant, feedback connections of the SF-module. Let b
be the vector representing the input channel structure to the
stable filter. The pair (A, b), with state vector z(t) represents
the SF-module.

Consider the augmented version of the input pair (A, b), as

follows
P A 0] ; b
A_[O 0],1:—[0]. 52)
The SF-module state equations are therefore given by
E(t) = AF(t) + bu(t) 53)

where Z(t) is the state vector of the SF—module, constituting
also the vector of augmented inputs to the neuron unit,
considered in the previous section.

Note that since the vector function z(t) is implicitly as-
sumed to be available for measurement, the vector Z(t), and
the vector # , are, indeed, available for measurement from
the particular topology of the SF module (note that each
state variable component describing the filter is physically
measurable, and so are all their first order time derivatives,
which are just the inputs to the several integrators present
in the constructed filter). Any sliding mode control strategy
to be used on the basis of the SF-Adaline combination can,
therefore, assume that these two signals are actually available
for measurement. Note also that any noise affecting the signal
u(t) influences the filter state vector z(t) in such a manner
that the filtered noise components present on each input z;(t)
to the neuron is already of the “matched” type.

The composite discontinuous weight adaptation dynamics
takes then the form

§(t) = A%(t) + bu(t)
b(t) = - (’L__Q(t)ir(t) AT +u(t)

(54)
)BT\ .
*(tr@) o)

~ (ot om0
y(t) = 2T (B)a(t)

ET(1)E(2)
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Fig. 4. 'Forward and inverse dynamics identification schemes using
SF-Adalines.

The corresponding (average) equivalent adaptation law is
simply obtained now as,

#(t) = AE(t) + bu(t)

s F(0)&T - T I;T .
beglt) = - (%”%ég A 4up) »—;(tt))z (t)> eql?)

#(t) .
+ (E’@:E(it)) a(t)
() = BT (£)eqg(t) = pal?)

The particular form adopted for Z(t) does not have any
bearing on the geometric features associated with the sliding
mode adaptation algorithm. As it can be easily verified, (69),
is independent of Z(t) and hence, it is independent of the
particular values of the pair (A,5). The stability features of
@(t), or of its average value &.4(t) do depend, however, on
the values adopted by the pair (A4,b), and the value given to
the input function u(t).

Proposition 3.1: The actual and the average sliding mode
controlled dynamics for y(t) (54), (55) are independent of the
matrices A and b i.e., the convergence of the output function
y(t) to the desired output y4(t) by means of the sliding
mode adaptation algorithm is insensitive with respect to the
SF-module parameters

Proof: See the Appendix.

For the forward and inverse dynamics identification tasks,
we use standard definitons, which may be found in [4].
Fig. 4 depicts the forward and inverse dynamics identification
schemes used for the example in the next section.

(55

Identification of Forward and Inverse Dynamics
for the Kapitsa Pendulum

Here we consider a truly nonlinear system of the nonfiat
type, studied by Fliess and coworkers in [3], consisting of a
unit mass rod with a suspension point which freely moves
only on a vertical direction. The Kapitsa pendulum is, thus, an
inverted pendulum where the control actions are constrained
to move the suspension point only along a vertical axis (see
Fig. 5).

We considered a nonstabilizing open loop control u(t),
applied to the plant, and obtained the corresponding output
yp(t) of the nonlinear system, represented by the angular
position of the rod with respect to the vertical axis. In the
forward dynamics identification problem y,(t) is regarded as
the desired signal, y4(t), to be followed by the neuron output
y(t). In that case, the input function u(t) to the system, is also
the input to the SF unit. For the inverse dynamics identification
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Fig. 5. Kapitsa pendulum.

the roles of u(t) and y,(t) were reversed, with respect to the
neuron system.
The open loop control function u(t) was chosen, according
to ([3]), of the form :
t .t
u(t) = A; + Ap cos(-é—;) + A3 sm(;) (56)
where A;, A2 and Aj; are constant parameters. The nonlinear
system is assumed to be unknown and only. its input and
output signals are assumed to be measurable for the adaptation
process. For simulation purposes, however, the following
model was used

a(t) = p(t) + ut) sin a(t)

I
p(t) = (% = y_";gt) cos a(t)) sin e(t)

) 1) cosa()
(1) = u(t)
¥p(t) = () (57)

where af(t) is the angle of the rod with the vertical axes, p(t)
is proportional to the generalized impulsion. The constants g
and [ represent, respectively, the gravity acceleration and the
length of the rod. The velocity of the suspension point acts as
the control variable u(t). The variable z(t) is then the vertical
position of the suspension point.

Numerical values for the parameters of the Kapitsa pendu-
lum mode] were set to be g = 9.81[%] and ! = 0.7[mts]. An
open loop control input signal u(t) of the form given in (56)
with the following constant parameters

Ay = 04,43 = 2,43 = 3;¢ = 0.05
was used, for both tasks.

The SF module was designed as a stable low pass filter with
the following state representation

1(t) = z2(t) (58)
a(t) = z3(t)
Z3(t) = —z3(t) — 3z2(t) — 3z3(t) + u(t)
Z4(t) =0
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Fig. 6. Noise-free forward dynamics identification of the Kapitsa pendulum,

where the state variable x4(t) represents the bias component
with initial condition equals to B. Such a constant parameter
is taken, for this example, as B = 1.

The results of a simulated forward dynamics identification
tasks, for an Adaline with a total of 4 weights (including one
bias variable weight) are shown in Fig. 6. In this figure, the
desired output trajectory ya(t) is constituted by the nonlinear
pendulum system output, i.e., yp(t) = a(t) = ya(t) and the
input u(t) to the SF-module is the same input given to the
nonlinear system. The learning (tracking) error response e(t)
is shown to converge to zero in approximately 0.02 s. To
alleviate the “chattering” phenomena, present in the neuron
output and learning errror responses, as well as to speed up
the simulation time for the SIMNON package, the following
standard substitution was adopted for the ideal switch function

GO

k sign e(t) ~ |e(t)|~+‘5

59)
with § = 0.05.

Highly accurate following is seen to be achieved without
chattering around the desired output signal. The open loop
unperturbed input signal trajectory wu(t), afecting both the
pendulum and the SF-neuron arrangement, is also shown in
this figure. In the simulation no additive noise affecting the
input signal u(t) was assumed. The value vsed for the variable
structure gain k was set to k = 5.

For comparison and qualitative neuron performance evalu-
ation, simulations were also carried out for the same forward
dynamics identification task with an input signal u(t) subject
now to a computer generated additive bounded noise £(t). The
generated noise signal is a discrete-time stochastic process
normally distributed at each instant of time with zero mean
and standard deviation equals to 1. The value of k was set to
be the same as for the previous simulation and the same switch
substitution was carried out. The perturbed input u(t) + £(t)
affects, as before, both the input signal to the pendulum and
to the SF-adaline system. The measured filter state is now a

ya(t)

T s
time ¢ [sec}
[ —_— —

-~8.e4 .
time { {sec]
e S B
. "

) ) time ¢ {sec]
. O o2 DX sa  els

Fig. 7. Robust Forward dynamics identification with bounded noise input
for the Kapitsa pendulum.
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Fig. 8. Noise—free inverse dynamics identification of the Kapitsa pendulum.

perturbed vector function. The noisy states are used to conform
the sliding mode adaptive strategy in accordance with (36).
The perturbed filter state constituting the input to the adaline
is, thus, of the “matched” type. The corresponding simulation
results are shown in Fig. 7.

The inverse dynamics identification task was also imple-
mented using the same SF-module described above. The
variable structure control gain used in this case was k =
90. The simulation results, without additive noise for the
measured output signal y,(t) of the nonlinear system, are
presented, for a 4 weights Adaline, in Fig. 8. Fig. 9 presents
the corresponding results for an additive noise input signal,
of the same characteristics as before, affecting the measured
signal y,(t) given as an input to the filter-neuron combination.
In this case the value of k was substantially increased to
k = 1000 due to the large values of the first order time
derivative of the desired output signal y4(t), represented now
by the noisy signal u(t) + £(¢), with u(t) as given in (56).
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Fig. 9. Robust inverse dynamics identification with bounded noise input for
the Kapitsa pendulum,

1V. CONCLUSION

In this paper a new dynamical discontinous feedback adap-
tative learning algorithm has been proposed, for linear adaptive
combiners, which robustly drives the learning error to zero in
finite time. The components of the vector of variable weights
are assumed to be provided with continuous time adapta-
tion possibilities. The dynamical adaptive leaming scheme
is based on sliding mode control ideas and it represents a
simple, yet robust, mechanism for guaranteeing finite time
reachability of a zero learning error condition. The approach
is also highly insensitive to bounded external perturbation
inputs, measurement noises and designed input filter param-
eters.

Bounded average weight evolution is guaranteed under sev-
eral conditions relative to the underlying linear time—varying
system describing the average evolution of the vector of adap-
tive weights. Some of these conditions are closely related to
those of persistency of excitation and thus links our approach
with standard adaptive control results.

The matching condition, with respect to bounded input
signal and neuron output measurment noises, guarantees a
minimum norm solution for the velocity of weight adapta-
tion and fastest convergence to the zero error hyperplane.
Measurable inputs, already containing external perturbation
components, result in a “matched” input channel structure
which always guarantees orthogonal velocity of convergence
to the sliding hyperplane. The matched structure appears
to be trivially satisfied in most automatic control oriented
applications.

Chattering—free dynamical sliding mode controllers for non-
linear systems have been recently proposed by Sira-Ramirez
([12]) using input-dependent sliding surfaces. The adaline case
study presented here represents an instance in which the sliding
surface (zero learning error condition) is actually an “input”
dependent manifold. The obtained sliding “controller” is thus
continuous rather than bang-bang.
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Extensions of the results to more general classes of mul-
tilayer neuron arrangements is being pursued at the present
time, with encouraging results.

APPENDIX A

Proof of Theorem 2.3

Consider a Lyapunov function candidate given by

Vie(t)) = %ez(t). (60)
The time derivative of V(e(t)) is given by
V(e(t) = e(t) (6" (1)2(t) + T (D)) — alt))
=~k | e(t) | +e(t) @T(1)E(t) - ga(t)) (6D

< —kle(t) | +(WVs+Vy) | e(t) ]
=(—k+WV+ V) e®) | < 0Ve#0.

Thus, the controlled trajectories of the learning error converge
to zero in a stable manner. We may actually show that such a
convergence takes place in finite time.
Indeed, the differential equation satisfied by the regulated
error trajectories e(t) is simply given by
&(t) = —k sign e(t) + @7 (£)Z(t) ~ Jalt). 62)

For all times ¢ < t5, the solution, e(t), of such a differential
equation, with initial condition e(0) at t = 0, satisfies

e(t) — e(0) = —kt sign e(0)
+ [ (@) - iato)do 6
0

at time ¢ = t;, the solution takes the value zero and, hence,

—e(0) = —k t, sign e(0)

+ / " (@T(£)Z(t) - ya(t)) dt. 64
0

Multiplying both sides of the equality by —sign e(0) one
immediately obtains the estimate in (12) of 5 by means of
the following inequality
th pd . .
le(0) | =ktn—( / (@7 (#)2(2) — ga(t)) dt) sign (0)
0
2 [k~ (WV; + Vy)ltn- ©5)

Evidently, for any ¢ < ¢, and for the chosen sliding mode
controller gain k, in (11), one has from (62) .

e(t)é(t) = —k | e(t) | +(@7 ($)2(t) — ga(t))e(t)

< (—k+WVe+ V) e(t) <0 (66)

and a sliding mode exists on e(t) = 0 for ¢ > t5. D
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Proof of Theorem 2.5

The proof proceeds along similar lines of that of theorem
1 after realizing that the controlled learning error satisfies the
following differential equation with discontinuous right-hand
side

é(t) = —k sign e(t) — ya(t)- 67

O
Proof of Proposition 2.10

Consider again (21), along with the condition é(t) = 0, i.e.,
with g4(¢) = g(t). We rewrite (21) as

c o [E#0F@)N .
Weg(t) = — (iT(t)iTt)) Deq(2)

(1) .
(o) 99

N
rearanging (68) one obtains
(I zgf();x g) beglt) = o (69)
n
Proof of Proposition 2.13

Consider the inequalities

* | 9a(t) |
Luwm“

and assume that the initial states, @eq(to), of the weight
adaptation trajectories are bounded by a constant Wo.

From the variation of constants formula, the solutions of the
linear time-varying differential equation (21) are written as

< /;Ooll'ld(t)ldt=ﬁ (70)

Weq(t) = B(t,t0)eq(to) +/ O(t,0) = 77 () )( )yd(a)da

@an
By virtue of (70), the norm of @.4(t) satisfies
| @eq(t) | <1l B(2, to} I 1} Geg(to) Il
U #(o) .
41 [ #(t0) gl s dulo) da
SN @(t to) | Il @eq(to) |l
+ [ewan L@ 6
Jio 'O T
SY(Wo+B)ViE>t (72)
the result follows. O
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Proof of Proposition 2.15
We take as definition of the matrix norm the induced norm

| Ft) | = maxyy=1 || F(t)z |} - (73)
Evidently, from the definition of F(t) in (26), it readily
follows that

[EONNEZ]

o EOL R

| F(2) | £ max,p=1—; 74

O

Proof of Theorem 2.17

It is easy to realize, from the definition of the augmented
input vector Z(t) in (2), that the input channel matrix for the
signal §4(t), given by #(t)/(&T (t)Z(t)), is bounded for all
t € (—o0,+00). Moreover, according to proposition 5, the
boundedness of £(¢) implies the boundedness of F(t). The
proof of the theorem may now follow, quite closely, the proof
found in pp. 167 of [2] ‘ a

Proof of Theorem 2.20

Evidently if £(t) € X(t), then, according to the assumption
relating the bounds of #(t) and £(t), by which V; < V,
there exists a time varying scalar function u(t) taking values
in the open interval (—1,+1), such that zi(t) = u(t)#(t) ¥ t.
It is then easy to see that the projection along X(t) onto its
normal subspace, of the generated average vector velocity of
the weight adaptation trajectories satisfy

’ zm(t)z t) 5
(- S ) 30
= (1 BO+pOOBTO) o
‘O wnwmww)“w
= (I

I(t)z (t)
(Hﬂ’m
and, therefore w,q(t) € X(t).
Assume now that wcq(t) exX (t) V t. From (49) it follows
that &eg(t) may be expressed, as

@5)

Weg(t) = ax(t) Zm(2) (76)
where the scalar function a(t) is given by
= F(O)oeg(t)
0= S 0a0) @

in other words Z,(t) = (t) + E(~t) € X(t). But this is only
possible if, and only if, £(t) € X(t) V¢ O

Proof of Proposition 3.1

We only prove the proposition for the case of (54), since
the proof corresponding to (55) proceeds along similar lines.
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- Indeed, taking the time derivative of y(t)in (54) and using
the expressions in the first two equations in (54), one finds,
after some straightforward algebraic manipulations, that

. 2T, .\~ = o
i(t) = 5" 03() + 5T (1))
= —k sign e(t) = —k signfy(t) — ya(?)]-

(78)

O
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