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A SLIDING MODE CONTROL AP-
PROACH TO PREDICTIVE
REGULATION®

H. SirA-RAMIREZ! AND M. FLIESS?

Abstract. In this article, a sliding mode feedback control scheme of dynamic
nature is proposed as an efficient alternative to deal robustly with the intrinsic
tracking problem associated with every Model Based Predictive Control strategy.
The results, which are fundamentally based on system inversion, apply to nonlinear
single-input single-output perturbed systems for which the tracking of a pre-
specified desirable output reference signal is required. The scheme is shown to
handle efficiently large modeling errors and unmatched perturbation input.
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1. Introduction

The Model Based Predictive Control (MBPC) technique has received sustained
attention, from both a theoretical as well as an applied viewpoint, ever since it
was introduced by Richalet et al. (1978), fifteen years ago. The technique has
been developed over the years by many authors, specially by Clark et al. (1987 a;
b), Richalet (1990), Richalet et al. (1987) and Bitmead et al. (1991). The technique
has received fundamental impetus towards its applicability in the chemical pro-
cess industry by the research efforts of Morari (1993), Morari and Lee (1991),
Morari et al. (1993) and Garcia et al. (1992). On the theoretical side, extensions to
the nonlinear case, in fruitful combination with the concept of system inversion,
have been presented by Abu el Ata-Doss and Fliess (1989) and Abu el Ata-Doss
et al. (1992). A recent book on the subject is that by Soeterboek (1992). More
recently, interesting developments, related to nonlinear optimal control theory,
have been presented in a series of works by Mayne and Michalska (1990 a; b;
1991).
Sliding mode control has been traditionally recognized as a high performance
control technique with outstanding robustness features for both system stabiliza-
tion and output tracking problems. The degree of development of the theoretical
aspects of sliding mode control are well documented in the many books and re-
search articles that have been written on the subject. The interested reader is
referred to the books by Emelyanov (1969), Utkin (1978; 1992), Slotine and Li
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(1991), Zinober (1990; 1994) and Biihler (1986). A collection of articles of Sliding
Mode Control, which indicates recent research trends and contains detailed sur-
veys of the area, can be found in a recent Special Issue of the International J. of
Control, edited by Prof. V.I. Utkin (1993).

In this article, we develop an approach that uses an advantageous combi-
nation of dynamical sliding mode control (see Sira-Ramirez, 1992 a) and input-
output system inversion (Fliess, 1989) in MBPC schemes. These techniques
" naturally blend together to yield a robust solution to the nonlinear output track-
ing problem associated with any predictive control scheme and defined within a
prespecified prediction interval. Initial steps in this direction have also been
taken by Sira-Ramirez and Fliess (1993).

In Sec. 2 of this article, we present a general description of the Predictive
Functional Control problem, using a dynamical, i.e., chattering-free, sliding mode
control approach. The results in this section are based on a fundamental robust-
ness result for discontinuously controlled scalar perturbed systems. The develop-
ments follow quite closely those found in Sira-Ramirez and Fliess (1993). Section
3 contains some illustrative examples along with digital computer simulations.
One of the examples deals with the application of the synthesized predictive con-
trol scheme to an actual system that differs substantially from the model used.
The sliding controller performs well even if control discontinuities have to be
imposed in order to avoid inversion singularities. A second example includes the
design of a predictive dynamical sliding mode controller for a nonlinear model of |
a field controlled d.c. motor. The robustness of the design is tested by the addi-
tion of unmodeled and unmatched, computer-generated, white noise perturba-
tions. Section 4 presents conclusions and suggestions for further work in this
area.

2. Robust Predictive Control via a Dynamical
Sliding-mode Strategy

In this article, using techniques developed for dynamical sliding modes (see
Sira-Ramirez, 1992 b; 1993), we propose an MBPC scheme based on dynamical
sliding mode control and system inversion. In our setting, a prespecified smooth
output reference trajectory y,(¢) is prescribed as a desirable future output tra-
jectory for a given nonlinear perturbed system. Qur developments consider that
the available system model has been placed in Generalized Observability Canoni-
cal Form (GOCF) (see Fliess, 1990). A desirable, asymptotically stable, reduced
order linear tracking error dynamics is then proposed in a manner canonically
determined by the order of the system model and standard asymptotic stability
requirements. The specified linear tracking error dynamics ideally results in an
asymptotic tracking of the proposed output trajectory within the current predic-
tion interval. The prescribed reduced tracking error dynamics, in turn, uniquely
specifies a linear algebraic relation between the phase variable coordinates in the
error space. Such a relation yields the unambiguous definition of a suitable
tracking error stabilizing sliding surface. A dynamical sliding mode controller,
computed from the unperturbed system by means of standard system inversion
techniques, is then proposed. The resulting variable structure control strategy is
guaranteed to create a sliding regime on the computed sliding surface, in spite
of all assumed realizations of the modeled perturbation signal. A model-based,
robust asymptotically stable output tracking error may hence be obtained for the
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current prediction horizon.

Generally speaking, after application of the computed sliding mode policy to
the actual system, noticeable tracking error discrepancies may be found between
the available model and the actual plant performances evaluated at the end of
the prediction interval. Under such circumstances, for the next prediction inter-
val, the initial conditions of the reduced order prediction tracking error model
must be reset according to the obtained actual system tracking error values.
Also, the desired output reference trajectory, for the new horizon, may be suit-
ably modified on the basis of the obtained tracking discrepancy. The new predic-
tion horizon can be specified on the basis of the reaching time to the desired
sliding surface and the slowest eigenvalue of the imposed linear output tracking
error dynamics. The model-based control computation, its actual implementation
and the performance reassessment process are then systematically repeated at
the end of each proposed prediction interval. Reference trajectory modification,
according to the obtained tracking error discrepancy between the prediction
model and the plant may also be based on systematic procedures arising from
the self-compensation principle (Richalet et al., 1987). L

2.1 A sliding mode control result for scalar perturbed systems
The following result will be useful in the developments of this section (see
also the Appendix).

Proposition 2.1. Let W and N represent strictly positive quantities, and let
“sign” stand for the signum function. Suppose v is a scalar bounded perturba-
tion signal such that |v| = N. Then, the perturbed scalar discontinuous system,

w=v—Wsignw, (2.1)

globally exhibits a sliding regime (Utkin, 1978) on w = 0, provided W > N.
Furthermore, any trajectory starting on the initial value w = w(0), at time
t = 0, reaches the condition @ = 0 in finite time 7,. An estimate of the reach-
ing time 7, is given by

|w(0)
T, = W-N " (2.2)
Proof Immediate upon checking that globally, w(dw/dt)<0, whenever
w# 0 and W > N. This is a well known condition for the existence of a sliding
regime (Utkin, 1978). The estimation of the reaching time in (2.2) is immediate
upon integration of (2.1) and consideration of the most disfavorable perturbation
case.

2.2 Predictive functional control via dynamical sliding modes Con-
sider a nonlinear n-dimensional single-input single-output dynamical system, ex-
pressed in GOCF (Fliess, 1989),

> (2.3)
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where the scalar signal function v comprises all known information about exter-
nal bounded perturbation signals and an assessment of possible modeling errors.
Note that a particular advantage of the GOCF is that perturbation signals are
always matched with respect to the highest derivative of the control input, %%,
which is taken as the effective control input signal in any dynamical feedback
regulation scheme. This fact avoids the need for complying with the well known
matching conditions, set almost twenty-five years ago in the work of Drazenovic
(1969).

The integer a in (2.3) is considered to be a strictly positive integer. For sys-
tems which are exactly input-output linearizable, i.e., where o= 0 (see Isidori,
1990), the same developments presented here are still applicable, except that, in
order to obtain our proposed chattering-free responses, a first, or higher, order
dynamical extension of the system becomes necessary (the concept of dynamical
extension can be found in the book by Nijmeijer and van der Schaft (1990)).

The signal v is assumed to satisfy

sup|v|= N. (2.4)

Let yR(t) be a prescribed reference output function, assumed to be suffi-
ciently smooth and defined over a given prediction interval [0, T,]. Such an in-
terval is determined below in Sec. 2.3.

Define a tracking error function, e(t) as the difference between the actual
system output, y(¢) and the output reference signal, y,(¢),

e(t) = y(t) — y,(1). (2.5)
We then have
(@) = . _ 0 <7;<gy-—
ety =my —y, (1), 0=si=n-1 (2.6)
ety =n, -y =c(n u, -, u®) =3 +v

Defining ¢; = D (i=1,2,---, n) as components of an error vector e, we
may also express the tracking error system (2.5), (2.6) in GOCF as

é =&y
€ =e3
o (2.7)
én =cle+& (1), u -, u!®)— y"(t)+ v
e =@
with
_ (1) (n—-1)
£, (1) = col(3,(1), y2(8), -, 3! (t))}_ (2.8)
e =col(ey, e, "+, ¢,) '

The model-based predictive controller synthesis entitles the unambiguous speci-
fication of the (desired) system output tracking error, e(¢) within the specified
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prediction horizon [0, 7}]. This task is easily accomplished by prescribing a re-
duced order linear dynamical tracking error behavior, which is known to asymp-
totically converge to zero; i.e., we specify the desirable tracking error dynamics
as ~

6 =e
€ =e3
, (2.9)
byl = T My_1€y—] — T MO
e =€
where the set of real coefficients {#, -, m,_1} is such that the following (char-

acteristic) polynomial, in the complex variable “s”, is Hurwitz:
p(s) ="+ m, 18"+ mps + (2.10)

We denote by p the smallest real part, in absolute value, of all the complex
stable roots of the polynomial equation p(s) =0, associated with (2.10). The pa-
rameter y actually represents the smallest time constant associated with the
asymptotical exponentially stable decay of the controlled tracking error re-
sponse, under ‘deal sliding mode conditions (see Utkin, 1978). Such a design pa-
rameter is used in the computation of the current prediction interval [0, 7] and,
evidently, it may be specified a priori during the design stage (see also Sec. 2.3).

The prescription of the desired linear tracking error dynamics (2.9), in turn,
uniquely specifies a corresponding sliding surface coordinate function on the
output tracking error phase space of the adopted model. In order to achieve such
a desirable tracking error dynamics, the coordinate e, must satisfy, according to
2.7y and (2.9),

€y = — My 16,1 — -+ — M€ (2.11)

Motivated by this requirement, we next define an auxiliary scalar output vari-
able w, in terms of the output tracking error coordinates ¢; (i =1, -+, n) as

w=e,+m, 16,1+ -+ me. (2.12)

Note that if the auxiliary output function w is driven to zero by means of a
suitable control action, say, in finite time, then the desired error dynamics, speci-
fied in (2.9), is accomplished, and asymptotic exponential stability of the track-
ing error towards zero is obtained.

A dynamical discontinuous controller inducing a robust sliding motion on the
zero level set of the proposed sliding surface, w = 0, may be found by standard
system inversion performed on the unperturbed version of system (2.7) (ie., by
setting v = 0). Consider, then, the following dynamical feedback controller in
terms of an implicit ordinary differential equation with discontinuous right-hand
side,

n-1 n
c(§, +euu -, u'®) — y(;) + Zm,-e,-ﬂ = - Wsigl(zlmie,»). (2.13)
i=1 i=
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It easily follows, by taking the time derivative in (2.12) and using (2.7), that the
controller (2.13) determines the following evolution of the auxiliary output func-
tion w:

n
W= v—-Wsign(Zlm,-e,-)= v — Wsignw . (2.14)
1=

According to the result of Proposition 2.1, the controlled values of w go to zero
in finite time, and a sliding regime can be indefinitely sustained on the condition
w =0 provided W > N,

A truly variable structure controller is obtained from (2.13) since on each one
of the regions, w > 0 and w < 0, a different dynamic feedback controller “struc-
ture” acts on the regulated system. The corresponding implicit differential equa-
tion (2.13) is to be independently solved for the controller %, on the basis of
knowledge of the predicted error vector e and the vector of future desired output
time derivative functions §R(t), computed, in turn, from knowledge of the future
output reference trajectory y.(¢). In light of the additional assumption that, lo-
cally, dc/3u'® is non zero in (2.13), then no singularities, of the impasse points
type need be locally considered (Abu el Ata-Doss et al,, 1992). If singularities do
arise, they may be handled by the introduction of appropriate discontinuities on
the dynamical controller output # (see Example 3.1).

Note that for a = 1, the obtained sliding mode controller output # is actually
continuous, rather than bang-bang. This result is nontypical in sliding mode con-
trol, where traditionally, bang-bang inputs and its associated chattering output
responses are usually obtained (See Utkin, 1978).

After convergence to zero of the output tracking error, the dynamical control-
ler exhibits the following remaining dynamics:

(&t e, ul@)= 3. (2.15)

It is assumed that the nonlinear time-varying dynamics (2.15) is globally
stable for the given desired output reference function y, (). The dynamics (2.15)
is, evidently, coincident with the zero dynamics (see Fliess, 1990; Isidori, 1990)
for those cases in which the desired value of the output function y,(¢) is identi-
cally zero, or a given constant. In such cases, our previous assumption implies
that the given system is locally, or globally, minimum phase (Isidori, 1990;
Nijmetijer and van der Schaft, 1990). In this last class of systems, an asymptoti-
cally stable response is obtained, as a solution of (2.15) for the control input #,
towards a stable equilibrium value.

2.3 The prediction interval The above procedure is evidently based on
the validity of the available mathematical model for the system. Such a math-
ematical model, as usual, may be at variance with respect to the actual system
behavior. In using the predictive dynamical discontinuous controller on the ac-
tual system, one may generally obtain, at the end of the prediction horizon, a
nonzero tracking error, or a nonzero sliding surface coordinate function value.
These nonzero values are unknown functions of the model mismatch. The predic-
tive control technique then proposes a number of procedures for obtaining an
improvement, in the actual closed loop system behavior, for the next prediction
interval, [T}, T;] (see Richalet, 1990; Richalet et al., 1978; 1987).
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A reasonable choice for the setting of the new prediction horizon [T}, T;]
may be devised as

@)l 2
T”—W—N+u’ (2.16)
i.e., the new prediction interval is comprised of the reaching time to the sliding
surface, w = 0, computed from the sliding surface value based on the new reset
tracking error initial conditions (see Eq. (2.12)) plus fwice the slower time con-
stant of the imposed linear error dynamics (this choice, roughly speaking,
guarantees, at the end of the new prediction horizon, a theoretical decrease in
absolute value of the slowest tracking error mode to about 13[%] of its initial
value at the hitting of the proposed sliding surface).

The process described next is systematically repeated at the end of each pre-
diction interval. Such process entitles:

1. Assessment of the actual values of the tracking error or of the proposed sta-
bilizing sliding surface.

2. Re-initialization of the desirable error dynamics in accordance with the ob-
tained actual tracking error performance (this step may include a redesign of
the parameters defining the desired tracking errors).

3. Calculation of the new prediction interval and, by direct system inversion
techniques, calculation of the required sliding mode control policy.

4. Implementation of the reassessed control policy and monitoring of the ob-
tained response during the adopted planning horizon.

3. Some Illustrative Examples

In this section, we consider some illustrative design examples for the control
scheme proposed in the preceeding section.

Example 3.1. (An academic example) We take, as our first example, the fol-
lowing nonlinear system, also found in Abu el Ata-Doss et al. (1992):

y+y+y=u+20u2u. (3.1)
The system (3.1) has the following classical state space realization:
: 20
61 = —él +.§2+?u3

£, =—¢& +u : (3.2)

We utilize, however, the following GOCF realization of the system:

1 =X
By ==Xy — %p +u+ 200Uy (3.3)
y=x

It is desired to stabilize the output y of system (3.3) to the constant value y = 1.
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We define the tracking, or more properly, the stabilization error as e=y —1,
Le, y,(¢) =1, vt. One then obtains the following error dynamics:

é1=€2
bp=~1~e —ey+u+20u’up. (3.4)
€ =€

The system is evidently minimum phase around the equilibrium point ¥ =1 as
found from the zero dynamics equation

206 u+u—-1=0. (3.5)
The desirable stabilization error dynamics is given by the reduced order system
6 =e,=—me, m>0. (3.6)
The required sliding surface is thus given by
w=e+me. (3.7)
The corresponding dynamical sliding mode controller is obtained, by straightfor-
ward system inversion, from the error equation (3.4) and the imposed sliding

dynamics # = — Wsignw on the sliding surface coordinate function w. Such a
controller is given by

_ ey +1+(1—my)e, —u— Wsignw

2047 (3.8)
The dynamic nature of the proposed predictive controller generates a continuous
(or bang-bang free) control input signal #. The controller dynamics (3.8) is also
seen to exhibit a singularity, or critical point, at # = 0. Using the techniques
developed in Abu el Ata-Doss et al. (1992), for singularity avoidance, a disconti-
nuity may be induced on the dynamical controller output % when the trajectory
of such a generated control variable arrives at a prescribed vicinity of the singu-
lar value, # = 0.

The avoidance of the singularity point entitles a sudden change of sign of the
controller output # and an instantaneous resetting of the initial conditions of the
dynamical controller. The discontinuity imposed on the control input results, of
course, in a continuous trajectory of the controlled system output ¥.

Figure 1 shows the controlled phase variable trajectories asymptotically con-
verging towards the required set point. Figure 2 depicts the dynamically gener-
ated control input signal #, exhibiting a “jump” around the singular value of
zero. Such a discontinuity on the control input trajectory effectively avoids the
controller singularity. Figure 3 depicts the evolution of the sliding surface co-
ordinate function w converging, in finite time, to zero. The design parameters
for the dynamical sliding mode predictive controller were chosen as W =1 and
m = 2.
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To test the robustness of the proposed discontinuous predictive feedback con-
trol scheme, the previously designed control law was also used on the following

(actual) non-adapted model of the given system,
(3.9)

J+y+y=u+ (204 -2)u,

which, evidently, includes a rather strong “structural” perturbation.
Figure 4 shows a comparison of the controlled output variable trajectories for

the adapted and the non-adapted models (the non-adapted model response shown
in dashed lines). Figure 5 shows the evolution of the corresponding controlled

1
y(t),/'
0.5 y
’
’I
7
1
I
1
oF /
1
,l
1
1
II
—0.5 '
0 2 4 6

Time

Fig. 4. Dynamical predictive sliding mode controlled output
trajectories for adapted and non-adapted models.
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====-T
’
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Fig. 5. Dynamical predictive sliding mode controlled output
velocities for adapted and non-adapted models.
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output velocities for both the adapted and the non-adapted models. The dynami-
cal sliding mode predictive controller is seen to drive the actual system output
trajectory y efficiently towards the desired set point value y =1 with the ex-
pected zero final velocity. Figure 6 shows the corresponding dynamically gener-
ated input signals for both cases. The chosen initial conditions for this second
case did not require a singularity avoidance, but the proposed scheme also
works as expected when such singularity avoidance is necessary.

The performance of the control scheme is so efficient that no re-design is
really necessary after each reassessment of the obtained tracking error trajec-
tory at equally spaced prediction intervals of two units of time.

Example 3.2. (A d.c. motor example) Consider the following nonlinear
model of a stator voltage controlled d.c. motor (see Isidori, 1990):

x1=—R' x1+V' - Xou
L L L
. r | (3.10)
Xy = —sz +7—x1u
y=1u )

where x; represents the armature circuit current, and x, is the angular velocity
of the rotating axis. V, is the fixed voltage applied to the armature circuit, while
u is the field winding input voltage, acting as a control variable. The constants
R,, L, and K represent, respectively, the resistance, the inductance in the arma-
ture circuit and the torque constant. The parameters F and J are the viscous
damping coefficient and the moment of inertia associated with the rotor.

An input-output representation of the system is obtained by elimination of

0.8

Time

Fig. 6. Dynamically generated bang-bang free control input
signal for adapted and non-adapted models.
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the state vector (see Diop (1989) for general results):

.o RrF F Rr . KVr K2 2 u[ F ]
=y =+ =25+ - + g+ =y|. (3.
V== ( 7L )y Ly Ty ) B

Suppose it is desired to track a known angular velocity profile or reference tra-
jectory, v,(t).

The zero dynamics for y =0 degenerates into the algebraic condition # = 0.
Since a common objective in velocity control is to track reference trajectories
that eventually include constant angular velocities, we consider the zero dynam-
ics of the system associated with such constant values of v Such a zero dynam-
ics is readily obtained after setting the output y to a constant equilibrium value,
say £, and setting to zero the output derivatives 3, ¥. Hence, one obtains

R, . KV, . K ,

I, QL,Fu = L,]u =0. (3.12)

u—

Aside from the trivial equilibrium point # = 0, there exists, for every constant
angular velocity £ two other physically meaningful equilibrium points for
the zero dynamics, provided V2 > 4R, FQ?. We denote here such equilibria by
# = U. The minimum or non-minimum phase nature of a particular equilibrium
point # = U depends, respectively, on whether the quantity: R, F — K2U? ex-
hibits a positive or negative value.

A GOCF representation for the tracking error dynamics, with state compo-
nents defined by ¢; = ¢ = x, — y,(¢) and &, = %5 — y,(1), is readily obtained as

=
o = — (et 3y~ (e Jie 3,00
B I o s SR
+ Loyt 550+ L+ 3,00 5,0

A predictive dynamical sliding mode controller is next designed by consider-
ing the sliding surface w as

w=¢e,+me. (3.14)

Note that such a sliding surface is a nonlinear, time-varying, input-dependent
sliding manifold of the form

F K .
w=——]-x2 +_] xlu—yR(f)+m1(x2—yR(f))- (3.15)
Imposing the dynamics @ = — Wsignw on such a sliding surface coordinate w,

one obtains the following dynamical predictive controller by inversion of the
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tracking error system equations:

i = ; ' {12,1; (e1 + 3,(1))
Pz + y’R(t)+7(e1 + yR(t))] §
R KV,
+(§+ L: )(ez+y'R(t))— L,; u
+ K (e, + y () + §_(t) — mye, — Wsignw (3.16)
L] L Ve 1€2 gnw . .

Simulations were performed for a d.c. motor with the following parameter
values:

R, =70[Ohm]; L, =1200[mH}; V, =50[V]

F =604 x107% [N — m — s/rad] . (3.17)

J=106X10° [N —m —s%rad]; K =141x107"2[N —m/A]

The following prescribed output trajectory, constituted by a piecewise linear

function, was proposed as the velocity profile to be followed by the motor’s shaft
angular velocity x:

300 [rad/sec] for t =05(s],
yp(t) = 1300 —~ 100(¢ — 0.5) [rad/sec] for 05[s]<t<15[s], (3.18)
200 [rad/sec] for t=15[s].

In order to test the robustness of the proposed discontinuous predictive control
scheme, we devised simulation trials on two unmodeled perturbation input cases,
both of them corresponding to the unmatched perturbation type. Thus, the above
controller was used in combination with the following (actual) non-adapted, per-
turbed systems:

; R, V. K

x L, x1+ Lr Lr x2u+l9(t)

) F +K 5 (3.19)
Ko =—"—x+—x1%

2 7 2 7 1

y=x

I VN /N S

! L 'L L ?

; F K ] (3.20)
fp=—— X+ —xu+ 0

2 TRt A (t)

y=x

where the signal ©(¢) was set to be a computer generated, normally distributed,
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white noise signal. The simulation results in both cases were highly encourag-
ing, and the performance obtained was remarkably robust. We show only the
simulation results corresponding to the performance of the system (3.19), con-
trolled by a predictive scheme that includes the dynamic sliding mode regulator
(3.16).

Figure 7 shows the angular velocity response of the system in comparison
with the desired trajectory (3.18) (shown in dashed lines). In spite of the un-
matched nature of the perturbation signal ¥, the controlled trajectory y(¢) fol-
lows, quite closely, the required angular velocity profile. Figure 8 depicts the
corresponding armature circuit current x;, while Fig. 9 represents the bang-
bang free control input signal # generated by the dynamical sliding mode predic-
tive controller scheme. Figure 10 shows the applied perturbation input signal ¢
and, finally, Fig. 11 depicts the corresponding sliding surface evolution.

x2(t)

250

200

150 IA 1 —
0 1 2 3

Fig. 7. Angular velocity response of predictive dynamical
sliding mode controlled d.c. motor.

0.7

0.65 |
x1(t)

0.6

0.55 . '
0
Time [sec.]

Fig. 8. Armature circuit current response of predictive
dynamical sliding mode controlled d.c. motor.
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1 2 3
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<

Fig. 9. Dynamically generated bang-bang free control
input signal for the d.c. motor example.

2 B(¢t)

Time [sec.]

Fig. 10. Unmatched perturbation input signal to the d.c. motor.

100 —

50
: w(t)

—100

- 150 :
0

Time [sec.]

Fig. 11. Evolution of the sliding surface coordinate for predictive
dynamical sliding mode controlled d.c. motor.
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4. Conclusions

In this article, we have proposed a model-based predictive control scheme
which combines the advantages of sliding mode control robustness and its tradi-
tional high performance features, with the conceptual simplicity of nonlinear
system inversion techniques. The association of both techniques was proven to
be particularly suitable for conceptually dealing with the associated output
tracking problem present in every predictive feedback control scheme.

The adopted framework of designing sliding controllers via a GOCF of the
nonlinear system model, which is, fundamentally, an input-output design ap-
proach, results in the possibility of effectively compensating for bounded un-
matched uncertainties.

The obtained results may be extended to the case of decouplable, multivari-
able input-output systems. In this context, research efforts are being directed to
relate the approach proposed here with the theory of differentially flat systems
(see the work of Fliess and his colleagues in Fliess et al. (1992 a; b; 1993)). In
forthcoming publications, we will show that the combination of sliding mode
control, model-based predictive control and differentially flat systems results in a
most natural, and rather general, way to formulate, and design, robust predictive
regulators for controllable, nonlinear, multivariable systems.

Two illustrative single-input, single-output examples were presented, in
which a dynamical sliding mode control strategy is devised for robust error sta-
bilization on non-adapted systems. The results show the insensitivity of the slid-
ing mode controller to rather large modeling errors and to (unmatched) random
perturbation signals.

The results also show that even if control input discontinuities, additional to
those already natural to the sliding mode control scheme, are necessary to avoid
singularities during the transient performance of the system, the advantageous
combination of sliding and predictive control results in an efficient feedback cor-
rective scheme which accomplishes the desired control objectives.
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Appendix A

Here, and just for the purpose of self-containment, we shall briefly present
some generalities about sliding motions of scalar controlled systems. The reader
is referred to the references (Buhler, 1986; Emelyanov, 1969; Slotine and Li, 1991;
Utkin, 1978; 1992; 1993; Zinober, 1990; 1994) for further details and results.

Consider the simple scalar controlled system,

w=u, (A.1)

where u is a scalar control input. Suppose it is desired to 1) drive the scalar state
variable w to zero in finite time and 2) to maintain the motions of the controlled
system state, in a robust fashion, at the value w = 0. By robustness, we mean
that the presence of possible perturbation signals, appearing additively on the
righthand side of Eq. (A.1), do not result in a significant, and definite, excursion
of w from the desired condition w = 0.

The above tasks can be accomplished only through discontinuous feedback
control. Indeed, the discontinuous feedback regulation policy,

u=—Wsignw, " (A2)

results, for any arbitrary initial condition w(0), in a monotone convergence of
the closed loop trajectory towards the condition w = 0. Such a convergence is
specifically characterized by a trajectory exhibiting constant slope of value
+ W, whenever w(0) <0, or of value — W, whenever w(0)>0. As a conse-
quence, the finite time reachability requirement is always fulfilled in this case.
Let 7, denote the first instant of time at which the state trajectory w(#) reaches
the value zero. Integration of the differential equation describing the closed loop
system, (A.1), (A.2), results, for any time ¢ previous to the reaching instant 7,, in
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w(t)=w(0)—[Wsignw(0)]t, t<T,. (A.3)
The condition w(7,) = 0 is, therefore, satisfied at time 7,, given explicitly by:

_ w(0) _ |w(0)]
" Wsignw(0) w

(A.4)

After the condition w = 0 is achieved, the solutions of the differential equation
representing the feedback regulated system, (A.1), (A.2), can no longer be de-
scribed, in traditional terms, using the standard concept of solutions of ordinary
differential equations. The regulated motions on w = 0, of the above system are
commonly addressed as sliding motions. In general, two methods have been pro-
posed for describing mathematically the solution of differential equations with
discontinuous righthand sides, such as (A.1), (A.2). The first method is known as
Filippov’s concept of solution (see Filippov, 1988), while the second is the Method
of the Equivalent Control (see Utkin, 1978). For the simple case at hand, both
methods are equivalent.

The method of the Equivalent Control assumes that after the “sliding sur-
face” represented by w = 0, has been reached, an idealized description of the
subsequent sliding motions can be made. Such an idealized description assumes
that a virtual continuous control input, addressed as the equivalent control and
denoted by u,,, effectively drives the system response, maintaining valid the
condition w = 0. In other words, the sliding motions of the controlled system,
after T,, are, ideally speaking (i.e., without the presence of perturbation inputs
nor regard for switch imperfections, such as hysteresis and delays), described by

W=ty . (A.5)

The equivalent control is, therefore, assumed to be responsible for invariantly
sustaining the motions on w = 0 by guaranteeing that no excursions take place
from this condition; i.e., the condition % = 0 is also being enforced. The two
conditions, w =0 and @ = 0, constitute the invariance conditions (Utkin, 1978)
associated with the sliding motion taking place on w = 0. The equivalent con-
trol evidently satisfies then u,, =0 and, at least ideally, the system trajectories
remain indefinitely on the sliding surface.

The third requirement, that of closed loop robustness, is presented in detail
in Sec. 2.1.

W= 2 P S S 1t M M it Bt 0t i it e e it @y
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