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ON THE SLIDING MODE CONTROL OF
DIFFERENTIALLY FLAT SYSTEMS®

H. SirA-RAMIREZ!

Abstract. The design of static or dynamical sliding mode controllers for nonlin-
ear systems is shown to be especially simple for the particular, but widespread,
class of differentially flat systems. Several examples of differentially flat systems
from widely different areas are presented. A complete static and dynamical, slid-
ing mode controller design example is considered, along with simulations, for a
chemical reactor system. An assessment is also furnished of the robustness of the
proposed linearizing endogenous discontinuous feedback scheme with respect to ex-
ternal bounded perturbations.
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1. Introduction

Differentially flat systems constitute a widespread class of dynamical sys-
tems which represent the simplest possible extension of controllable linear sys-
tems to the nonlinear systems domain. Flat systems (in short) enjoy the property
of possessing a finite set of differentially independent outputs (i.e., outputs which
do not satisfy, by themselves, nonlinear differential equations), called linearizing
outputs, such that all variables in the system, including the control input vari-
ables, can be written, exclusively, in terms of differential functions of such lin-
earizing outputs (i.e., functions of the linearizing outputs and of a finite number
of their time derivatives). Moreover, the linearizing outputs can, in turn, be ex-
pressed as differential functions of the system state variables and, possibly, a
finite number of the control input derivatives. Flat systems are thus dynamical
systems which are linearizable to a controllable linear system by means of en-
dogenous feedback, i.e., one that does not require external variables to the sys-
tem to be completely defined. This feature and the direct linearizability of the
“flat” output coordinates make a linearizing feedback controller design task par-
ticularly simple for differentially flat nonlinear systems.

Flat systems were first introduced by Fliess et al. (1992 a) and further devel-
oped and characterized by Fliess et al. (1993). Practical examples of some me-
chanical systems, such as the truck and the trailer, the jumping robot and the
crane were presented in Fliess et al. (1992 b; 1991). Uncontrollable systems, or
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systems without the so-called strong accessibility property, constitute typical ex-
amples of non-flat systems. The Kapitsa pendulum and the double inverted pen-
dulum were shown to be non-differentially flat systems which can be “flatenned”
by means of high-frequency vibratory control and averaging techniques (Fliess
et al.,, 1993).

Endogenous feedback control strategies specified on the basis of desirable
linearly decoupled behavior of the linearizing outputs are, generally speaking,
non-robust with respect to unmodeled external perturbations and bounded para-
metric variations. Sliding mode control, whether static or dynamic, provides with
a suitable and implementable alternative for the robust decoupled feedback lin-
earization of differentially flat systems. Thus, in order to bestow enhanced ro-
bustness features to an endgenous feedback design, based on the differential
flatness of the given system, it is here proposed to use alternatively endogenous
discontinuous feedback control strategies based on static or dynamical sliding
regimes imposed on suitable differential expressions of the linearizing outputs.
While this scheme results in linearizations of reduced order for the evolution of
the relevant regulated output system variables, the scheme is shown to enjoy
advantageous insensitivity with respect to external (bounded) perturbations. In
the dynamical sliding mode controlled case, the obtained behavior of the regu-
lated output is substantially relieved from chattering while the traditional bang-
bang control input is substituted for by a continuous signal (see Sira-Ramirez,
1992; 1993).

Section 2 is devoted to showing that several unrelated dynamical system ex-
amples, drawn from quite different areas, are differentially flat. Hamiltonian sys-
tems with control actions over every component of the momentum vector are
differentially flat. Nonholonomically constrained systems which are transform-
able to “chained systems” are also flat. Many chemical process systems and even
some well known controlled spacecraft with two actuators are indeed differen-
tially flat. A landing spacecraft system is shown, however, not to be flat. From
the presented examples in Sec. 2, we chose the perturbed version of a Continu-
ously Stirred Tank Reactor system to develop completely in Sec. 3 a dynamical
sliding mode feedback controller. Section 4 contains the conclusions.

2. Some Examples of Differentially Flat Systems

In this section, we provide a collection of nonlinear dynamical systems which
are easily shown to be flat. An example of a non-flat system is also provided.
The examples are taken from widely different areas to exhibit the prevailing na-
ture of flat systems.

2.1 Hamiltonian control systems Hamiltonian control systems constitute
a fascinating area of automatic control theory since they touch on well estab-
lished aspects of classical mechanics and enjoy a rich differential geometrical
treatment (see the book by Crouch and van der Schaft (1987)). We consider the
simplest possible class of 2z-dimensional Hamiltonian control systems including
independent external control actions over every component of the vector of gen-
eralized momenta. We show that these systems are actually flat.
Consider, then, the following Hamiltonian system,
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where # is an n-dimensional vector of control input functions and ¢ represents
the n-dimensional vector of generalized positions, while p represents the n-dimen-
sional vector of generalized momenta. The scalar function H (g, p) is the Hamil-
tonian of the system. Such a scalar function is here given by

H(p.0)= 5 0" G(a)p+V(a), (22)

where G(q) is a positive definite matrix and V(q) is a potential function. The
Hamiltonian system (2.1) may then be written in the following form:

g =G(q)p
v 19 : (2.3)
p= —79(7(4)—35(1 t[G(g)pp" 1+

It is clear that the system is linearizable to a controllable linear system in

Brunovsky’s canonical form by means of static state feedback and state co-

ordinate transformations. Indeed, the invertible transformation 2z, =g and
= G(q) p and the static state feedback, defined by

w==G @GP — 1+ G )+ 55 wG@p), (20

yield the linear controllable system
2, =2z
& 1. (2.5)
29 =V

The linearizing set of (flat) outputs is then represented by the generalized posi-
tion coordinates ¢ of the system. All variables in the system can be expressed as
differential functions of ¢. Indeed, let y = g; then, from the system equation
(2.3), one readily obtains

g=y
p=Gl(y)y

w= 63+ 3+ -0

y
—_
[\]
(o]
~
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v=3y

Many controlled mechanical, electrical and electromechanical systems conform to
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the above special formulation of Hamiltonian control systems. Well known ex-
amples include robotic manipulators with several degrees of freedom, particles
moving in potential fields, electrical circuits, etc. All such systems are flat.

2.2 Mechanical systems with nonholonomic velocity constraints
Mechanical systems with non-integrable velocity constraints constitute a remark-
ably interesting class of flat systems. Such systems have been extensively stud-
ied in recent times by several authors (see the works of Murray and Sastry
(1993)). The results below are taken from Bushnell et al. (1993)).

Consider the class of driftless n#-dimensional systems described by

£ = ﬁ_n:lgi(x)ui, (2.7)

where g.(x) i =1,---, m are linearly independent, smooth, vector fields defined
on an open set of &”. It is assumed that the m-dimensional distribution A(x),
spanned vector fields g,(x), i =1, -+, m, annihilates a given smooth m-dimen-
sional co-distribution .Q(x)=span{wl(x),-;-,w’"(x)}; ie., the non-holonomic
constraints are assumed to be given by '(x)g.(x)=0, vo'€ Q, vg. € A.
Under involutivity conditions on certain distribufions generated by the vector
fields g.(x), j=1,---, m, the above class of systems can be transformed into
the so-called m-input, (m —1)-chain, 1-generator chained form (see Bushnell et
al,, 1993) by means of state coordinate transformation and (static) control input
redefinition,

0 _ 0 0 _ 0 _
£ =V, 23 = Uy, 23 = V3, Ly T Uy
1 .0 1 0 1 .0
231 = 23V, 23] = 23V1, vty Byl = 2yl (2.8)
My na—1 My 13—l My My—]
Z3] =231 Uy, 231 = 23] U1, v, 2 = 2, V)

Proposition 2.1.  Multivariable non-holonomically constrained systems
which are transformable to m-input, (m — 1)-chain, 1-generator chained form,
are differentially flat. The linearizing coordinates are given by the m outputs
constituted by the first transformed variable 2z{ and the last state variable on
every chain of the transformed system (2.8), z3%, 237, -+, 207,

Proof  The proposed linearizing outputs do not satisfy, by themselves, ordi-

nary differential equations; i.e., they are independent of each other. It is also

quite straightforward to realize that each state variable on the jth chain, say
n;,—1 o 5 . 0

z;{ *, and every one of the inputs to the different chains v;, j=1,-, m, can

be computed in terms of expressions involving o’rll_ly time derivatives of the last

state variable on the corresponding chain y, = zji and the first output y, = 2.

Indeed, letting z?l' stand for z?, j=1,---,m, one has
= (34013
2 ={—"= =
yodt !

_ldfvdf . .o o 1.dfY - |
“5’1 dt(yl dt(...(z 1) times 3, dt(yl) )), t1=0,-,nj,
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The control input v; to the jth chain is just the time derivative of the first state
variable of that particular chain; i.e.,

n;—1 y
v]=—d(—1—d*> |:_yji|’ j=2,m. (2.10)

Evidently, the first control input »; is simply written as
n=7y-. (2.11)
Example 2.1. (Bicycle kynematics) Consider the kinematics model of a bi-

cycle moving on a horizontal plane. Let the state variables be defined as in Fig.
1. The describing equations are given by

£ =wu,cosf

y = u,;sin6

. , 2.12

0=u12n¢' ( )
l

¢ =uy

where #; is the forward velocity of the rear wheel and «, is the turn rate of the
front (steering) wheel, taken as control input variables (see Murray and Sastry,
1993). The following state coordinate transformation,

_tang
lcos® 9’

and the redefinition of the input variables

H=x 2=

2z =tanf, 2z =3y, (2.13)

Fig. 1. Bicycle kinematic variables.
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vy = ujcosf

), _, Stan’¢sing 1 e
2 L 2eose 2 I cos?¢ cos’0

takes the system (2.12) into a 2-input, 1-chain, single generator chained system
form (Murray and Sastry, 1993),

Z(l) =1 Zg =1V
2= . (2.15)

2 0
21 = 210

All variables in the transformed system can be expressed as a differential func-
tion of y, = 2} and ¥, = 25 and its time derivatives (i.e., as a function of the
position coordinates (x, y) of the contact point of the bicycle’s rear wheel with
the plane, and some of its time derivatives). Indeed,

4=

2] N
2 = J‘d(ﬁ) - 2’23’1:;’2&

¥, dt\ 3y ()
v =3 . (2.16)
e g gl 14 ()] 4 (B0 %)

dt dt Ly, di\ 3y dt ()

30 =3 30,50~ 35

(%) ()

2.3 Systems linearizable by state coordinate transformations and
static state feedback Systems which are linearizable by means of state co-
ordinate transformations and static state feedback constitute the best studied
class of flat systems. Consider the smooth #-dimensional multi-input system

= f(x,u), *E€R", u€cR”, (2.17)

and assume an invertible state coordinate transformation and (regular) static
state feedback of the form

z=¢(x), u=1(x0) (2.18)
yields the following controllable linear system in Brunovsky’s canonical form:

Zi1 = 2z

S , (2.19)

yl':zil’ i=1’...’m
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where v, i=1,.,m are the Brunovsky controllability indices of the system.
These indices satisfy: 2w ¥, = n. It should now be evident that the linearizing
(ie., flat) outputs are constituted by y, = z;, t=1,--,m. Indeed, from the
invertibility of the state coordinate transformation (2.18), one obtains

— 41 — 41
x_¢ (Z)‘—¢ (ley“'vzlyl)'“’zmlv'“)zm}/m)

= ¢_1(y1’ Tt yi‘yl_‘l)s Ty ymr B yzm-l)); (220)

i.e., all state variables are expressible as differential functions of the linearizing
outputs Y Y

Each one of the new control inputs »;, i =1,---, m, is expressible as the
highest time derivative of the corresponding linearizing output ¥, Le.,
Ui = Ziy, = yﬁy‘), i=1,--,m. It then easily follows, by virtue of (2.18), that
the control input # can be expressed as

_ -1 . . .
u_ﬂ[‘p (zlly"'yzlyly"'7zml:""zmym)»zlyly'”»zmym]y (221)

ie.,

u = W(yl’ ) inI)v y2’ Ty y;’VZ)v Ty ymv Tty yi:"'))- (2~22)

Example 2.2. (A Rigid spacecraft with two actuators) A popular nonlinear
multivariable system is constituted by a third order kinematic model of a rigid
spacecraft with two actuators along two principal axis (see Wen and Bernstein,
1992). The equations of motion, when the uncontrolled principal axis is not an
axis of symmetry, are given by

X =u
iy =up b (2.23)
X3 = X1 X9

It is easy to show that system (2.23) is linearizable by means of a static state
coordinate transformation and a redefinition of the control input vector. One im-
mediately verifies that the required state and input space transformations are
simply given by

211 = X1, &z T X3, R = XX
Xy 1 . (2.24)

U, =v Uy = —— V)1 —— Uy
1y 2 x 1 X

The transformed system results in the following Brunovsky’s canonical form:

Zn =
221 =29 (. (225)
23y = Uy

In other words, the linearizing (flat) coordinates are given by
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y1=211=xl) y2=221=x3' (226)

Indeed, all variables in the system, including the control inputs, are differential
functions of these two output coordinates,

Yy
X y11 x2=_§" x3‘—y2

1

A (227)
uy =3, up=-"1 72

Since not all single-input single-output systems are exactly linearizable to a con-
trollable linear system by means of coordinate transformations and static state
feedback, examples of non-flat systems are primarily constituted by the class of
uncontrollable systems, or systems which do not exhibit the so-called strong ac-
cesstbility property.

Example 2.3. (Landing spacecraft) Consider the following model of a land-
ing spacecraft (see Sira-Ramirez, 1991):

x1=$\f2

| OO

X =& (M+x3 )u ) (2.28)
X3 = —ou

where x; is the vertical position of the spacecraft, x, is the downwards landing
velocity and x3 is the fuel mass contained in the spacecraft. The constants o
and o represent, respectively, the velocity of the exhaust gasses and the rate of
fuel consumption. The constants M and g represent, respectively, the dead mass
of the vehicle and the acceleration due to gravity. The control input # is usually
assumed to vary smoothly in the closed interval [0, 1]. However, since this re-
striction is not crucially related to the flatness, or lack of flatness, of the system,
we shall consider # to be a free (unrestricted) variable.

Introducing a virtual downwards velocity variable, defined by z= x,
— alog( M + x3), one obtains the following “normal form” model for the landing
spacecraft (2.28):

X = X
Xy =g —0aexp<~z;x2-)u . (2.29)
z2=g

The transformed system (2.29) is evidently uncontrollable and linearizable only
to a second-order system by means of static state feedback. The system is, there-
fore, non-flat. Note that if the output y to be regulated happens to be the vertical
height; i.e, y =z, then the system is also non-minimum phase, as the corre-
sponding zero dynamics is clearly unstable. Discontinuous control is usually em-
ployed at the final stages of the landing maneuver to avoid fuel depletion (see
Sira-Ramirez, 1991).
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Note, however, that the system (2.28) is linearizable by means of exogenous
dynamical feedback. Indeed, an input-output description of the system can be
readily obtained by eliminating the state vector components x, and x3 as fol-
lows:

@ | e

¥y = [u + (& y)](g ¥). (2.30)
It should be evident that a nonlinear first-order dynamical controller, with state
variable #, can now be obtained by equating the left-hand side of (2.30) to a
(linear) expression in y, » and #. It is clear that the variable # cannot be
obtained as a differential function of the linearizing output y, but only as the
solution of a nonlinear time-varying differential equation. The construction of a
linearizing dynamical controller thus entitles introducing variables which are not
expressible in terms of the original system output variable and its time deriva-
tives; 1.e., the proposed controller is exogenous.

2.4 Extended systems of linearizable systems Here we consider
single-input, single-output nonlinear systems. However, the assertions are easily
extended to the case of multivariable nonlinear systems.

A basic fact that allows one to propose dynamical sliding mode controllers
which are free of bang-bang input behavior, and thus exhibit substantially re-
duced “chattering” in the controlled variables, is constituted by the possibility of
using Generalized State Space Canonical Forms of the Controller and Observabil-
ity type (see Fliess, 1990). These generalized state canonical forms are particu-
larly advantageous whenever, respectively, the differential primitive element and
the output of the controlled system exhibit a relative degree which is smaller
than the order of the system (see Sira-Ramirez, 1992; 1993). However, when the
system is exactly linearizable by diffeomorphic state coordinate transformations
and static state feedback, the linearizing output has the relative degree which
equals to the order of the system, say #. In such cases, the sliding mode control-
ler is necessarily static, and bang-bang inputs are, hence, obtained. Nevertheless,
one may still propose a dyrnamical feedback controller, with smoothed control in-
put response, by resorting to a dynamical extension of the linearizable system.
This procedure entitles adding one or several integrators in front of the input
channel to the system. It has been be shown above that if a system is exactly
transformable to a controllable linear system, then the system is flat. It is then
easy to see that the dynamical extensions of an exactly linearizable system are
also flat. This simple but helpful result is summarized in the next proposition.

Proposition 2.2,  Let the n-dimensional single-input (analytic) system
= f(x,u) (2.31)

be differentially flat, with linearizing output given by an input-independent sca-
lar function of the state y = k(x). Then, the extended system

£ = f(x’ xn+l)}

x"+1 =w

(2.32)

is also differentially flat with y as the linearizing output.
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Example 2.4. (A continuously stirred tank reactor system) Consider the fol-
lowing nonlinear model of a Continuously Stirred Tank Reactor (CSTR) system,
taken from Kravaris and Palanki (1988),

9(:'1 E=ty (1+ Dal)xl + u
% = Dayx, — %, — Dayafy, (2.33)

2=x+2%—-C

where x, represents the normalized concentration of a certain species P in the
reaction, ¥, is the concentration of a second species @ called the reactant. The
control input variable # is the volumetric feed rate of the first species. The out-
put z of the system is the total concentration error from a desired constant con-
centration value C, while we let Z denote just the total concentration, x; + x5. A
linearizing output for system (2.33) is constituted by the concentration variable
%5. Indeed, let y = x,. We then have

% = (9+ v+ Dazy?)

1
Ddl
1 " . S 1+Dal . 2
u=——(j+y+2Dayyy)+—F—y+y+Dayy’); (2.34)
Dal Da1
1
Dal

i.e., all variables in the system (2.33) are expressible as differential functions of ¥
The system is flat.
Consider now the extended system of the chemical reaction model (2.33),

z=y+

(9+y+ Dayy*)-C

.1.’1 . (1+ Dal)xl + x3
%2 = Dayx — %3 — Da,x? (2.35)
X3 =W

z2=2x1+x—-C

It is equally easy to verify that system (2.35) is also flat with the same lineariz-
ing output as before, y = x,.

1
% =—=—(3+y+Dazy’)

Dal
——L (Gey+op i)+ 2% i D %)
% = Da, (J+y azyy) Da, (y+y+Dayy
w=ﬁ(y(3)+ji+2Daz(}")2+2Da2y55) . (2.36)
1
1+ Da,

+—(i+y+ y
Da, (3 +9+2Dayyy)

1 . 2
— +_ -—
4 y Da, (y+y+Ddzy) C
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3. Sliding Mode Control of Flat Systems

Discontinuous feedback strategies of the sliding mode type enjoy justified
popularity because of their enhanced robustness and conceptual simplicity. Slid-
ing mode control is a well established research area with great potential for
practical applications (see the books by Utkin, 1978; 1992; Slotine and Li, 1991;
Zinober, 1990). A collection of articles, which indicate recent research trends in
Sliding Mode Control, is contained in a special issue of the International J. of
Control (Utkin, 1993), edited by Prof. V.I. Utkin.

We consider here the simplest case of sliding mode control of monovariable
flat systems, although the fundamental technique extends to multivariable sys-
tems. For simplicity, and also because, custormarily, at the sliding mode control-
ler design stage, one totally and purposefully overlooks the presence of the
external perturbations, we assume that the given system is unperturbed. How-
ever, in order to illustrate the robustness features of the proposed endogenous
discontinuous feedback strategies, an externally perturbed system example is
presented in this section. The endogenous sliding mode controller is obtained
from the unperturbed version of the system, but its robust regulation effects are
analyzed on the basis of the actual perturbed description of the system.

Consider, then, the following nonlinear #-dimensional, unperturbed, single-in-
put single-output system,

x'=f(x,u)} o

z=h(x)
and suppose it is differentially flat with linearizing coordinate given by either
y=A(x) or y=A(x,u, u,---,u“”). (3.2)

If the linearizing output function coordinate y is expressible only as a function of
x, this is indicative that the system is directly linearizable by means of a change
of coordinates and static state feedback. If, on the other hand, the linearizing
coordinate includes expressions in #, and some of its time derivatives, then the
system is linearizable by means of dynamical state feedback. It is well known
that if a system is linearizable by static feedback, then it is also linearizable by
means of dynamical feedback (Charlet et al., 1988). We assume then that §>0.
From the flatness assumption, it follows that x is expressible as

x =5y, 3, 3 (3.3)
and
u=Bo(y, 3, y*). (3.4)
It is clear then that for any y >0,
" =B (3, 3, , D). (3.5)

Moreover, the controlled output z is generally expressible as
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z=¢(y 9, 3%), (3.6)

where 6 < «.

Suppose it is desired to drive the controlled output variable z to some con-
stant value Z. Let, moreover, 4 = a — 8§ + y + 1, where y will be regarded as the
order of the dynamical compensator. i is assumed to be a strictly positive inte-
ger. Then, we have the following result.

Proposition 3.1. Let W be a strictly positive constant. For systems where
é < a, the following discontinuous dynamics, imposed on the controlled output
variable z, results in an asymptotic convergence of z to the required value Z,

u-1
A 4 _):lau_l__lzmﬂ)
i=

u-2
=- Wsign[( E.la#_i_lz(”’i’l))+a0(z—Z)] (3.7)

provided the constant coefficients {a,_,, :--, @¢} correspond to the coefficients of
a Hurwitz polynomial in the complex variable p, given by

Q(p) =" +a, o pP P+ +aip+ag. (3.8)

Moreover, the regulated dynamics for z is driven to satisfy, in finite time, the
linear time-invariant asymptotically stable dynamics

Vg, 2 Dbt ayztag(z—2)=0. (3.9)
Proof  The proof is immediate upon defining a sliding surface coordinate s as
u-2 )
s=(zlau_,-_lz(”"'1)>+ ag(z—Z). (3.10)
=

It is then clear that if s is forced to go to zero in finite time, then the desired
asymptotically stable dynamics (3.9) is also achieved in finite time. The result
follows from the fact that using (3.7), the sliding surface coordinate s is seen to
satisfy,

§ = — Wsigns. (3.11)

Equation (3.11) is a well known sliding dynamics converging to zero in finite
time T given by T =|z(0)|/W.

Remark 3.1:  Note that if, in the previous pro'position, d=a and y =0, then
the value Z is achieved, in finite time, by means of the discontinuous dynamics

z=—Wsign(z—-2). (3.12)

It should now be clear that the required feedback controller may be found by
means of some straight-forward, but possibly involved, algebraic manipulations.
Such a controller is primarily found in terms of the linearizing output ¥ and a
number of its time derivatives. Flatness also allows us to place the controller
expression back in the original state coordinates. The resulting controller may
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be, in general, of static or dynamical nature. We sketch in the following para-
graph how to obtain the corresponding controller expression. The example pre-
sented in the next section should also clarify the procedure.

To obtain the discontinuous feedback controller expression, one simply sub-
stitutes the differential function z = ¢(y, 3, ---, y(’s)), from Eq. (3.6), into the de-
sired discontinuous dynamics (3.7) imposed on z. From the obtained expression,
one solves for the highest order derivative of 3 which is just ¥**7*!. This is the
corresponding discontinuous dynamics for the linearizing output ¥, induced by
the desired discontinuous dynamics (3.7) on the controlled output z. The obtained
expression for y**7*! is next substituted into the expression for the highest
derivative of the control input #'”’ (3.5). The obtained expression for the highest
derivative of the control input is then a differential function of the linearizing
outputs, which includes discontinuities inherited from the prescribed dynamics
for the controlled output z.

To obtain an implementable feedback controller, one proceeds to obtain its
expression back in terms of the original state variables and, possibly, the control
input and some of its lower order time derivatives, i.e., by using the differential
function y = A(x, u, %, -+, u'P ), in the expression found for the highest deriva-
tive of the control input. One generally obtains an implicit, time-varying differen-
tial equation for the control input #. Such an implicit differential equation also
contains discontinuities represented by the “sign” terms. The switching surface
is, generally speaking, an input-dependent sliding surface (see also Sira-Ramirez,
1992). The obtained feedback controller is, then, a truly dynamical variable struc-
ture feedback control law.

3.1 Static sliding mode control of an externally perturbed continu-
ously stirred tank reactor Consider the following perturbed version of
the CSTR example given in Eq. (2.33) in the previous section:

2 =~=(1+Day)x; +u
%, = Dayx, — xo ~ Dayx? + ¢, (3.13)

z=x1+x2-=C

where 71 is now an unknown perturbation signal which is assumed to be
bounded with bounded first-order time derivatives. Notice that the perturbation
is of the “unmatched” type, i.e., its input channel field [0 17’, is not located on
the image of the control input vector field [1 0]’. .

Suppose one is interested in driving the total measured concentration error
variable z to zero in finite time, and in spite of the presence of the bounded
perturbations.

According to the results of the previous section, one would proceed, totally
ignoring the presence of perturbations, to impose the following discontinuous
sliding mode dynamics on the controlled output z:

2= Wsignz. (3.14)

This choice would result in the following unperturbed discontinuous dynamics
for the linearizing output y:
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. 1. .
y+ Da, (¥ +3+2Dayyy)
+Wsign[y+—Dt -(y+y+Da2y2)—C]=0. (3.15)
1

Solving for the highest order time derivative of the linearizing output y in (3.15),
and substituting the result in the control input expression found in (2.36), one
obtains the following static sliding mode controller:

w= e 5+ + Dagy) - 5
‘Wsign[y+7)tl-(y+y-l—Dazyz)—C:I; (3.16)
ie.,
u=1x,+x,+ Dyxi — Wsign(x, + x, — C). (3.17)

In spite of the fact that the controller (3.17) cannot be implemented in practice,
due to the bang-bang nature of the required volumetric feed rate, it is interesting
to note that if such a controller were used on the perturbed version of the system
(3.13), one would obtain the following regulated dynamics for the total measured
concentration error z:
A /
= Wsign z. (3.18)
Da2
Due to the assumed bounded nature of 1 and #, the measured concentration
error 2 is still seen to converge to zero in finite time, provided a sufficiently large
value of W is used. For instance, if |7} < N and |7 = N, then it would suffice
to let W > N,/Da,.

Remark 3.2:  In order to obtain Eq. (3.18), one proceeds to find the state vari-

ables of the system xj, x,, and of the control input, «, as differential functions

of the linearizing output y and of the perturbation signal 1, i.e., as
n

(3+y+ Dayy*)——'—

X1 =
! Dag

—_Dal-
X =)
fo (3.19)

1 L . 1+ Da, .
u= =" -(§+3+2Dayyy)+— " "'-(5+y+ Dayy®)
1

Da Dal
1 1+ D
— =" 4= Tal.
(Dal n Da1 T’)

The fact that the “perturbed” value of « in (3.19) is not being used to regulate
the system and thus, one does not exactly cancel the effects of the perturbation
signal, n, nor is one able to drive z to zero with constant slope W (due, precisely,
to a lack of knowledge of 1 and 7), then, evidently, the “unperturbed” feedback
action (3.17) results in an imperfectly regulated evolution of the output z. It is
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easy to see from simple algebraic manipulations of the above equations, in com-
bination with the unperturbed controller expression (3.16), that the perturbed
evolution of the total concentration error z is given by Eq. (3.18). .

As pointed out before, discontinuous (bang-bang) feedback policies are not
feasible as actual volumetric input rates to CSTR systems. For this reason, one
should, then, resort to a dynamical sliding mode controller design. For such a
synthesis task, it suffices to consider the dynamic extension (2.35) of the CSTR
model. In so doing, we will trade off finite time reachability of the desired total
concentration error z by continuity of the controller output signal #, which is
demanded by physical implementation constraints.

3.2 Dynamical sliding mode control of an externally perturbed con-
tinuously stirred tank reactor Consider first, the process of obtaining a
sliding mode controller for the unperturbed version of the extended system
model, described by Eq. (2.35).

Take, as a sliding surface coordinate s, an expression of the total concentra-
tion error z such that, when s is forced to become zero, it corresponds to an
asymptotically stable first order dynamics for z; ie, s= 2+ Az, where A is a
strictly positive constant. The sliding surface coordinate s, in terms of the linear-
izing output y = x,, is given by

. 1 .. . [ 1 9 ]
=y+—=—(j§+ 5+ + +="—(y+y+ -C|. :
S=I D, (J+3+2Dazyy)+A|y Da, (y+y+Dayy’)-C|. (3.20)
Imposing now on s the sliding mode dynamics given by §= - W sign s, one
obtains

F4 5,9 + 3+ 2Day(5 + 3)]
a,
R S .}
- ¥+ y+
+/l[y+ Da, 19 +2Da239)

= — Wsignliy +-1' “(J+ y+2Dayyy)
Ddl

1
+Aly+—=" -
A(y o

y+y+Da2y2)—C):I. (3.21)
Solving for y® from (3.21) and substituting its value into the expression found
for the auxiliary control input w in (2.36), one obtains, after some simplifications,
a static discontinuous feedback controller expression for w = # of the form

(LA (17 AF Day RN
w_(Dal )y ’1“( Da, )[y+ZDazyy] Wsigns. (3.22)

The static controller (3.22) is to be viewed as a nonlinear, time-varying differen-
tial equation, with discontinuous right hand side, whose solution is the required
control input function #. Using the expression for x5 (= #) in terms of the lin-
earizing output y, found in (2.36), one obtains the following dynamical feedback
controller:
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+
u=(1 —l)[u —%(5’+3’+ Dazyz)}
1
+(1—A+2Dayy)y— Wsigns. (3.23)

The resulting controller output # is now a continuous function of time, rather
than a bang-bang signal. The obtained dynamical sliding mode controller (3.23)
is implementable, provided the linearizing output y and its first-order time de-
rivative  are measurable. A simple nonlinear observer design which estimates
such a time derivative, in terms of the original state variables and the measured
linearizing output y can be easily designed for such a purpose.

In steady state conditions, the linearizing output ¥ converges to an equilib-
rium concentration value, denoted by X, and the sliding surface value ideally
satisfies the condition: s = 0. The remaining dynamics, or zero dynamics, associ-
ated with the closed loop system, is given by the following linear dynamics for
the control input u:

1+ Dal
Dal

A minimum phase behavior may then be guaranteed for the closed loop system
whenever the design parameter A is chosen to satisfy A > 1, so that (3.24) be-
comes an asymptotically stable system.

In terms of the original state variables of the system, one immediately writes
the dynamical sliding mode controller as

u=(1—x)[u— (X2+DaZX§)]. (3.24)

u=(1-A)u—x — x5 — Da2x22]+2Da2x2(Da1xl — Xy — Da,x?)

— Wsign[— (%, + %2) — Dagx? +u+ A(x; + 2, — C)]. (3.25)

Note that the sliding surface coordinate s is, indeed, an input-dependent coordi-
nate function, given by

s=—(1=2A)(x; + x5) — Dayx2 +u—AC. (3.26)

Consider now a corresponding “unmatched” perturbed version of the ex-
tended system,

X = —‘(1+D(11)x1 + X3

%, = Da,x; — x; — Dayx? +
‘2 1% 2 2X2 'I’ (3.27)
X3 =W

z2=x+x—-C

where the bounded perturbation signal n is now also assumed to exhibit
bounded values in the first and in the second time derivatives (ie., |7/ = N,
1< Ny and # =< N,).

The state variables x;, %o, %3 and the (extended) control input w, written as
differential functions of the linearizing output y and the perturbation signal 7,
are found to be
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(5+ 5+ Dayy*) ==

= Dal Da2-
Y

1o 1+ Day 2
= - + = 5
%3 = I F2Dayys)t=p (I 4+ Dazy?)

(1 . 1+Dy . (3.28)
(Dal n+ Dal n)

1 " g i
w= 7. (y¥ + 5+ 2Day(9) +2Dayyy)
a;

1+ Day . . . ( 1 . 1+Dy )
+— (3+ y+2Da - ——-f+ =791
Da, y+ 2¥9) Doy f Dy, n‘

Using the previous expressions, and that of the unperturbed dynamical slid-
ing mode controller (3.23), it is easy to see that the sliding surface s now satis-
fies the following perturbed discontinuous closed loop dynamics:

. ] n .
s==" 4+A=" —Wsigns. (3.29)
DaZ Da2

Under the previous assumptions about the bounded nature of the perturbation
signal 1, the sliding surface coordinate function s is driven to zero in finite time,
provided that the constant gain W is set to satisfy

Ny AN
W>—="+—"
Da2 Da2

(3.30)
Since s is robustly driven to zero, the linear, asymptotically stable dynamics
2= — Az is also robustly imposed for z. The total measured concentration error
z converges to zero in spite of the effects of the bounded external perturbation
signal, 7, affecting the system.

3.2.1 Simulation results Simulations were performed for the unperturbed
and the perturbed versions of the CSTR given by Egs. (2.33) and (3.13), respec-
tively. Both models were regulated by the “unperturbed” version of the dynami-
cal sliding mode controller, given by Eq. (3.25). The system parameters were
taken to be (Kravaris and Palanki, 1988)

D01 = 10, Ddz = 10, C = 30.

The desired value for the controlled output z is z = 0, i.e., one corresponding to
a total measured concentration of 2= C =3 (or, x; + x, = 3). From Eq. (2.33)
or (2.36), one obtains, under equilibrium conditions (y = Y; ¥ = 3 = 0) that the
nominal steady state value for y is given by y =Y = 1. The corresponding un-
perturbed equilibrium values for the state x, and the control input % are found
to be x; =2 and u = 4. The design values A =2 and W = 4 were used for the
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simulations. Figure 2 shows the chattering-free evolution of the unperturbed con-
trolled state variables x; and x,. The dynamically generated control input vari-
able is seen to be continuous while the total concentration variable Z converges
to the desired value C = 3. All of the variables thus converge towards their
nominal equilibrium points. For the perturbed model, the bound on the computer
generated noisy signal 11 was set to be N = 1.2. Figure 3 shows the perturbed
evolution of the controlled state variables x; and x,. The dynamically generated
control input variable u, is also seen to be rather continuous for the perturbed
case. In this figure, a sample trajectory of the perturbation signal n is also
shown, while the total perturbed concentration variable Z is seen to converge,
quite closely, to the desired value C = 3. All of the perturbed variables thus
exhibit a satisfactory behavior towards their nominal equilibrium points, in spite
of the large value of the perturbation signal.

e State variables responses Control input
. 5
x1(¢t)
2+ 4t
1.5 3t u(t)
1r T 2+
x2(t)
05 1
0 0 _
0 5 0 5
Time ¢ Time ¢
Perturbation signal Sliding surface and total concentration
2 4
1 ob TR
0 — - S 0r - -
s(t)
1k -2l
e — -4
0 5 0 5
Time ¢ Time ¢

Fig. 2. Controlled responses for the (unperturbed) dynamical
sliding mode feedback regulated CSTR system.
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State variables responses Control input
25 T 5r
2 L U e e 4 L e
15 3t
1r ~ 2r
x2(¢)
05¢F 1
Oy 5 O 5
Time ¢ Time ¢
) Perturbation signal Sliding surface and total concentration
4 —
1 ’ i 1Y ol Z(t)
ORI i ‘l q
& IRAE b T !
0 ;1! il\ A ol B i 0 T i
L LA s(t)
—1H : —9l
—9 -4
0 5 0 5
Time ¢ Time ¢

Fig. 3. Controlled responses for the (perturbed) dynamical
sliding mode feedback regulated CSTR system.

4. Conclusions

The sliding mode controller design of differentially flat nonlinear systems be-
comes particularly simple, thanks to the possibilities of expressing sliding sur-
faces and imposed sliding mode dynamics in terms of the linearizing outputs.
Dynamical sliding mode controller design for linearizable systems is also easily
handled through dynamic extension of the original flat system.

In forthcoming publications, it will be shown that resorting to system flat-
ness considerably simplifies the sliding mode controller design for multivariable
nonlinear systems. This is explained by the fact that in multivariable nonlinear
systems, flatness is explicitly related to decoupled linearizability.

The possibilities of prescribing predictive control strategies also seem to be
particularly simple for flat systems, since, through differentiable functions of the
linearizing coordinates, the control input can be immediately related to the desir-
able future output error trajectory in a most natural manner. A combination of
predictive control techniques and dynamical sliding mode control for nonlinear
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systems has been initially explored in Sira-Ramirez and Fliess (1993). For the
case of flat systems, such a combination would be particularly fruitful, given the
practical importance and potentials, of both control research areas. This topic
certainly requires and deserves further development.

Many theoretical and practical issues remain to be explored around the con-
cept of flat systems. In this article, we have only attempted to present an intro-
duction to the subject of flat systems and to explore its connections with sliding
mode control through an illustrative example.
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