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An application of sliding mode control to the determination of system
orders

HEBERTT SIRA-RAMIREZ$, PIERRE LOPEZ}
and AHMED S. NOURI}

In this paper an essential property of sliding surface coordinate functions is
exploited for proposing an experimental verification of the orders of an assumed
system model. The results are applied to verify the relative degrees of actual
system models, obtained by experimental identification, of a single-link robotic
manipulator equipped with artificial pneumatic muscles, and of an armature
controlled DC motor driving an inverted pendulum.

1. Introduction

An important problem in automatic control is the validation of structural
parameters of a proposed dynamical system model, such as the system order and the
relative degree, or, alternatively, the dimension of the zero dynamics (see Isidori
1990 for the corresponding definitions and many interesting details). In certain
discontinuous feedback control strategies, such as sliding mode control (Utkin 1978,
1992), this structural information is deemed to be essential and, to a certain degree,
it is all that is needed to control efficiently the given system, provided a minimum
phase assumption is known to be valid. This fact has been clearly established in the
literature (Utkin 1978, 1992, Sira-Ramirez 1990) thanks to the insensitivity of sliding
mode control to matched parametric variations and bounded external perturbations.

A sliding mode control scheme thus allows one to avoid time-consuming and
sometimes expensive identification experiments aimed at precise determination of
system parameters. Once the relative degree of a minimum-phase system has been
established, a robust stabilizing sliding surface may then be immediately proposed
as a suitable linear combination of the phase variables. Initial steps in this direction
have been already proposed by Lopez et al. (1994) and by Nouri (1994).

The objective of this paper is to show, in rather general terms, that the
consideration of the time evolution of a stabilizing sliding surface coordinate function
candidate, defined in the phase space of the system, allows for the unequivocal
validation of the structural characteristics of the given system. Such validation refers
only to the local dimensions of the model. This possibility is immediately translated
into an experimental procedure which is based on the well-known necessary and
sufficient condition for the local existence of a sliding regime on the zero level set of
a given scalar output function. Such a condition states that a sliding surface candidate
must, necessarily, exhibit relative degree equal to one.

The procedure proposed here entitles the use of a discontinuous feedback control
input to test systematically the existence of a sliding regime on successively higher
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dimensional sliding surface candidates defined in the phase space of the system. The
sliding surface candidates are represented by the zero level set of suitable linear
(Hurwitz) combinations of the phase variables of the system. To further validate a
sliding surface candidate as an actual sliding surface, which has been already
experimentally concluded to exhibit relative degree one, the method further proposes
to test for the behaviour of one of the next possible candidates. This leads to the
concept of the existence of a local ‘sliding hypervolume’. In such a case the sliding
surface can only be implicitly defined by means of a discontinuous expression. The
presence of such an anomalous case is readily detectable, and hence the output
relative degree is firmly established. We only treat here the single-input single-output
system (SISO) case. In special circumstances, namely differential flatness, or exact
linearizability, of the original system (Fliess et al. 1992 a, b, 1993) the method yields
the order of the system.

In § 2 we provide the theoretical basis that justifies the proposed experimental
procedure. In this instance the adopted mathematical framework utilizes the formalism
of the linear differential algebraic approach, for system analysis. The reader is referred,
for interesting details and extensive developments/within this important area to the
works carried out by DiBenedetto et al. (1989), Moog et al. (1991), Glumineau and
Moog (1989), Grizzle (1993) and more recently by Pomet et al. (1992) and Aranda
et al. (1993). It should be pointed out, however, that the results are also readily
derivable through the more conventional differential geometric approach of Isidori
(1990) (see Sira-Ramirez 1990); §3 is devoted to describing the experimental
procedure carried out for the determination of the relative degree and the order of two
experimental set-ups consisting of a DC motor controlling an inverted pendulum
and of a single-link robotic manipulator equipped with pneumatic artificial muscles
4 contains the conclusions and suggestions for further research.

2. Theoretical basis

In this section we re-establish, from the framework of linear differential algebra,
a well-known fact concerning the necessary and sufficient condition for a candidate
sliding surface coordinate function to actually sustain a sliding regime on its zero
level set. The fact that the relative degree of an actual sliding surface coordinate
function must be equal to one was already implicitly assumed, and used in early
works about sliding mode control (Utkin 1978), but it was properly formalized
through modern nonlinear systems theory using the differential geometric viewpoint
by Sira-Ramirez (1988) (see also Sira-Ramirez 1990 for further developments from the
differential geometric viewpoint). Here, and basically for tutorial purposes, we
re-establish this well-known fact using the formalism of linear differential algebra.

2.1. Some elements from the linear differential algebraic approach to system analysis

The definitions below are taken from Pomet et al. (1992) with very few
modifications. Consider a nonlinear n-dimensional system of the form

X=f(x) + g(X)u}
y = h(x)
where the scalar function h(x) is a meromorphic function of the state components.

The components of the vector fields f(x) and g(x) are also constituted by mero-
morphic functions of the state coordinates x. The input u is a scalar quantity taken

0y
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to be totally unrestricted. Let " stand for the differential field of meromorphic
functions of the components of the infinite set of variables x, u, 4, &, . .. Let E denote
the formal vector space, defined over the field ", spanned by the differentials (also
called 1-forms) dx, du, da, di, ..., where dx stands for {dx,...,dx,}.

We denote by w a 1-form in X given by

o=y o;dv; )
)

where o;€ X', Vj and dv; represents either dx; or du™® for some suitable indices i
and k.
The time derivative & of a 1-form w, given in (2), is given by

j
Consider the differential dy of the output function y. Such a differential is computed

in local coordinates by
oh
dy = (—) dx @
ox
The relative degree (Isidori 1990) of the output function y = h(x) is defined as the
minimum number of successive time derivations, required on the output function y,
such that the control input u explicitly appears in the obtained expression. This
definition can also be equivalently formalized in terms of the number of time
derivatives, required on the differential dy of such a scalar output function y, so that
the differential of the control input du appears explicitly in the computed derivative.

Definition 1: We say that the 1-form dy has a finite relative degree k whenever
dy? e span, {dx}
dy™® ¢ span - {dx}’

Otherwise dy has infinite relative degree.
Define the following sequence of subspaces

& = span - {dx, du} }
& ={wecElw € E;_,,weE;_,}

osjsk—l} (5

(6)

It is easy to see that E; = span - {dx} and that the defined sequence is a descending
chain, i.e.
EDEyDE DE, @)
It has been shown by Pomet et al. (1992) that if the system satisfies the strong
accessibility property then the descending chain is strictly decreasing and becomes
stationary at zero for some finite integer k*, i.e. & = &oyy = - - - = {0}. It is easy to
see that the subspace &* of & is constituted by all 1-forms which have relative degree
greater than or equal to k.

Definition 2: Let .# and A" be two subspaces of E such that .# o 4. Define the
complement of 4" in .4 as the subspace 4"+ defined by

Nl=lwedlw¢ N} ®

Note that 4" is a subspace of .# that satisfies /" @ A"+ = #, where the symbol
@ stands for direct sum.
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Let the subspace Ef,, denote the complement of E;,, in Ej, ie.
£j+1®g]_'|_+1= J i=01,... )

It is easy to see that the set of differentials in Ef, , is constituted by those differentials
with relative degree exactly equal to j. In other words

6+, = {o|w¥" Ve Ez} (10)
Note also that
éﬂlﬂ" = éakl*ﬂ = g%‘wz = =60

The n-dimensional SISO system (1) is said to be differentially flat, or input-output
linearizable by static state feedback, with linearizing output given by the function y,
if and only if k* = nand dy"~ ! € E£. In this case it may be verified that dy'” € E;—_ ;. ,
for j=0,...,n— 2. An equivalent form of characterizing differentially flat systems
is as follows.

Definition 3: A SISO system of the form (1) is differentially flat if there exists a
scalar output function y = h(x) such that

dim (&, N span, {dy,dy,...,})=n (11)

2.2. A Linear algebraic characterization of sliding surfaces

Consider an n-dimensional nonlinear single-input single-output system of the
form (1).
Suppose that only two fixed feedback control functions of the form

u=ut(x), u=u(x) (12)

are available to regulate the system. Moreover, assume that if the system evolution
is forcefully restricted to the zero level set of the output function, given by

S = {x e R"| h(x) = 0} (13)

then a desired behaviour of the corresponding autonomous system is obtained. For
instance, the system trajectories are asymptotically stable towards an equilibrium
point.

Variable structure control strategies resulting in sliding regimes are based on the
possibilities of using the fixed available feedback control actions u*(x) and u™(x),
respectively, on the regions y > 0 and y < 0 to obtain a forced evolution of the system
trajectories leading to and staying on the surface S. The discontinuous feedback
control actions specified by

"
u={u (x), fory>0 (14)

u (x), fory<0

are assumed to lead the state trajectories to (ideally) satisfy the conditions y = 0 in
finite time.

A sliding regime on S is feasible only when the independently controlled system
trajectories reach the manifold S, in finite time, from arbitrary initial points located
in any arbitrary n-dimensional vicinity N of S. The necessary and sufficient condition
which locally guarantees the existence of a sliding regime on § is given by

y%};-<0, xeN (15)
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Consider the intersection M of N and S; the existence condition of (15) in turn holds
if and only if the output function y = h(x) is locally relative degree equal to one on
the open set M of the sliding surface S. An ideal sliding regime smoothly constrains
the system trajectories to the subset M of the manifold S. The corresponding
constrained dynamics are locally defined as if they were due to a smooth controller,
called the equivalent control, and denoted by ugg(x). Such a virtual feedback
controller is uniquely defined by the conditions

oh
y=hx)=0, y= (ax> LX) + g(x)uge(x)] = 0 (16)

The local existence of such an equivalent control is tantamount to the existence of
a sliding regime. It is easy to show the following theorem Sira-Ramirez 1988).

Theorem 1:  The system (1) with output function y = h(x) is said to locally exhibit a
sliding regime on a subset M of the zero level set

A = {x e R*|h(x) = 0}
if and only if the equivalent control locally exists and satisfies, for all xe M
min{u~(x), u*(x)} < uge(x) < max{u*(x), u”(x)} an

If one assumes that locally u*(x) > u~(x) then, under the assumptions of the
above theorem, the switching logic (14) guarantees the local existence of a sliding
regime on S for trajectories starting from any initial point located sufficiently close
to the sliding manifold S.

All definitions associated with sliding regimes can be given in a slightly more
abstract form by exploiting the linear differential algebraic features of the underlying
problem. This brings simplicity and the possibilities for further generalization,
especially to the multivariable case (Glumineau and Moog 1989, Sira-Ramirez 1994).

Definition 4: A sliding surface coordinate function y = h(x) is any meromorphic
function of the components of x such that dy is locally relative degree one on S.

A sliding surface coordinate function is then any scalar function y = h(x) such
that its first order time derivative depends explicitly upon the control input u; i.c.
¥ = h(x) is a scalar function of the state components x which exhibits relative degree
equal to one.

One formalizes such a statement in terms of 1-forms, as follows.

Proposition 1:  The function y = h(x) is a sliding surface coordinate function if and

only if
dyeé&r (18)

Proof: The proof is immediate from the definitions.

Definition 5: A finite set of coefficients y;,i =0, 1,..., k — 1, are said to be Hurwitz
if the associated monic polynomial p,(4), in the complex variable 4, given by

k
pdd) = 3 vk, =1 19)
i=0

is a Hurwitz polynomial, i.e. all roots of the equation p,(1) = 0 have strictly negative
real parts.
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A Hurwitz differential polynomial is a polynomial in the symbol d/dt, which has
Hurwitz coeflicients.

We let P,(d/df) denote a monic Hurwitz differential polynomial of order k, with
constant coefficients y;, j =0, 1,..., k — 1, of the form

d koo di
Pl—)= 2 — =1 20
k(dt) j=0 % d¢ L ( )

When using P(d/dt), the specific form of the Hurwitz differential polynomial is left
to be quite arbitrary.
The meanings of expressions such as [P(d/dt)]dy, or [B(d/dt)]y are clearly

given by
d : ()
Pl -— = dyt
[ k< dt)] y ,-;o 7; 4y

d k djy
RSV y=3 3,2
[ k<dl>]y f;o 4

Let y = h(x) be a scalar output function of the system (1) and consider the following
sequence of 1-forms:

) S O 0 8

with P, =1, P, j = 1,..., being differential Hurwitz polynomials as defined above.
The following result constitutes the basis of the proposed experimental approach
described in the next section.

@n

Proposition 2:  Given the system (1), there exists a finite integer r satisfyingn >r > 1

such that
ds, = [P,_ (%)]dy e 64 23)

for some Hurwitz differential polynomial P,_ (d/d¢). In other words, a sliding regime
exists on the zero level set of the scalar function s, = [P,_,(d/dt)]y and no sliding
regime can exist on any other scalar function of the form s; = [P, (d/df)]y for j < r.

Proof: The proof is immediate by construction of the sliding surface candidates and
the relative degree one property of an actual sliding surface coordinate function.

As a corollary, if the output function y is a linearizing coordinate, i.e. if dy is
relative degree n and hence dy”"~ " e &7, a sliding regime can then be made to exist,
for the first time within the outlined procedure, only for a candidate sliding surface
coordinate function of the form s, = [P,_,(d/dt)]y. The relative degree of y is then
equal to n, the order of the system.

The practical implications of the above results rest on the fact that by proposing
successive sliding surface coordinate functions candidates of the form s, = [P _,(d/d?)]y,
k=1,2,...,a sliding regime can only be created, by the first time, on the zero level
set of s, = [P,-,(d/dt)]y if and only if y has relative degree equal to r. Thus, by
successively extending the dimension of the sliding surface candidate, through
Hurwitz combinations of an augmented number of phase variables, the proposed
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sliding surface coordinate function will actually be driven to zero, in a sliding mode
manner. This will only happen when the sliding surface candidate function s, depends
explicitly upon the (r — 1)th time derivative of the output function y. The time
derivative of such a function will necessarily contain the influence of the control input
function u and thus a sliding regime can be locally created on the manifold s, = 0
by means of a simple control input switching law.

2.3. Input-dependent sliding manifolds

According to the (experimental) testing process considered in the preceding
section, it is possible that one may inadvertently, or even purposely, test a sliding
surface candidate s,, whose dimension is equal to the relative degree of the given
system by incorporating precisely r time derivatives of the output into the cor-
responding linear expression. Such a sliding surface candidate is seen to directly
depend on the control input. The sliding surface measurement, however, does not
entitle actual use of the input signal, since its synthesis is usually obtained by
numerical differentiation of the output. One should remark that the topic of efficient
numerical differentiation techniques in the presence of input noise is the subject of
ongoing current theoretical research. The reader is invited to read the work of Diop
et al. (1994). In such work, within the context of observer theory, numerical
differentiation, in suitable combination with efficient interpolation techniques, is
shown to overcome the ill-conditioned nature of numerical differentiation. Their
interesting results further seem to challenge the construction of present-day state
observers. ,

To illustrate that this situation of input dependent manifolds may be readily
identified, consider the case of an n-dimensional system of the form (1) with relative
degree equal to r. Consider also, to simplify the treatment further, that the linearizable
part of the normal canonical form is already in Brunovsky’s canonical form with
(possibly auxiliary) control input v:

& =¢, )
ér-.1=€’ > (24)
, =0
ﬁ=q(61"-"6r"’)
y=~f1 /

where 7 is an (n — r)-dimensional vector describing the zero dynamics of the system
by means of

n=40,...,0,n) (25)

Consider then the sliding surface candidate s, = P(d/dt)y. In phase coordinates the
expression for such a sliding surface is an input-dependent expression written as

S =Yol1 + &+ -+ &+ (26)

Evidently, the creation of a local sliding regime on the zero level set s, = 0 of the
sliding surface candidate function s, is possible whenever one takes as an auxiliary
control input the time derivative of the original input v, i.e. one sets & = — W sign s,
(Sira-Ramirez 1992). Note that this alternative actually corresponds to placing an
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integrator in front of the input channel for v and using the input to the integrator
as a new input to the system. In such a case the time derivative of the sliding
surface candidate s, satisfies

$, =70l + 713+ + 3, v — Wsigns, @n

For sufficiently large values of W, it is clear that the condition s, <0 is locally
satisfied.

However, if as suggested by the testing procedure described above, no integrators
are placed in front of the input channel for v, then after synthesis of the quantity s,
by means of (say) numerical differentiation of the output signal, or suitable indirect
measurements, one actually uses the discontinuous control input » = — Wsigns,
rather than its integral. The resulting sliding surface candidate then satisfies the
following implicit equation

s, =7ty +11& 4+ yo18 — Wigns, (28)
One rewrites the above equation in the following manner:

ﬂ(s,.)=5,+ WSignsr:’YOél +V152 +”'+‘yr—l£r (29)

where one may also assume, without loss of generality, that the right-hand side of
(29) is still a Hurwitz linear combination of the phase variables. The function f(s,) is
everywhere defined except at s, = 0 (Fig. 1). The domain of definition of such a
function is then R\0. The function B(s,) can now be inverted and an explicit piecewise
linear description of the sliding surface candidate is obtained as follows (sce also
Drakunov and Utkin (1990) where a similar technique is used in connection with
discrete-time sliding modes)

YiZovibivy — W, for Yico vl > W
s, =40 for |Z:;é yi€i1l < W (30)
YiZoyivr + W, for YiZovdivi < =W

Figure 2 depicts the nature of the above sliding surface description. Note that s, = 0
no longer corresponds to an hyperplane but to an entire region, bounded by the
following two parallel hyperplanes defined in the r-dimensional phase space of

ﬂ(sr)

+w/
/

Figure 1. Implicit, relative degree r, sliding surface candidate function.

Sr
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Sy

ﬂ(sr)

+W

Figure 2. Explicit, relative degree r, piecewise linear sliding surface candidate function.

the system

w

r—1

Z Yidiva
i=0

- €2
'=Zo Viiv1=—W

We shall call such a region a sliding hypervolume. The corresponding time derivative
of s, is formally obtained as

Z;;g Viliv2 — Wiot, for Sr=Zf;3 1is1— W>0
5, =10, for |Z:;5 Vil < W (32)
Yo vliva+ Wy_ys,, fors, =3 28y + W<O0

Note that from the assumption of having a Hurwitz linear combination of the phase
variables, the coefficient y, _, is necessarily positive. It then follows that for sufficiently
large values of W, the inequality 5,5, <0 is locally satisfied outside the sliding
hypervolume. It follows immediately that the sliding hypervolume is locally attractive
for the regulated trajectories and, at least formally, one may conclude that a sliding
regime does exist on that region of the space where s, = 0. The controlled phase
trajectories locally approach the hyperplanes, described in (31), bounding the sliding
hypervolume s, = 0 in the phase space.

Within the sliding hypervolume, where the sign of s, is undefined, the values of
the function f abruptly change from either + W to — W or from — W to + W,
depending on the region from which the sliding hypervolume is approached by the
system trajectories (s, > 0 or s, <0, respectively). Such abrupt changes entitle
trajectories with infinite speed jumping back and forth from one delimiting hyper-
plane of the region described by s, = 0 to the other.

From the experimental viewpoint the observed function, say y, consists of an
appropriate Hurwitz linear combination of the output function y and its first r time
derivatives; i.e. it consists of an expression of the following form:

r—1
l// = §r = Z yi€i+1 - WSign Sr (33)
i=0
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This measured quantity §,, which is not numerically equal to s,, is actually
l// = §r = B(sr) -W Sign Sy

Thus, once §, reaches zero, i.e. when f(s,) reaches either + W or — W, a large bounded
chattering should be immediately observed on the values of ¥ = §, with (ideaily)
corresponding infinitely fast switchings of the control input v.

3. Experimental verification of the relative orders of a DC motor inverted
pendulum arrangement and of a one-link manipulator with artificial muscles
3.1. DC motor example

We considered an actual laboratory set-up of a DC motor whose rotor axis is
coupled to a rigid link with a significant mass load at the free extreme. The output
of the system was taken to be the angular position y = 6 of the motor shaft, with
respect to the vertical axis, and the input u to the system was taken as the armature
voltage.

The proposed testing procedure entitled the use of a growing sequence of sliding
surface candidates s; = P,_,(d/dt)y,i =1,2,...,and use at the input of a cor-
responding discontinuous feedback control action based on the sign of such a sliding
surface candidate function.

u= —Wsigns;, = — W sign [I’i_l(j)y], w=>0 (34)
t

A zeroth-order sliding surface candidate s, = Py(d/dt)y was first taken, using the
measured motor angular position y = 6 of the DC motor system. The output y = 8
was considered to simply represent the angular stabilization error with respect to
the vertical equilibrium position, which was arbitrarily assigned the value 8 = 0.

d
$ = P0<dt>y =0 (35)

The experimental results shown in Fig. 3 clearly show that there exists no sliding
regime on s, = 0. An indication of this assessment is the small oscillations of the
angular position error trajectory around zero, along with the corresponding low
frequency switchings undergone by the input voltage trajectory u(t). The control
input voltage amplitude W was increased to its maximum tolerable margin of 10 V.
Even for this maximum amplitude value, the discontinuous-based feedback control
signal was seen to be not able to induce the desired sliding regime. It was therefore
concluded that the system was of relative degree higher than one.

A first-order sliding surface candidate s, expressed in terms of the angular
stabilization error y and the angular velocity y = § was next taken as a sliding
surface candidate for the system.

d d
= P, = = + 7, >0 36
Sy = l(dt>y = <Yo + dt)y YoV +¥, Yo (36)

The positive constant y, was arbitrarily chosen to be y, = 25, and the position error
derivative y was directly measured from the DC motor system using a sufficiently
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Figure 3. Zeroth order sliding surface behaviour, discontinuous control input and cor-
responding phase trajectories for DC motor experiments.

accurate tachometer. As before, the control input was synthesized as
u= —Wsign(yoy +y) (37

The obtained experimental results are shown in Fig. 4. A substantially improved
behaviour of the stabilization error signal was obtained with very small, or entirely
negligible, oscillations around zero. The control input exhibited rather fast bang-bang
switchings, indicating that high-frequency oscillations were taking place around the
zero level set of the controlled sliding surface candidate function. One concludes that
the position error is then, for all practical purposes, of relative degree equal to two.
Increase of the control amplitude W to its maximum allowable value (W = 10V)
was seen not to change substantially the already observed sliding mode behaviour.
It was then concluded that the system was not of relative degree higher than two.

To test further the validity of the previous result, a second-order sliding surface
candidate of the form

d . ..
¢=§3=Pz<a)y=)’o)’+)’1}’+)’2)’, Yo=25 yi=7,=1 (38)
with a control input voltage u of the form
u= —Wsign(yoy + 7,V + 72¥) (39)

was actually tested. The second-order time derivative of the angular position signal
represents the angular acceleration of the rotor axis. Since it is well known that the
rotor current is proportional to the angular acceleration, the rotor current was
directly measured, instead of the acceleration, for the synthesis of the function . This
explains the presence of the constant y, in (38) and (39). It is clearly seen from the
physics of the problem that actually an input-dependent sliding surface candidate
was being tested.



588

50

Figure 4.

Figure 5.

- - -10
0

H. Sira-Ramirez et al.

-5

First order sliding surface behaviour, discontinuous control input and cor-

responding phase trajectories for DC motor experiments.

- 10

. 0

2 3

Second order sliding surface behaviour, discontinuous control input and cor-

responding phase trajectories for DC motor experiments.

The corresponding experimental results are shown in Fig. 5. The existence of a
sliding volume implicitly defined by s = §; is clearly assessed from the fact that very
high frequency switchings of the corresponding control input were observed, and a
bounded chattering motion of the measured quantity y = $, occurred. The existence
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of a sliding volume was concluded and the relative degree of the system was, therefore,
experimentally found out to be equal to two.

3.2. A single-link robotic manipulator with artificial muscles

An experimental single-link manipulator, equipped with pneumatic antagonistic
artificial muscles and a servovalve actuator, was used to validate an experimentally
identified model obtained using the MATLAB System Identification package. Such
a model turned out to be given by the following third-order linear system with a fast
first-order asymptotically stable zero dynamics and negligible time delay.

g(i)z;ilﬁjq)”p B (40)

Ai(p) p*+ 1506 p* + 506 p
where p designs the Laplace transform of the derivative operator and the output of
the system was taken to be the angular position @ with respect to the horizontal
equilibrium position. Such an equilibrium position corresponded to a constant torque
developed by the antagonstic muscles arrangement. The input to the system was
taken to be the servovalve incremental current Ai. The servovalve current i has a
constant value i = I = 0-5 A corresponding to the horizontal equilibrium position.
The incremental servovalve current Ai around its constant nominal value was set to
represent the discontinuous feedback control input action, seeking to induce a sliding
regime on the several increased order proposed scalar output functions.

The experiment started with a zeroth-order sliding surface coordinate function
candidate s, = Py(d/dt)0 = 0 representing the angular position error with respect
to the vertical position. The control input current was synthesized as u = I + Ai =
I — W sign y. The obtained experimental results are shown in Fig. 6. Evidently the

O————— = — 2 — ;

! L J 0 1 i
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Figure 6. Zeroth order sliding surface behaviour, discontinuous control input and cor-
responding phase trajectories for single link manipulator with artificial muscles.
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existence of a sliding regime on such a sliding surface candidate could not be
concluded owing to the oscillatory behaviour of the surface coordinate and the
corresponding low-frequency switchings of the control input current. The system was
therefore of relative degree higher than one.

A first-order sliding surface s, was next proposed which entitled a linear (Hurwitz)
combination of the angular position error and the angular velocity. The proposed
sliding surface output function was then set to be

d .
s; =P (dt)y =Yy +5 %>0 (41)
where the positive constant y, was chosen as y, = 5. The discontinuous feedback
control input u was chosen as

u=05— Wsign (yoy + )

with W = 0-2 4. This value of W corresponds to an incremental pressure reasonably
endured by the rubber muscles. The angular velocity was directly obtained by means
of a tachometric measurement devised on the actual experimental set-up. The
experimental results, depicted in Fig. 7, show an oscillatory sliding surface behaviour
at the beginning and a corresponding low-frequency bang-bang incremental current
input signal. After the oscillations have settled, the obtained sliding surface candidate
trajectory is seen to qualify as a sliding motion, when compared with the zeroth-order
surface counterpart. After this moment the control input is seen to undergo
higher-frequency switchings characteristic of the local existence of a sliding regime.

10————— o 2 . P

commande

02k : o

0 1 23 0 T 2 3

Figure 7. First order sliding surface behaviour, discontinuous control input and cor-
responding phase trajectories for single link manipulator with artificial muscles.
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Figure 8. Second order sliding surface behaviour, discontinuous control input and cor-
responding phase trajectories for single link manipulator with artifictal muscles.

The system is therefore of relative degree equal to 2. It was felt, however, that a still
higher-order sliding surface candidate needed to be tested to confirm the result.
The experimental results corresponding to a second-order sliding surface candidate

A d L
W=53=P2<a>y=yo)’+%?+y’ 99 >0,y, >0 42)

with y, = 5 and y, = 1 and the control input
u=1I—Wsign(yoy + 7y +J) 43)

with W =02 A are shown in Fig. 8. The second-order derivative of the angular
position error was obtained through a direct numerical differentiation scheme.

The existence of a sliding volume generated by the input-dependent sliding surface
candidate function s,, implicitly defined by the equation §; = s3, is clearly concluded
from the obtained experimental results depicted in 8. The angular position output
of the system exhibits, therefore, a relative degree r equal to 2.

It should be emphasized that it is well known that reasonable models of robotic
manipulators equipped with artificial muscles are differentially flat, ie. they are
exactly linearizable by means of endogenous dynamical feedback (see, for instance,
Sira-Ramirez et al. 1994). The given system may also be taken as a third-order system
with negligible, or very fast, asymptotically stable zero dynamics. This fact is already
present in the identified model above, as well as in models proposed by Inoue (1987),
Hamerlain et al. (1991) and by Tondu and Lopez (1994).



592 H. Sira-Ramirez et al.

4. Conclusions

In this paper we have developed a method which has also been experimentally
implemented to verify the relative degree of a presumed system model. The method
is based on testing the behaviour of successively higher-order scalar sliding surface
coordinate function candidates. These functions define corresponding higher-order
linear sliding hyperplanes in the phase space of the system. In all cases the system
is assumed to be excited by a discontinuous control input which is based on the
knowledge of such a sliding surface candidate. The used discontinuous feedback
control inputs may be synthesized on the basis of the sign of the currently proposed
sliding surface candidate, or some reasonable continuous approximation of the sign
function. When a sliding regime is locally achieved on the zero level set of a particular
sliding surface candidate function, the relative degree of the system is then uniquely
determined from the dimensions of the corresponding sliding manifold. The relative
degree of the system exceeds by one the dimensions of the obtained sliding
hyperplane. An obtained sliding mode behaviour, on a given sliding surface candidate,
is unequivocally assessed and it is fairly easy to identify in practice. In fact if a shding
hyperplane candidate of dimensions equal to the relative degree of the system is
proposed (i.e. an input-dependent sliding surface candidate), the obtained sliding
regime corresponds to a sliding motion on a sliding hypervolume which is readily
identified in terms of the observed behaviour of the measured sliding function
candidate. The proposed method not only enjoys a well-based theoretical foundation,
but it is also straightforward to implement in a laboratory set-up. For those systems
where a linearizing output is known, and it happens to be available for measurement,
the method readily yields the order of the system.

The technique was applied to verify the relative degrees of experimentally derived
models for a DC motor, driving an inverted pendulum, and for a robotic manipulator
equipped with artificial antagonistic pneumatic muscles.

Further developments can be propsed, which include verification of the structure
at infinity of multivariable systems, including the so-called essential structure or
essential orders at infinity (Glumineau and Moog 1989).Generally speaking, the
existence of a sliding regime for the multivariable nonlinear system case requires
dynamic extension, of certain input coordinates, via the addition of integrators on
some suitably chosen input channels. This is seen to be necessary to achieve an
underlying required (dynamical) input-to-sliding surface decoupling property. The
realization of these theoretical features in experimental environments, however,
should, pose no serious practical difficulties.
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