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On the robust stabilization and tracking for robotic manipulators
with artificial muscles

HEeBERTT SIRA-RAMIREZ?T, PIERRE LoPEzi and BERTRAND ToNDUF

The robustness of a dynamical sliding mode control strategy with respect to unmatched
perturbation inputs and modeling errors is examined for robotic manipulators equipped
with an arrangement of antagonistic artificial muscles, acting as actuators. Differential
Aatness, which in the case of single-input manipulators coincides with exact lineariz-
ability of the system, is exploited to obtain a discontinuous feedback control strategy.
The approach naturally allows for the introduction of a first order servovalve-artificial
muscle actuator model for sliding mode controller design purposes.

1. Introduction

The purpose of this paper is to examine the roéusmess
of dynamical sliding mode feedback control of robotic
manipulators, equipped with artificial muscles, in the
context of stabilization and tracking tasks. The dynamic
extension and differential flatness of the original system
allow for the natural introduction of the dynamical
actuator in the feedback loop as a part of a desired
trajectory for the linearizing output, as well as the direct
‘specification of a control strategy based on sliding modes.
The robustness of the resulting dynamical feedback
control scheme, with respect to mismatched perturba-
tions and modelling errors, is first established and then
tested by means of computer simulations.

Dynamical sliding mode control was introduced by
Fliess and Messager (1990, 1991) in the context of linear
dynamical systems. These results were later extended to
nonlinear systems by Sira-Ramirez (1992 a, b, 1993 a, b).
Application of dynamical sliding mode controllers to the
regulation and tracking of flexible joint manipulators was
also undertaken by Sira-Ramirez et al. (1992). A closely
related development is represented by the possibilities of
specifying dynamical pulse width modulation (PWN)
feedback control strategies. For an example that deals
with the dynamical regulation of rigid and flexible joint
manipulators, using PWM control, the reader is referred
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to the work of Sira-Ramirez and Llanes-Santiago (1993).
The mathematical basis of all these extensions, and
developments, lies within the realm of the differential
algebraic approach to control systems, introduced by M.
Fliess (1989, 1990 a, b). An immediate consequence of
this theoretical advance, within the sliding mode control
area, was the justification, through the use of generalized
state space (Fliess 1990 a) representations of the involved
system, of smoothed sliding mode controllers directly
obtained from inversion of the dynamical system. Such
a smoothing strategy, fundamentally allowing for input-
dependent sliding manifolds, represents a significant
departure from the traditional high-gain approach
(Slotine and Li 1991) and it is applicable to other kinds
of discontinuous feedback control strategies, such as
PWM and pulse frequency modulation feedback con-
trollers (Sira-Ramirez and Llanes-Santiago 1994).

In this paper we adopt a slightly different posture by
bringing into the design process the differential flatness
of the dynamically extended manipulator system. Differ-
entially flat systems constitute the simplest extension of
the notion of linear controllability to the nonlinear
systems case and this is equivalent to exact linearizability
in the single input-single output case. Flat systems were
introduced and developed, as an outcome of the
differential algebraic approach, by Fliess and his
coworkers (Fliess et al. 1992 a, b, 1993) and Rouchon et
al, (1993). Single input-single output flat systems are
characterized by the existence of an independent
linearizing output (i.e. one which does not satisfy any
algebraic differential equation independent of the control
input), and such that all variables in the system, including
the control input, are expressible as differential functions
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of such a linearizing output (a differential function of a
linearizing output is one that has as its arguments the
output and a finite number of its time derivatives). The
highest derivative of the linearizing output in the control
input expression is equal to the order of the system.

In § 2 we show that a rigid robotic manipulator and
its first-order dynamical extension (Nijmeijer and van
der Schaft 1990) are differentially flat. The additions of
the artificial muscle actuator model (Nouri and Lopez
1993), and of the servovalve (Inoue 1987) not only do
not destroy differential flatness, but they are even seen
to be naturally incorporated as part of the desired
linearizing output trajectory. In § 2 we design a dynamical
sliding mode tracking controller in terms of an imposed
trajectory for the linearizing output described in terms
of an unforced diflerential equation with discontinuous
right-hand side. The sliding mode controller design
is purposefully carried out without consideration of
unmatched external perturbation inputs and large
(unmatched) modelling errors. Such modelling errors
arise from an erroneously assumed independence of
the generated torque with respect to the obtained
angular position. In this section we present some
simulations of the sliding mode controlled system that
includes unmatched noisy perturbations and equally
unmatched modelling errors. The robustness of the
proposed feedback controller is obtained in terms of the
perturbed input-dependent sliding surface coordinate
evolution, and is then corroborated through computer
simulations.

-

2. A dynamical sliding mode controller for a
manipulator system equipped with an artifical
muscle actuator

2.1. Flatness of an extended model of a single-link
robotic manipulator

Consider the following simple model of a single-link
rigid robotic manipulator (Khalil 1992):

0= w,

k 1 1)
a5=-—gcos(9——w+—r, (
i M ML?

where @ is the link angular position, measured with
respect to the horizontal, w is the corresponding angular
velocity and ¢ is the appiied torque. The constants g, &,
L and M represent, respectively, the acceleration due to
gravity, the viscous damping coefficient, the length of the
manipulator arm and the mass of the link (assumed, for
simplicity, to be concentrated at the tip of the
mantpulator).

Consider also the first-order dynamical extension of

the given manipulator system (1)

= o,
k 1
w=—2c059—-w+~—r, (2)
L M ML?
tT=uy,

where v is a new external input to the system.

Itis easy to see that all variables in the extended system,
including the auxiliary control input v, can be expressed
as a differential function of 6, i.e. as a function of the
angular position § and a finite number of its time
derivatives; (angular velocity w, angular acceleration «,
jerk, etc). Indeed from (2) it follows immediately that if
we let y = 0 denote the linearizing output, then

=y,
=Y,
r=ML2<f+gcosy+—k—y>, (3)
L M

g .. k.
v=MLY y» - Zysiny + — )
<} Ly 4 A\/I}

i.e. the extended system is differentially flat (Fliess et al.
1992 a).

Note that since y* is completely free (hence the name
flat coordinate for y), one may specify a trajectory for
y(t) in terms of, say, an unforced third-order linear
time-invariant differential equation. A common pro-
cedure would then be to impose such a linear evolution
on the linearizing output y and to compute the required
auxiliary input v by using (3). The problem with such an
exact linearization approach is the resulting lack of
robustness of the obtained feedback controller with
respect to small parameter variations and with respect
to unavoidable external perturbation inputs acting on
the actual system. In the next section we propose a
dynamical sliding mode controller which eventually
linearizes the closed-lcop behaviour of the output y, or
alternatively that of its associated tracking error, to a
desired second-order system dynamics. The obtained
design is shown to be robust with respect to significant
unmatched perturbation inputs and reasonably large
modelling errors.

2.2. A model for the servovalve-artificial muscles
actuator system

The actuator considered is composed of two anta-
gonistic muscles that develop a contracting force, in
analogy with the force produced by a skeletal muscle
arrangement (Nouri and Lopez 1993). The artificial
muscles considered follow the same principles as
the Japanese ‘rubbertuator’ (editorial article, Rubber
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Figure 1. Antagonistic artificial muscles arrangement; muscles in current control position.
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Figure 2. Block diagram of manipulator and artificial muscle—~servovalve arrangement.

Development, Vol. 37, No. 4). The advantage gf using
such actuators lies in the natural compliance which can
be obtained for robot motions. Simulations and actual
experimental work have been extensively carried out on
such a class of actuators, using different sliding mode
control strategies (Hamerlain et al. 1991, Nouri et al.
1993, Noun and Lopez 1993).

- The antagonistic artificial muscle arrangement is
shown in Fig. . It consists of two identical muscles joined
by a chain through a free rotating wheel of radius R.
Such a wheel provides the necessary link of the muscles
for torque generation purposes. The rotating axis of the
wheel is thus. perpendicular to the ‘muscles plane’.
The actuator working principle i1s easily explained by
referring to Fig. 1. At the ‘rest state’ the air pressure in
the two muscles is equal to the atmospheric pressure;
consequently, the muscles are not contracted. In the
‘initial control state’ the air pressures in the two muscles
are equal and constant, of value Py thus, each
muscle is equally contracted. The arrangement is such
that the total applied torque to the joint pivot is zero
and the link position rests at its inital state. In the ‘current
control state’ an angular joint displacement is obtained
by a simultaneous pressure increment of value Ap,
in the ‘antagonistic muscle’ and a pressure decre-
ment, by the same amount Ap, in the ‘antagonistic
muscle’.

The artificial muscles are modelled as cylinders which
keep their cylindrical shape during contraction. In reality
the muscles remain cylindrical only in their initial states,
and during contraction they become nearly cone-shaped
in the neighbourhood of the tips. This fact generates some

nonlinear effects which, for the sake of simplicity, are not
considered here.

Each muscle is supplied with the required air pressure
from an electro-pneumatic converter, or current/pressure
transducer. Figure 2 depicts a block diagram of the
servovalve—muscle actuatot and single-link manipulator
system.

Consider the following dynamical first-order model of
a servovalve (Inoue 1987, Miyazaki et al. 1989)

d 1 K
S Ap=——Ap+22al 4
A S

where Ap is the incremental variation of pressure in the
two antagonistic muscles, with respect to a nominal
pressure P, which keeps the manipulator arm in
equilibrium at the position =0, and Ai is the
corresponding variation of the input current in the
servovalve, regarded as the effective control input.

The time constant of the servovalve—muscle combina-
tion is here denoted by T, and the parameter K, is the
current-to-pressure gain. This first-order linear model for
the servovalve has been fully documented in the literature
and extensively used in connection with actual laboratory
implementation of several feedback strategies (a sample
of the available results using such a model is obtained
from the works by Inoue (1987), Miyazaki et al. (1989),
Hamerlain et al. (1991), Nouri and Lopez (1993), Noun
et al. (1993), as well as the references therein).

A model for the actuator can be deduced from the
contracting force model considered for the artificial
muscle. The following mathematical model for the
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contracting force F has been established by Nouri and
Lopez (1993)
F = (mrj)Pla(l — ¢)* - b], (5)

where r,, is the muscle radius at rest, P is the air pressure
inside the muscle, € is the current muscle contraction
ratio, defined as

L-L,
L,y

€ =

with L, the muscle length at rest and L the current muscle
length. The parameters a and b are constant parameters
related to the physical characteristics of the muscle. The
torque 1, generated by the actuator, is given by

t = R(F, - F), (6)

where R is the actuator wheel radius, F, is the agonistic
force and F; is the antagonistic force (see Fig. 1).

Using the expression for the contracting force F in (5),
one obtains, from a simple consideration of Fig. 1

2
= R(nré){(PO + Ap)[a(l — €y — ?) - b:l
0

2
—(Py — Ap)lia(l — €y + %9-> - b}}, N

where P, is the initial air pressure in the muscle, chosen
to be half the maximum available pressure, €, is the initial
contraction ratio, chosen according to the muscle
parameters and the desired joint motion range (10-15%
_being typical values), and Ap is the incremental
commanded pressure. The following expression is
deduced for the torque 7:

t = K;Ap — K78 + K46 Ap. (8)

The generated torque 7 is thus assumed to be a function
of the variation of pressure Ap, generated by the
antagonistic muscle assembly, and of the angular position
of the robot link 8. The constant parameters Ky, K7 and
K’ are given by

Ky = 2nriR[a(l — €,)* — b],

_ 4nriR?aP, (1= ey
Lo . 9)

, 2mriR’a
e
Ls

It can be remarked that the term — K78 in (8) indicates
that the torque generated by the actuator provides a
counteracting effect which explains the natural com-
pliance of the artificial muscle actuator arrangement. We
shall adopt. as a practical approximation for the
generated torque, the simplified expression

t = KrAp — K56. (10)

’

This approximation is justified by the fact that for
reasonably large values of the angular position 8, the
contribution of the term K%6%Ap is quite small due to
the fact that the constant K7 is ‘several orders of
magnitude smaller than K. Note that if y(t) is related
to the physical control input signal Ai by means of

k
»_9 ... 5
==ysiny— —

L,V y y

Y M

1 1 K . Kr.
+ - Ap + Ai——y1, (1D
ML*| K,T, KT, Kr

then the auxiliary control input v is given by

K K
Ap + ——Ai - =Ty, (12)
KTTP KTTr KT

v=—

and the extended model (2) of the system (1) is naturally
transformed into the physical model of the system,
including now the approximate description of the
artificial muscle-servovalve combination,

0 =,

k K K;
w:—gcose-—a)—f-—r p——L.0,
L M ML? ML? (13)

A 1>A +<K'>A‘
= —|— — )AL
P T, 4 T, /e

These developments may be simply interpreted by the
fact that the overall system is still differentially flat, i.e.
linearizable. Indeed, the new state variable Ap and the
actual input Ai are also expressible as differential
functions of 8. From (3), (4) and (10) it follows that

ML? g k . K& )

Ap = y+=cosy+—y+——=y]|, (14

p r (y At A vy 2 (14)

and
ML*T,[1 k K;
Ai = ’l:——(y‘+£cosy+—y+—r—zy>

K.K, LT, L M7 ML
g .. k. Kr >

+ Yy —=Zysiny+—y+ . (15

(y LVsinyt ity (13)

One may also, alternatively, consider the incorporated
model as part of a dynamical feedback controller for the
onginal system (1), which synthesizes the applied torque
7 as the solution of a controlled differential equation
regulated by the control input current Ai. Clearly, from
(10) and (13) one obtains

1 KTKr . 'T
f= —— T + Ai — 0 — Kra, 16
T T T i T T (16)
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where the new control input Ai is to be synthesized as a
static sliding mode based feedback control input.

2.3. Sliding mode controller design for tracking and
stabilization tasks

Let ©(t) denote a piecewise smooth function of time
that represents a desirable angular position trajectory for
the robotic manipulator. Consider the following sliding
surface definition, written in terms of the lineanzing
output y:

5=y — () + 2w,y — O(1) + wi(y - O).  (17)

Evidently if the sliding surface s is forced to become zero,
by means of a suitable control action, then the tracking
error ¢ =y — ©(t) obeys the following second-order
dynamics:

é + 2w,é + wle=0, (18)

where the coefficients { and w, may be suitably chosen
to guarantee an asymptotically stable trajectory of the
tracking error e to zero, with desired quality features.

The trajectories associated to the unfdrced dis-
continuous scalar dynamics

s+ Wsigns =0, (19)

exhibit a finite time reachability of zero from any given
initial condition s(0) € R, provided that the constant gain
W is chosen to be strictly positive. It is therefore clear
that it is highly desirable to impose on the sliding surface
. s, defined in (17), the autonomous dynamics (19).

The desired time-varying discontinuous dynamics for
the lineanzing output y are then given by

W = —2w,j — wj + OO + 2[w,0() + wi6(1)
—~ W sign [j — O(t) + 2Lw,(¥ — O(1))
+ oi(y — O@)]. 0

A static sliding mode feedback controller, for the
combinated third-order system, is readily obtained by
substituting (20) into (3) and solving for Ai. Alternatively,
one may consider the obtained expression for Ai as the
static nonlinear feedback input signal to the dynamical
feedback controller (16).

Note, however, that a controller thus derived must
clearly perform according to the prescribed design
demands, because no perturbations or significant model-
ling errors are being considered in the design model. One
of the important characteristics of (traditional) static
sliding mode control, which is shared by dynamical
sliding mode controllers, is represented by the robustness
of the feedback strategy. In the next section we derive a
dynamical sliding mode controller on the basis of a
simplified design model that contains (unmatched)

modelling errors. The performance of the obtained
controller is tested, via computer simulations, by using
it as a feedback controller on a perturbed version of the
physical model (14), regarded as the actual system model.
Such a model also happens to include, unmatched,
unmodelled external perturbation inputs of a stochastic
nature.

2.4, Robustness of a dynamical feedback sliding mode
controller

It is quite well known that sliding mode controllers
are traditionally robust with respect to parameter
variations and external perturbations, provided that
some matching conditions are satisfied. These matching
conditions, first developed in the work of Drazenovic
(1969), are rightfully meaningful when considered in the
context of a fixed state-space representation of the system.
If an input-output approach is used, the matching
conditions lose their meaning and they are. so to speak.
automatically satisfied, provided that the time derivatives
of the unmatched perturbation inputs are bounded. This
1s especially clear if a generalized state-space representa-
tion, of the generalized observability canonical form type,
1s used for the system model (Fliess and Messager 1990,
Fliess 1989). This fact has also become evident in some
recent theoretical work related to sliding mode control
of linear systems that utilizes a module theoretic view-
point (Fliess and Sird-Ramirez 1993 a, b). Similar
remarks are also applicable to sliding mode output
feedback schemes using also discontinuous state vector
reconstruction strategies (Sira-Ramirez and Spurgeon
1994, Sira-Ramirez et al. 1994).

For sliding mode controller design purposes, we now
regard the model in (13) as the actual system model, and
include a perturbation term &(¢t) in the acceleration
equation which represents unmodelled noisy signals that
affect the actual behaviour of the system, i.c.

=W,

K K;
gcos@—£w+ T Ap— 50+ %),
L M ML? ML

(21

The scalar signal #(t) represents an external, bounded,
perturbation input to the system which also exhibits
bounded time derivatives up to a first order. Note that
the perturbation signal #(t) is ‘unmatched’ with respect
to the control input channel used by the input signal Ai.

To test the robustness of the control policy, generated
by the proposed sliding mode dynamics (20), we compute
the sliding mode control law for Ai under two simplifying
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assumptions that test its robust performance with respect
to mismatched unmodelled perturbation terms and
additive unmatched modelling errors.

(a) An intentional modelling error is introduced by
enforcing a simplifying assumption into (10), describ-
ing the torque generated by the artificial muscle
arrangement. We specifically assume that the torque
7 is a function only of the incremental pressure Ap
and that it does not depend on the angular position
o, ie.

= K;Ap. (22)
For sliding mode controller design purposes we thus
ignore the counteracting effect of the angular position
on the delivered torque.

(b) We also ignore the presence of external perturbation
signals $(¢) in our simplified model.

The above assumptions resuit in a simplified dynamical
model for the actuator-manipulator system, given
now by

8=ow,

K
T_Ap,
ML? (23)

k
W = —icose——w+
JE

. 1 K
Ap = —( —)Ap + | = )AL
P <T> P (T)

The resulting simplified dynamical sliding mode
controller, corresponding to the sliding dyanics (20) and
the adopted model (23), may be given. after the use of
(22), in terms of the state vector (6, w, Ap) by

A A +K’A 3
= —— — A,
PRI T
Ai=_T_'-{f<lAp+MLZ[—3wsm9

KK, | T, L

k g k Kr )
+|——2w, || —=cosf§ ——w + A
<M e >< L MY T
L

— wiw + () + 2w, B(1)

+ w?O(1) — W sign s:l},
g k Ky -
= —=cost -—w+—=Ap—0O(t
TTL MO Tyt e
+ 2w, (o — B(1)) + w(8 — O(1)). J
(24)

Note that by regarding the torque t as t = K;Ap the
proposed sliding surface s = 0 is actually an input torque
dependent manifold. The discontinuous feedback control
actions, present in the generated signal Aj, are integrated

three times before explicitly appearing in the commanded
angular position 8. This fact is responsible for the
substantially smoothed output responses.

Substitution of the proposed simplified controiler
expression (24) on the actual perturbed system (21) and
calculation of the sliding surface coordinate dynamics,
results, after some algebraic manipulations, in the
following expression for the sliding surface evolution:

§= —W signs + o(t) — (% - 2[w,,)0(t)

4

1 (Kp
i <7, 6+ K7w>. (25)

Because 9(t) and §(1) are assumed to be bounded, it is
easy to see that for bounded ranges of the angular
position # and the angular velocity w of the manipulator
manoeuvres, there exists a sufficiently large positive value
of the constant gain W, such that the sliding surface
coordinate s is guaranteed to converge to zero in finite
time. Hence, the desired dynamics (18) for the lincanzing
output tracking error e are achieved by the actual
perturbed system. The ideal sliding dynamics are
therefore obtained in spite of the (bounded) values of the
perturbation input signal and the modelling errors
adopted for the dynamical sliding mode controller
calculation.

A similar analysis can be carried out if unknown
variations in the mass M of the manipulator are allowed,
whereas the simplified dynamical feedback controller (24)
is still computed in terms of a certain nominal value, say
M,, of the manipulator mass M. The results are not
reported here.

2.5. Simulation results

Simulations were performed for a stabilization task
and a tracking task for the perturbed system (17).
The parameter values for the system were taken to be

M=10kg, L=10m, k=005kg/s, g=98m/

The parameters of the artificial muscle model were
obtained, in an approximate manner, from an experi-
mental set-up. These parameters were set to be

Ky =10 x 107* Nm/Pa, Kj =20 x 107! Nm/rad,
T, =250s, K, =25 x 108 N2mlAPa.

For the stabilization task, the sliding mode controller
was designed with the following parameters:

(=08, w,=25rad/s, ©=0rad, W =600.

The graphsin Fig. 3 depict the behaviour of the controlled
system for the stabilization task. The several figures show
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Figure 3. Sliding mode control stabilization of manipulator with artificial muscles.

the controlled evolutions of the state variables § and w
and the incremental pressure Ap. All these variables
evolve towards their desired equilibrium values. The
sliding surface coordinate s reaches the value of zero in
finite time and its evolution is sustained on such a
condition in spite of the unmatched influence of the
perturbation input (). The mismatched noise signal 9(t),
applied to the actual system model, (21) is also shown in
this figure.

For the tracking task, the following piecewise smooth
function is proposed, which produces a convenient
transition, in time T, between an initial angular position
O, and a final position ©,. The angular dispiacement is
achieved with non-zero constant angular accelerations
during the initial and final phases of the maneuver, of
duration t_... The intermediate phase entitles a constant
‘cruising’ velocity of value V achieved at the end of the
initial acceleration interval.
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Figure 4. Tracking task for sliding mode controlled manipulator with artificial muscles.

— + 0, for0<t<t,.,

t
Q) = V(c - “2°°> + @y, fort,. <t <T —t,.,

_A@=T)?

5 +0, forT—t,.<t<sT,

(26)
where t,.. = |V/A| and T =10, — @y/V| + |V/A|, and

the parameters @, and O, represent, respectively, the
position of departure and arrival of the link angle 8. The
quantity V is the crusing velocity and A is the allowed
acceleration in the initial and final stages, respectively
during the intervals [0, t,..] and [T — t,.., T]. To obtain
a physically meaningful solution for ¥ and A4, the initial

and final values of & must satisfy the condition

VZ
Q, -y =—.
|9, ol I
The preceding relations, and the careful choice of T and
t.cc, allows one to uniquely compute the required values
of V and A.

The sliding mode controller parameters W, { and w,,
were taken to be the same as for the stabihization
task. The initial and final angular positions were set
to be

n n
Qg = 3 Q, =- &

These values, and the choice of
tyee = 10s, T =30s,

yield identical numerical values for the required accelera-
tion and cruising velocity: '
V = —138rads”}, = —138rads”2.
Figure 4 presents the performance of the perturbed
controlled system to the tracking task. The evolutions of
the controlled state variables are shown in this figure, as
well as the siiding surface coordinate behaviour. The

unmatched noise signal &(t}, applied to the system, is also
depicted in Fig. 4.
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3. Conclusions

In this paper, using the concept of differential flatness,
which is equivalent to exact linearizability in the studied
single-link robotic manipulator, a dynamical sliding
mode controiler for robust tracking and stabtlization has
been proposed. By using the differentially flat nature of
the system, it was found that the dynamical discontinuous
feedback controller easily assimilates a servovalve-
artifictal muscle model of first-order nature. Such an
addition thus leads to a static sliding mode controller on
the augmented order system. The addition of the artificial
muscle and servovalve assembly model does not destroy
flatness, and it is naturally incorporated as part of the
prescribed linearizing output trajectory. The output
trajectory is here taken to be autonomous third-order
output error dynamics, robustly converging in finite time
to a two-dimensional integral sliding surface in the error
space. The robustness of the proposed scheme was
mathematically proven and thoroughly tested in several
computer simulations which included unmatched pertur-
bation inputs and considerable (unmatched) modelling
errors arising from simplifying assumptions on the
actuator torque equations.

The performance of the controller was cn&)uraging
enough to attempt actual implementation on a laboratory
facility located at INSA (Toulouse). Work in this
direction is currently underway, and the results obtained
will be reported elsewhere.
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